

Mobile Home Research

Analytical Evaluation of Transportation Effects on Mobile Homes Transportation and Site-Installation

Volume 1

Final Report

MOBILE HOME RESEARCH

TRANSPORTATION AND SITE-INSTALLATION

ANALYTICAL EVALUATION OF TRANSPORTATION EFFECTS ON MOBILE HOMES

VOLUME 1 FINAL REPORT

By

Southwest Research Institute

Prepared for

U.S. Development of Housing and Urban Development Office of Policy Development and Research

Contract Number H-2411

March 1979

HUD 000 1612

1. 18 1. I

The research and studies forming the basis for this report were conducted pursuant to a contract with the Department of Housing and Urban Development (HUD). The statements and conclusions contained herein are those of the contractor and do not necessarily reflect the views of the United States government in general or HUD in particular. Neither the United States nor HUD makes any warranty, expressed or implied, or assumes responsibility for the accuracy or completeness of the information herein.

FOREWORD

At the present time, 10 million Americans live in mobile homes. For them, and for the increasing numbers of people who will come to live in such homes in the future, HUD, at the request of the Congress, has undertaken research to improve mobile home safety and durability. Out of that research, HUD is to develop, promulgate, and enforce one nation-wide construction standard for the industry.

The six volumes that constitute this report should prove invaluable to those who develop standards as well as those architects and engineers who design both manufactured housing and mobile homes. That some of the research may be controversial is only to be expected. It is pioneering work that offers a new approach to resolving difficult problems.

The Division of Energy, Building Standards and Technology of HUD's Office of Policy Development and Research should be recognized for its contribution to this worthwhile project.

oon fundicies

Moon Landrieu Secretary

TABLE OF CONTENTS

DYNAMIC ANALYSIS -- APPLIED ENGINEERING TEXT

DYNAMIC ANALYSIS -- RESEARCH AND DEVELOPMENT TEXT

FINITE ELEMENT MODEL AND ANALYSIS

EXPLODED ISOMETRICS

NOTE: Since each part was originally written as a separate volume, each contains its own Table of Contents, List of Figures and Tables and Pagination.

v

SUMMARY

The research contained herein was undertaken to provide a basis for determining the adequacy of the Mobile Home Construction and Safety Standards, effective June 15, 1976. "Adequate" is defined as Standards that result in mobile homes with sufficient durability to provide the homeowner with an acceptable useful life; currently defined for purposes of this Study as a minimum of 15 years for a single-wide and as a minimum of 20 years for a double-wide unit. The research methodology to evaluate the standard included: (1) the development of analytical methods to determine transportation and site-installation induced loads and the resulting member stresses, joint-loads and deflections; (2) the development of a means to predict degradation caused by the aforementioned forces; (3) the conduct of a test program that compares analytically determined input loads and predicted degradation with actual physical test measurements and observations; (4) if required, proposed changes to the Standards; and (5) analytical or test methodology that could be used by enforcement agencies to evaluate proposed mobile home designs.

To determine mobile home structural member loads caused by intransit conditions, computer modeling techniques were used. Critical in-transit conditions (i.e., road roughness and towing velocity) were analytically related to critical structural parameters (i.e., torsional stiffness, flexural stiffness, and damping) in order to calculate estimated

vi

member loads. This analysis also related analytically predicted changes in structural parameters to degradation of the mobile home. Equations were developed that, in part, statistically compare structural parameters of any given mobile home to a home that is considered to be 100 percent degraded. Solution of these equations result in an estimation of mobile home degradation. These equations were modified as required to provide "best fit" estimates consistent with test data and are subject to further modification as additional data becomes available. This research activity is described in Volumes 1 and 4. A detailed rationale for analytical equations is not presented since emphasis was put on the "best fit" relationship of analytical computer simulations and test data.

Volumes 1 and 4 also includes a computer oriented methodology for the analysis of mobile home structures. This data provides a basis for future research oriented to the rapid analysis of mobile home member stresses, joint loads and structural deflections.

A test program was conducted to obtain data that could be compared to analytically derived data. Emphasis was placed on measured test data which resulted in equation modifications as necessary to "best fit" experimental data. Test data was obtained from single-wide and double-wide homes built per the current standard and from homes built prior to implementation of the current standard. Test homes were subjected to transportation and site-installation conditions to simulate years of actual use. Volume 2 describes the test program with supportive data sheets included in Volume 3.

vii

The objective of proposed revisions to the Standards is to reduce the incremental degradation of mobile homes where current design practices result in predicted and observed degradation that exceeds acceptable levels. Volume 5 contains proposed changes to the current standard based on an analysis of data contained in Volumes 1 through 4. The proposed changes include increased design loads to resist in-transit and on-site forces; increased design criteria for attachment of joints as required to minimize loosening of joints during transportation; and a requirement for a minimum integrated structure stiffness criteria to ensure that degradation with respect to time is consistent with a reasonable useful life. Recommended design loads were based on actual measured test data multiplied by a factor selected to account for rough roads and highway speeds greater than 45 MPH. Minimum stiffness criteria were based on values obtained from the single-wide home built to the current standards.

Volume 6 contains a proposed field test method that could be used to measure the stiffness parameters of new or used mobile homes. These parameters are required to verify adherence to the proposed standard, and to perform calculations necessary to predict the remaining useful life of the mobile home.

Volume 7 (yet to be printed) will summarize the major results of the other six volumes and will provide a cohesive evaluation for the reader interested primarily in understanding the broader aspects rather than becoming technically involved in the specific technical aspects of the study.

viii

The Southwest Research Institute's Study offers an innovative approach in terms of a concept and a model upon which to assess mobile home structural durability, or conversely, structural degradation. The Study's findings should offer a base upon which to develop proposed Standards.

The rationale of using degradation of torsional and flexural rigidity as a measure of mobile home durability is innovative for mobile home design and would appear to be basically sound. Changes in stiffness (torsional and flexural) and damping, have been used for several years in engineering practice as a measure of structural degradation in other applications. The concept of seeking a measurable parameter that is sensitive to degradation appears to have merit.

This Study's findings should therefore be considered in the whole context of the research effort rather than narrowly disected. Certain assumptions made upon the best available information from data, may later be modified as experience is gained in the use and application of the Study's results.

ix

RELATED DOCUMENTATION

The research program, from which this volume and six others were derived, was originally organized into eight project tasks under each of which a varying number of reports were written; e.g., Task I consisted of Volumes I, II, III, and IV. In order to reduce the number of separate volumes produced from this research, certain reports that were considered related were combined into one volume.

> Volume 1 consists of Task I, Vols I, II, III, IV; Volume 2 consists of Task II and Task III, Vol I, Parts I & II; Volume 3 consists of Task III, Vol I, Part II Raw Data; Volume 4 consists of Task III, Vols II & III; Volume 5 consists of Task IV, Vols I, II, & III; Volume 6 consists of Tasks V, VI, & VII; and Volume 7 consists of Task VIII.

The reader is made aware of this in order to understand the crossreferences that occur throughout these documents as they were originally written. Thus, for example, references to Task I, Vols I and II can be found in the first two parts of what is now Volume 1. It is hoped that any confusion created by this compilation will be offset by the convenience of having fewer volumes of analogous material.

NOTE: Volume 3 is available through the national Technical Information Service; 5282 Port Royal Road, Springfield, Va. 22161. To order by phone call (703) 557-4610. This volume was not printed by the Government Printing Office since it is believed that the demand for Raw Data will be relatively small.

х

ACKNOWLEDGMENTS

The authors are indebted to many professionals for contributions and guidance that made this study possible. Our thanks include:

- Battelle Memorial Institute for their earlier research study into mobile home flexural rigidity;
- U.S. National Bureau of Standards for Dr. Robert Crist's evaluation of the predictive analysis theory;
- U.S. Department of Transportation for their Federal Highway
 Administration and the Bureau of Motor Carrier Safety organizations
 for providing transportation insights;
- o State of Texas Department of Labor and Standards; for the valuable assistance of Mr. Michael Alexander (Manufactured Housing Division) in evaluating the structural dynamics portions of the study;
- o State of Texas Department of Public Safety; for Colonel Wilson Spear's assistance during the highway testing phase;
- Boeing Aerospace Company for the quality of Mr. John Stevens penetrating assessments during the development of each of the several products of the research;
- American Association of State and Highway Transportation Officials for the coordination of the highway safety survey;
- Manufactured Housing Institute for coordinating the attendance of key engineering personnel at the several project status reviews and demonstrations conducted during the research.

DYNAMIC ANALYSIS APPLIED ENGINEERING TEXT

DYNAMIC ANALYSIS APPLIED ENGINEERING TEXT

and rate in this set a tar and a set of the set of the

Prepared by

J. J. Labra, Ph.D.

ABSTRACT

This volume summarizes the results of extensive computer modeling of intransit mobile homes. The study included a parametric investigation of the effect of changes in structural properties of mobile homes to probabilistic dynamic response and vice versa. In addition, the effect of road type and transport speed was also evaluated in terms of induced dynamic loadings. Results include regression equations that can be used by designers to define probable dynamic loadings of a mobile home during transit. Moreover, methodology is presented that can be used to gain insight into the anticipated remaining useful life of a particular unit. A detailed report of development and potential application is contained in Volume II of this Task.

TABLE OF CONTENTS

	and the second se					Ρ	age
LIST	OF FIGURES	1				м. •	iv
LIST	OF TABLES					<u>_</u>	iv
DEF	INITIONS		7		-	, it is	v
1.0	INTRODUCTION			ł		11196	1
2.0	PARAMETRIC INVESTIGATION FINDINGS	-			•	•	2
3.0	PREDICTIVE EQUATION METHODOLOGY AND APPLICATION				-	, en 1	3
4.0	DYNAMIC ANALYSIS OF SINGLE-WIDE (T-1)		•	•	•		5
5.0	DYNAMIC ANALYSIS OF DOUBLE-WIDE (T-2A, T-2B)						7
6.0	COMPARISON OF IN-TRANSIT VERSUS SETUP-TAKEDOWN DEGRADATION		•	•	-	•	9
7.0	POTENTIAL APPLICATIONS OF CRITERIA			•		•	11
8.0	DYNAMIC ANALYSIS CONCLUSIONS		•	•	•	•	16
REF	ERENCES						17

LIST OF FIGURES

Fi	gures Page
1.	Effect of Flexural Stiffness on Dynamic Response Parameter
2.	Effect of Torsional Stiffness on Dynamic Response Parameter
3.	Effect of Damping on Dynamic Response Parameter
4.	Defining Anticipated Dynamic Response for Rear Section of Home
5.	Effect of Flexural Stiffness on Dynamic Response Parameter
6.	Effect of Torsional Stiffness on Dynamic Response Parameter
7.	Effect of Damping on Dynamic Response Parameter
8	Defining Anticipated Dynamic Response for Front Section of Home

LIST OF TABLES

Tables											Page
1. Table 1		•				•			•	•	3
2. Transportation Array (Condition I)	•••					•	·	•	·	·	5
3. Transportation Array for Each Move (Condition II)				•			•	•	•		5
4. Typical Summations in Transportation Modes for T-1 Unit .			 •	•	• •			•			6
5. Typical Summations in Transportation Modes for T-2 Mobile Ho	ome.			• •			•	•			7

DEFINITIONS

The following pages contain definitions of physical words or terms used within the context of the TASK I effort.

CONSUMED LIFE: This is defined using the structural system of the mobile home as the basis for progressive degradation that eventually deteriorates the unit to the point that the useful life has been used up or consumed rendering the home unfit for:

- Transportation Modes
- Live-ability or occupancy
- Mortgage, Financial or Insurance Risk (See RUL, Remaining Useful Life and Structural Degradation)

STRUCTURAL DEGRADATION: Degradation measured in the form of structural stiffness and integrity with a factory new mobile home noted as "un-degraded". The reduction in structural stiffness is measured in two forms: (1) vertical stiffness designated as EI and (2) torsional stiffness designated as GJ. Other indicators of structural degradation are: increased deflections with decreased accelerations indicating a "softening" or loosening of the structure.

REMAINING USEFUL LIFE (RUL): TASK I utilizes this percent of useful life that is used up due to the transportation, setup and takedown cycle with a new/un-used mobile home designated as a unit of 1.0 or has 100 percent of its useful life left. Any operation will degrade the mobile home to some degree there-on. A zero percent RUL indicates the unit (or part of the unit) has been totally degraded.

DYNAMIC ANALYSIS MODEL: In order to totally analyze the mobile home, it was necessary to separate the TASK I predictive analysis into two modes: dynamic and static. The dynamic model evaluates the dynamic loads (or accelerations) generated by the mobile home during the transportation mode. The dynamic model is of the lump mass-beam element configuration with the key masses placed at the proper distance from the centerline of the system. During highway operations, this configuration generates the various accelerations, velocities and displacements as a result of induced excitations from the road surface. From their data, loads can be generated for use in the static finite element model in order to develop the various stress patterns in designated components of the mobile home.

FINITE ELEMENT STATIC ANALYSIS/MODEL: The finite element model consists of dividing the various components of the mobile home into a fine mesh system that is compatible with the actual structural system. All nodal points of the mesh on each component interconnect in order that the program can complete individual element analysis as well as the overall component and mobile home analyses. The finite element method analysis can be used with various basic computer programs such as STARDYNE, STRUDAL or ANSYS. The analysis output can provide stresses at selected points or junctions under various loadings that are usually obtained from the dynamic model. In this analysis, the mobile home structure was divided into major components such as chassis, floor, left wall, right wall, front end wall, rear end wall, roof and individual partitions within the mobile home.

VERTICAL STIFFNESS: The average mobile home can be considered a long box-like structure that has a certain structural stiffness with respect to bending in the vertical plane. Usually the longer the mobile home, the less the vertical stiffness and conversely the shorter the mobile home the greater the stiffness. Vertical stiffness is the ability of the mobile home structure to resist vertical loads/deflection and is synonymous with "flexural rigidity" and "EI". The mobile home can have two basic EI's, one forward of the running gear and one aft of the running gear.

TORSIONAL STIFFNESS: The average mobile home can be considered a long box-like structure that has a certain structural stiffness with respect to torsion about the fore and aft longitudinal axis. The torsional rigidity, like the flexural rigidity is higher in the shorter length mobile homes and lower in the longer mobile homes. Also, the torsional rigidity is a function of the "completeness" of the box structure with respect to the cross section

of the mobile home. If there is no plywood structure on the roof under the metal to complete the structural torque box, the torsional rigidity or stiffness is lower than the mobile home with the maximum section properties.

DYNAMIC LOADS AND DYNAMIC RESPONSE: During development of the RUL and dynamic model, it was anticipated that the TASK I program would be divided into the:

- -Dynamic lump mass model
- -Predictive, (RUL) remaining useful life formula
- -Finite element static analysis model

-Exploded isometrics of detailed points on the mobile home for stress analysis

The finite element static analysis model requires inputs other than the static one "g" loadings. These inputs simulate the actual road condition excitations induced in the mobile home during transit. Accordingly, the acceleration levels from the dynamic model are input to the finite element as "equivalent" G (inertial) loads. The repetitive roadrun dynamic response, even if at a low G level, can be very damaging in terms of accumulative degradation.

STRUCTURAL INTEGRITY VERSUS DEGRADATION: The predictive analysis contained in Volumes I and II of TASK I, is based on the assumption that there exists a direct correlation between the structural integrity of the mobile home and the degree to which it has been or can be degraded. This degradation is attributable to-:

-Transportation modes

-Setup

-Take down

-Occupancy periods of high traffic and poor maintenance.

The structural integrity of a mobile home is measured as a function of the flexural rigidity and torsional stiffness; both of which may change significantly during transit as well as setup-takedown procedures. The mobile home can have a varying stiffness, both in flexural rigidity and torsional rigidity from the front of a mobile home to the rear. However, for the purpose of this report, the mobile home structural rigidity has been analyzed in two areas only: hitch to front axle and front axle to rear wall.

BEAM ELEMENTS: These elements are referred to in two areas:

-Dynamic model

-Finite element model

These elements predominently refer to elements used in the finite element analysis/model because the chassis acts as a beam; the floor acts as a beam and the side walls act as a beam. Also, the dynamic analysis utilizes a simplified lump/mass model with the various eccentric beam elements taken off the longitudinal beam (or axis) for the various dynamic responses generated by designated road conditions and velocities as inputs.

As an example, the sidewall or beams are divided into various elements or a grid mesh of approximately 32-inch centers (to match the 16-in. stud spacing). Each element of this side wall beam is specifically designated or located by the nodal points connecting each corner of the element to the adjacent element. Each beam element has the capacity of determining the stress at any point around the periphery of the element. Therefore, the finer the mesh, the finer the stress points. But, the finer the mesh, the more costly the program to run and analyze or interpret.

POWER SPECTRAL DENSITY (PSD): In terms of physical reality, the spectral density at any particular frequency may be regarded as the average power passing when a random signal is filtered by a narrow band pass filter centered at that frequency.

EFFECTIVE FLEXURAL RIGIDITY (EI): This is the equivalent bending (vertical) stiffness of a mobile home if the *a priori* assumption is made that the unit in flexure can be modeled as an Euler beam.

EFFECTIVE TORSIONAL RIGIDITY (GJ OR J): This is the mobile home's equivalent structural resistance to torsion if the *a priori* assumption is made that the unit in torsion responds as a closed channeled rectangular tube.

MOBILE HOME TEST UNITS: The mobile home test units are designated by the following prefixes:

T-1 1976 14 × 64-Single wide (new)
T-2A 1976 Double wide 24 × 56-Wet half (new)
T-2B 1976 Double wide 24 × 56-Dry half (new)
*T-3 1971 14 × 64-Single wide (used)
*T-4A 1974 Double Wide 24 × 56-Wet half (used)
*T-4B 1974 Double Wide 24 × 56-Dry half (used)

ATTACHMENTS OR FASTENERS: Refers to mechanical devices such as tacks, nails, bolts, screws or staples used to assemble the various joints or structural components. This does not include glue or welding.

JOINTS: Comprises the interface between two pieces of structure or components that are assembled using the attachments noted above. Examples of joints are stud to plate; header to stud; shear wall to side wall; side wall to end wall and roof to wall.

EXPLODED ISOMETRICS: The test mobile homes are shown in an overall exploded isometric configuration with a breakdown of the major components. The critical joints of each model are then detailed in an enlarged/exploded isometric drawing showing the load/stress input, transfer or flow. The exploded isometrics offer a pictorial presentation of the output from the finite element analysis.

RANDOM LOAD INPUT: Induced dynamic inertial loads incurred by the mobile home during transit due to the random excitations from the road surface.

TRANSPORTATION MODE: The mobile home transportation mode is divided into two sections as follows: Condition I covers the transportation from the manufacturer to the dealer and from the dealer to the initial setup site, including setup. Condition II covers the secondary moves including takedown, transportation and setup.

1.0 INTRODUCTION

The objective of Task I was to develop and apply the analytical methodology which would accurately measure the effects of highway transportation and site installation activities upon the structural durability performance of typical mobile homes (both single-wide and double-wide types) during their useful life. Accordingly, in Task I a comprehensive dynamic and static analysis was performed by SwRI to identify and assess the *probable* dynamic and static loads (and stresses) imposed on the mobile homes during transit as well as typical setup-takedown procedures.

In an effort to make this Task I report comprehensible to those interested in the direct applicability of the Institute's findings as well as those more research oriented, this Dynamic Analysis Section (I) was divided into two volumes. Volume I (Applied Engineering Text) of Section I briefly describes the overall investigation. It also defines in detail the pertinent results as well as how the developed methodology can be readily applied to evaluating mobile home remaining useful life (RUL). Volume II (Research and Development Text) describes in detail the systematic development and utilization of this mobile home dynamic analysis. Specifically, it includes the construction of the computer model through its utilization in the structural parametric study to the formulation of the predictive equations for defining RUL. Accordingly, with Volume I, the R & D text (Volume II) should be referred to for background information, development methodologies, etc.

1

2.0 PARAMETRIC INVESTIGATION FINDINGS

In the dynamic analyses, those parameters that were suspect at the beginning of this investigation were:

- Effective flexural stiffness (EI),
- Effective torsional stiffness (GJ),
- Road surface condition (rc),
- Mobile home transporting speed (V), and
- Mobile home damping properties (C_D).

The effective flexural stiffness of the mobile home, a term "coined" by Battelle Memorial Institute (BMI),¹ is the equivalent vertical bending stiffness of the unit, when considered as a simple beam rigidly supported at the hitch and wheel locations. It was BMI's belief that this structural property had a major influence on degradation, and could be used as a tool to estimate the quality and/or degradation of a mobile unit.

Similar to the effective bending stiffness, the effective torsional stiffness (GJ or J) can be considered in studying the mobile home's response to torsion (racking). Accordingly, in the Institute study, these stiffnesses, as well as speed, damping and road condition were investigated to determine which of these variable(s) has a significant effect on degradation. This was accomplished through a series of computer simulations of a 60-ft long, 14,000-lb unit, varying the parameters outlined above.

Results from the simulations emphasized the extreme sensitivity of induced "G" loadings in the mobile home to variations in effective torsional stiffness (GJ). It was further shown that variation in effective flexural stiffness (EI) did not affect the mobile home response accelerations to the same degree as the torsional stiffness.

Based on this parametric investigation via computer model simulations (detailed discussion in Volume II), the influence which the aforementioned structural and road-related properties have on mobile home degradation, is given below in *descending* order of importance.

- (1) Effective torsional stiffness (GJ or J),
- (2) Road surface condition (rc),
- (3) Mobile home in-transit speed (V),
- (4) Effective flexural stiffness (EI)*,
- (5) Mobile home damping properties $(C_D)^*$.

As noted from the computer simulations, the *effective torsional stiffness* seems to be the key parameter which should be considered and controlled if optimum *useful lives* for typical mobile homes are to be realized.

*For the rear section of the unit, changes in flexural stiffness were found to affect degradation to a greater extent than changes in damping properties. For the front section, however, the converse was found to be true.

3.0 PREDICTIVE EQUATION METHODOLOGY AND APPLICATION

Based on the findings outlined above, predictive equations were formulated* which incorporated the structural aspects of the mobile home as well as speed and road conditions and which addressed the problem of in-transit and setup-takedown degradation. These equations were based, in part, on results from the United Computer Systems (UCS) MULFIT computer program² which was used to develop regression equations based on SwRI findings. Specifically, from the data collected, utilizing the dynamic model simulations, the MULFIT program did a "best fit" analysis and derived the following expressions for evaluating mobile home degradation due to initial and secondary moves.

$$\sigma_R = 6.42 \times 10^4 \frac{V^{0.734} r_C}{E I^{0.468} C_D^{0.363} \left[\ln 10^n - \frac{\ln 10^{n-1}}{n^2} \right]^{2.046}}$$
(1)†

$$\sigma_F = 7.13 \times 10^{-3} \frac{EI^{0.208} V^{0.530} rc}{C_D^{0.448} \left[\text{Ln } 10^n - \frac{\text{Ln } 10^{n-1}}{n^2} \right]^{1.610}}$$
(2)†

In the above,

 σ_R - is the RMS[‡] vertical acceleration (G units) of the mobile home rear corner,

 σ_F - is the RMS vertical acceleration at an upper side wall location approximately midpoint between front axle and hitch,

V - is transport velocity (mph),

$$EI$$
 – is the effective vertical flexural stiffness (lb-in.²)

- J is the effective torsional stiffness (in.⁴),
- C_D is the structural damping of the unit (0 < C_D < 1.0).

and rc and n are found in Table 1. Equations (1) and (2) give an estimation of what the dynamic response of a particular mobile home will be during its move to a planned site. They also can be used to define the change in dynamic response due to setups and takedowns by substituting the appropriate reduced flexural and torsional stiffness (due to on-site procedures) into Expressions (1) and (2).

	Road Condition	rc	
	Paved (smooth)*	1.0	
	Paved (waves)**	1.2	
	Paved (rough)**	1.5	
	Unpaved (waves)	2.5	
	Gravel	3.0	
	Unpaved (rough)	10.0	
Effec	Unpaved (rough) ctive Torsional Stiffness (J in. ⁴)	10.0 n	
Effec	Unpaved (rough) ctive Torsional Stiffness (J in. ⁴) 10	10.0 n 1	
Effe	Unpaved (rough) ctive Torsional Stiffness (J in. ⁴) 10 10 ²	10.0 n 1 2	
Effec	Unpaved (rough) ctive Torsional Stiffness (J in. ⁴) 10 10 ² 10 ³	10.0 n 1 2 3	
Effec	Unpaved (rough) ctive Torsional Stiffness (J in. ⁴) 10 10 ² 10 ³ 10 ⁴	10.0 n 1 2 3 4	

TABLE 1

The remaining useful life (RUL) equation based on the above is:

$$RUL = 1 - \frac{(7.2 \times 10^3) f dP(\sigma_i > \sigma_B)}{VN_B} \qquad i = R \text{ or } F \quad (3)^{**}$$

^{*}Subject to modifications based on experimental findings from Task III study.

 $[\]pm$ Coefficient 6.42 × 10⁴ and 7.13 × 10⁻³ defined to make expressions dimensionally homogeneous.

[‡]Root mean square value of acceleration also referred to as standard deviation. In terms of probabilities and random processes it correlates to a 68 percent confidence level that the actual acceleration levels will be equal to or less than this value.

^{**}As with Expressions (1) and (2), Expression (3) coefficient 7.2 × 10³ was defined to make equation dimensionally homogeneous.

where

R,F refer to the rear and front sections of the unit,

f - "apparent" response frequency of unit (Hz),

V- planned velocity of unit (mph),

d – distance between sites (miles),

 $P(\sigma_i > \sigma_B)^*$ is the probability of the unit exceeding the "base" RMS acceleration and N_B is estimated number of times the "base" RMS value will be exceeded per 100 miles traveled by the unit. The aforementioned "base 'values are input by the user and are assumed to be the RMS vertical acceleration response (σ_B) and number of occurrences (N_B) that a "zero remaining useful life" or unsafe mobile home would experience if it were transported 100 miles. Physically, then, Expression (3) assumes the Remaining Useful Life (RUL) of a unit as zero when the total G levels experienced by the unit per 100 miles of travel exceeded the defined "base" values.

The overall procedure for estimating the RUL of a specific unit entails the following (see Appendix A for example):

- (1) The user specifies the "base" structural parameters of a proposed "zero" life unit as well as planned velocity and probable road condition for this unit. He then utilizes Equations (1) and (2) to estimate the RMS acceleration (σ_B) at the rear corner and midpoint wall location between axle and hitch for this "zero" life unit.
- (2) The user then estimates the number of occurrences (N_B) (per 100 miles traveled by the "zero" life unit) that σ_B will be exceeded. This is obtained from:

$$N_B = 7.2 \times 10^5 \frac{f_B}{V_B} [P'(\sigma_B)] +$$

where f_B and V_B are estimated "base" frequency of response (Hz) and "base" velocity (mph).

- (3) The user now estimates the RMS vertical acceleration (σ_i) for the present mobile home in question. This is obtained by inserting the appropriate structural parameters into Equations (1) and (2) along with the anticipated road condition and in-transit speed. (These values are either measured or estimated from available tables such as Table 1).
- (4) Having determined the standard deviations (σ_i) for the mobile home, the probability of exceeding σ_B [i.e., $P(\sigma_i > \sigma_B)$], assuming a normal distribution, can be obtained from any standard statistical handbook.††
- (5) The user then inputs $P(\sigma_i > \sigma_B)$ into (3) to obtain an estimation for the RUL of the unit when it reaches its setup site.

It is noted in Expression (2) that the RMS response for the location between axle and hitch is directly proportional to the unit's effective flexural stiffness (EI). Due to this, a newer mobile home would experience higher inertia loadings (G's) in this area than after this stiffness parameter has degraded. As a result, if the "base" values of a highly degraded unit were input into (2), the RMS response (σ_{FB}) would give an unrealistic level of degradation to the front section of the mobile home. This problem can be minimized if the user, when evaluating σ_{FB} , utilizes in (2) the actual flexural stiffness EI in place of EI_B .

Further details of how the above predictive methodology can be utilized may be found in Volume II.

*P ($\sigma_i > \sigma_B$) is a function of the units speed, stiffness and damping as well as the type of road the unit is traveling.

 $The probability. [P'_{[\sigma_B]}]$ of the "base" unit exceeding σ_B is simply 0.317 or approximately 32 percent. (Definition of Standard Deviation)

ttFor example "Handbook of Probability and Statistics" by R. S. Burington and D.C. May.

4

4.0 DYNAMIC ANALYSIS OF SINGLE-WIDE (T-1)

As alluded to in the previous sections, transportation degradation is related to both the structural makeup of the unit as well as the transportation-related variables (i.e., road traveled and speed). Accordingly, an assessment of the performance of the T-1 under conditions I and II of Task I can vary substantially depending upon these variables. Because of this, the performance of the unit for each "condition" was investigated for various transportation modes (i.e., distance, speed, road type).

4.1 CONDITION I (T-1)

TABLE 2. TRANSPORTATION ARRAY (CONDITION I)

For this initial transportation condition (250-500 miles) from the manufacturer's plant to the owner's site the transportation modes shown in Table 2 were considered.

Based on assumptions concerning a totally degraded T-1 unit (base unit), predictive Equations (1), (2) and (3) were utilized to define anticipated remaining useful life (RUL) or degradation for the various transportation modes given in Table 2. The results in terms of anticipated RMS vertical acceleration levels for the rear and front sections of the T-1 as well as degradation are given in Volume II. The degree of degradation was evaluated to be as low as 0.3 percent for the rear section of the T-1 and as high as over 10 percent for the front section, depending on the typical speed and the roughness of the (paved) road. It was also shown that the dynamic response and the degree of degradation for the front section of the T-1 were anticipated to be greater than the rear portion of the unit. This was attributed to the front section having torsionally weaker structural properties in comparison to the rear portion of the unit.

4.2 CONDITION II (T-1)

For this condition, the T-1 undergoes 15 years of use including three occupancy

		Distanc	e, miles	Ro	Тур	eed,			
Condition	250	500	Well Paved	Paved, waves	Paved, rough	35	45	50	
	1A 1B	х	x	x x					x x
	1C 1D	×	x			x x	x x		
	1E 1F	x	x		x x			X X	

*Well paved: $\overline{rc} = 1.0$ (primary roadways; above average secondary roads) Paved (waves): $\overline{rc} = 1.2$ (typical secondary roadways) Paved (rough): $\overline{rc} = 1.5$ (rough secondary roads)

Condition	Distanc	e, miles	Ro	Typical Speed, mph				
	300	600	Well Paved	Paved, waves	Paved, rough	35	45	50
2A 2B 2C 2D 2E 2F	x x x	x x x	x x	x x	x x	x x	x x	x x
*Well paved; ro Paved (waves) Paved (rough)	r = 1.0 ; $rc = 1.2$; $rc = 1.3$					<u>. </u>	.	

TABLE 3. TRANSPORTATION ARRAY FOR EACH MOVE (CONDITION II)

periods and two secondary moves ranging from 300 to 600 miles (including 4000 lb of added internal weight). As with Condition I, the unit's degradation depends, in part, on the transportation mode involved (i.e., road condition, speed, etc.). Accordingly, for these secondary moves, the transportation modes shown in Table 3 were considered.

From preliminary experimental data for the T-1, each setup and takedown was estimated to degrade the effective torsional and flexural stiffnesses for the front and rear sections of the unit in the following manner:

- 30-percent reduction in torsional stiffness for the front section (J_F) .
- 40-percent reduction in torsional stiffness for the rear section (J_R) .

- 20-percent reduction in flexural stiffness for the rear section (EI_R) .
- 55-percent reduction in flexural stiffness for the front section (EIF).

Based on the above, for each secondary move the structural parameters (EI, J) were reduced by these percentages when utilized with the predictive equations for defining transportation-related degradation.

As per the procedures used for Condition I along with the above-mentioned reduction in stiffnesses, the predictive Equations (1), (2) and (3) were used to estimate degradation of the T-1 for the modes shown in Table 3. For the initial secondary move, the degradation to the unit varied from 0.2 percent to 42.2 percent depending on the transportation mode. In comparison with the T-1's initial move, it was found that for this initial secondary move, the rear section degraded at a greater rate than the front section. This was the result of the dynamic response (RMS value) for the front section being directly proportional to the effective stiffness (EI_F). Accordingly, when a reduction in EI_F due to Condition I and setup and takedown occurred, the G levels experienced between axle(s) and hitch also diminished.

For the second secondary move, the structural properties were further reduced based on the previously defined percentages. With these reduced effective stiffnesses and the transportation modes defined in Table 3, the analytically evaluated degrees of degradation varied from undefinable for the front section to 100 percent for the rear section.

4.3 CONDITION | AND || (T-1)

Based on the predictive analysis, the total degradation to this unit was assumed to be the sum of the degradation percentages for the various moves and setups and takedowns. As previously stated, the degradation depends, in part, upon the transportation modes experienced by the unit during the specified 15-year period. Based on the "best" and "worst" conditions from Tables 2 and 3, an assumed 15-year transportation mode array is given in Table 4. For these transportation modes, the probabilistic degradation to the T-I was analytically evaluated. In terms of probable degradation levels for the entire unit (front and rear section), the lowest anticipated degradation to the unit was approximately 36 percent. For

TABLE 4.	TYPICAL SUMMATIONS IN TRANSPORTATION MODES
	FOR T-1 UNIT

Condition(s)*	Distan	ce, miles	Ro	Typical Speed, mph				
	550	1700	Well Paved	Paved, waves	Paved, rough	35	45	50
IA plus 2A IB plus 2B IA plus 2C IB plus 2D IA plus 2E IB plus 2F IC plus 2C ID plus 2D IC plus 2E ID plus 2F IE plus 2F	x x x x x x x x x	x x x x x x x	X X X X X X	x x x x x x x	x x x x x x x	x x x x x x x	x x x x x x x	X X X X X X

seven of the defined twelve transportation modes the unit was anticipated to be *totally degraded* (i.e., zero *RUL*) after or during transit to its proposed *third* site (second secondary move).*

Furthermore, it was noted that the rate of degradation was anticipated to be substantially greater for the rear section of the single-wide in comparison to the front section. Specifically, while a maximum 100 percent degradation was estimated for the rear section (for certain modes), the maximum level of degradation to the front section of the unit was estimated as 20 percent.

*Note: The analysis did not consider the degradation incurred by the T-1 during its final setup at its third and last site. This would be included if the unit was taken down to be moved to a *fourth site*.

5.0 DYNAMIC ANALYSIS OF DOUBLE-WIDE (T-2A, T-2B)

For the evaluation of this unit, the *a priori* assumption was made that the T-2 could tolerate acceleration levels (G levels) no greater than the single-wide (T-1). Accordingly, in the following the "base" RMS values assumed for a totally degraded T-1 were used (details are given in Volume II).

5.1 CONDITION I (T-2B)

For this half of the double-wide (dry side, containing no plumbing fixtures), the transportation modes defined in Table 2 were also utilized. Based on these modes, the anticipated RMS acceleration levels and resulting degradation were evaluated. For the initial move, the anticipated degradation varied from a low of 0.2 percent for the front section to a high of 28 percent for the rear section, depending on the road traversed by the unit and the transport speed. It is further noted that the predictive analysis also defined a higher degree of degradation for the rear section of the T-2B in comparison to its front section. This is opposite the anticipated degradation effect for the T-1 and is believed due, in part, to the T-1 having a structurally very sound rear section compared to the T-2B rear section. It is also due to the flexural stiffness (EI_F) for the front section of the T-2B, which is less than the T-1's counterpart. Specifically, as noted previously, the dynamic response for the front section was found to be directly proportional to its flexural stiffness. Accordingly, the combination of a weaker rear section for the T-2B and a flexurally less stiff front section, when compared with the T-1, resulted in this anticipated reverse sense of degradation.

5.2 CONDITION II (T-2B)

For this condition, the T-2 unit (both wet and dry sides) is to experience 20 years of use including two occupancy periods and one secondary transportation move ranging from 300 to 600 miles. The transportation modes given in Table 3 are hence, still applicable. In addition, as per the T-1 unit, preliminary mobile home transportation test data performed at SwRI indicated the following reduction in structural properties for the T-2B as the result of a single setup and takedown:

- 40-percent reduction in effective flexural stiffness for the front section (EI_F) ,
- 50-percent reduction in effective flexural stiffness for the rear section (EI_R) ,
- 45-percent reduction in effective torsional stiffness for the front section (J_F) , and
- 60-percent reduction in the effective torsional stiffness (J_R) for the rear section of the unit.

With this reduction in structural properties, the anticipated dynamic response and amount of degradation during the unit's secondary move, were evaluated. The results show that prior to or upon arrival at the secondary setup site, the T-2B's rear section is predicted to have totally degraded. Conversely, only minimal degradation to the front section was anticipated. The total anticipated degradation to the T-2B for both the initial move to the owner's setup site and secondary move (in terms of transportation modes given in Table 5), were found to vary from a minimum of 0.4 percent to 19.4 percent for the front section of the unit. For all the transportation modes, the rear section was anticipated to be totally degraded prior to or upon reaching its final setup site.

Condition(s)*	Distan	ce, miles	Ro	Турі	eed,			
	550	1100	Well Paved	Paved, waves	Paved, rough	35	45	50
1A plus 2A 1B plus 2B 1A plus 2C 1B plus 2D 1A plus 2E 1B plus 2F 1C plus 2C 1D plus 2E 1C plus 2E 1D plus 2F 1E plus 2E 1F plus 2F	x x x x x x x	x x x x x x	X X X X X X	x x x x x x x x	x x x x x x x	x x x x x x	x x x x x x x x	x x x x x x x
*Conditions are summations taken from Tables 2 and 3.								

TABLE 5.	TYPICAL SUMMATIONS IN TRANSPORTATION MODES	
	FOR T-2 MOBILE HOME	

5.3 CONDITION I (T-2A)

For this half section of the double-wide (wet side), using the same evaluation procedures (and transportation modes) utilized with the T-1 and T-2B, the anticipated degradation for the T-2A was estimated to vary from 0.2 percent to 12.8 percent for the front section. The rear section was found to degrade from 4.6 percent to 35.4 percent depending on the transportation mode.*

5.4 CONDITION II (T-2A)

As with the T-2B, preliminary experimental data indicated the following reductions in flexural and torsional stiffness due to a single setup and takedown.

- 50-percent reduction in EI_F,
- 6-percent reduction in El_R,
- 50-percent reduction in J_F , and
- 20-percent reduction in J_R.

Utilizing the above-defined reductions, the appropriate stiffnesses were substituted into the predictive equations for the transportation modes defined in Table 3. Based on this analysis the rear section of this half of the double-wide was anticipated to degrade from 9.4 to 72.6 percent while the front was anticipated to degrade from 1.2 to 25.6 percent.

The total anticipated degradation for the T-2A was based on the transportation modes defined in Table 5. For these modes the unit was estimated to degrade from 1.4 to 38.4 percent for the front section. The rear section of the T-2A was anticipated to degrade less than the T-2B, i.e., from 14.0 to 100 percent. Only one transportation mode resulted in total degradation of the rear portion of the unit compared with all the modes for the secondary move of the T-2B. In addition, as with the T-2B, the front section of the T-2A was anticipated to degrade at a slower rate than the rear section of the unit.

*Further details in Volume II.

6.0 COMPARISON OF IN-TRANSIT VERSUS SETUP-TAKEDOWN DEGRADATION

In the previous sections, degradation due to initial and secondary moves as well as on-site procedures was analytically evaluated for both the single-wide (T-1) and double-wide (T-2) units. The same methodology was applied to gain insight on the sensitivity to degradation that typical on-site procedures induce in a unit in comparison to degradation experienced by a unit while on the road. This was handled by making the *a priori* assumption that the unit makes the initial and secondary moves without any setups and takedowns. Accordingly, the evaluated degradation would then be wholly due to in-transit phenomena. A comparison of this section's findings with Sections 4 and 5 would then approximate the amount of degradation due solely to typical on-site procedures.

6.1 SINGLE-WIDE (T-1)

For the T-1, the degradation due to the initial move was as previously defined (for the transportation modes defined in Table 2). For the secondary moves, Table 3 as well as Table 4 are still valid with the exception that no setup-takedown degradation is assumed after each move. In terms of structural properties for the unit, the initial values assumed were held constant for all the moves. While it was realized that this is not the case, at present there does exist enough information available which would permit one to conjecture on a definable relationship between the structural parameters (EI_F , EI_R , J_F , J_R) and in-transit conditions (e.g., speed, road-type). Furthermore, in terms of reductions in torsional stiffness, a reduced parameter was input to the predictive equations to account for reductions in this variable due to a move. In terms of the flexural stiffness, it was noted that a change in this variable had only a small effect on the dynamic response of the unit. Accordingly, based on the above, the appropriate T-1 stiffness expressions were substituted into the predictive Equations (1), (2) and (3) for the conditions given in Table 3. The degradation results for each secondary move varied from a low of 0.4 percent (rear section) to a high of 12.5 percent for the front section. For the total transportation mode array (Table 4), the anticipated degradation varied from 1.1 percent for the rear section to 35.4 percent for the front section.

Comparing these results with the previous findings, it was noted that the setup-takedown procedure attributed to well over 90-percent of the degradation in the rear section of the T-1 for most of the transportation modes. Contrary to this phenomenon, the front section was evaluated to degrade more when no setups and takedowns were considered. It is noted, however, that the values in this instance cannot be wholly relied upon and are attributed to the predictive equations for front unit response (Equation 2) being directly proportional to flexural stiffness (EI_F) .

Due to the above limiting assumptions, it is anticipated that the estimated degradation (percentages) are probabilistically *low* for the rear section of the T-1 and *high* for the front section. The findings are, however, of value in that they exemplify the following:

- Setup and takedown procedures for Conditions I and II for the T-1 may cause a larger degree of degradation to the unit's rear section in comparison to the corresponding degradation resulting from move between sites.
- A reduced flexural stiffness for the front section of the unit may result in significant "savings" in terms of a smaller degradation rate.

6.2 DOUBLE-WIDE (T-2)

As per the case with the single-wide, in an effort to define degradation due to setups and takedowns for this unit, the same *a priori* assumptions concerning structural stiffnesses were made. Accordingly, for the initial moves, degradation evaluations previously defined were still valid, as well as the transportation arrays illustrated in Tables 2 and 3. With the above conditions imposed, precluding degradation resulting from setups and takedowns, the degree(s) of degradation for the T-2A and T-2B were evaluated and found to vary from 0.2 percent (front section T-2A and T-2B) to 42.5 percent (rear section, T-2A). A comparison of findings illustrated a substantial savings in "useful life" when degradation due to setup-takedown procedures are excluded. As with the T-1, however, the degradation levels are anticipated to be on the low side. With this in mind, however, the following pertinent findings can be made:

- The majority of the degradation to the rear section of the T-2B may be due to setup-takedown techniques.
- The degradation effects of setup and takedown for the T-2A is not as severe as for the T-2B.
- For both the T-2A and T-2B, typical setup and takedown procedures degrade the rear sections of the unit to a greater extent than what is incurred by the front sections.

7.0 POTENTIAL APPLICATIONS OF CRITERIA

As a result of the dynamic analysis and correlation of data with the necessary factors to develop the Remaining Useful Life Analysis, the following method of obtaining design loads for mobile home manufacturers is recommended.

A set of predictive equations have been presented to be used as a tool for estimating degradation due to the effects of transportation. These regression formulae can also be utilized to define dynamic load levels for both the rear and front sections of the unit. This latter aspect can be of use to the manufacturer during the construction of the individual homes. Specifically, if the probable dynamic load levels within a particular unit can be defined prior to the design of the unit, then the designer can determine if the present construction warrants modifications to enhance its structural integrity.

Based on the above premise, a set of graphs were constructed to estimate design load requirements for mobile homes. Figures 1 through 4 are given to define dynamic load levels for the rear section, while Figures 5 through 8 are for the front section (between axle and hitch). In either case, the resultant design loads are a function of the input structural stiffnesses (EI and J), damping property (C_D) , speed and road conditions. Accordingly, depending upon the structural integrity of the unit as well as the anticipated speed and road to be safely traversed, the dynamic response (in G's) can be estimated for which the unit can be safely designed to withstand.

It is noted that resultant loads obtained from Figures 4 and 8 present a 99-percent confidence level. That is, 99 percent of the induced dynamic loads to the unit for a specific travel condition (speed, road) will probabilistically be equal to or less than these values. The graphs can hence be used by a manufacturer to define acceptable design requirements for structural components within a mobile home.

As noted, these enclosed graphs allow the builder, designer, etc., to set his own design loads by presenting a range of structural properties $(EI, J \text{ and } C_D)$. The values input can be based on actual field test data of existing units or be based on anticipated structural properties after a degree of degradation has occurred. This latter approach would be advantageous since, the dynamic response (and load levels) are anticipated to increase as the unit degrades. An example of how this criteria can be applied is given in the Appendix of Volume II. These potential criteria will be evaluated in a later task.

FIGURE 2. EFFECT OF TORSIONAL STIFFNESS ON DYNAMIC RESPONSE PARAMETER

FIGURE 3. EFFECT OF DAMPING ON DYNAMIC RESPONSE PARAMETER

FIGURE 4. DEFINING ANTICIPATED DYNAMIC RESPONSE FOR REAR SECTION OF HOME 13

FIGURE 5. EFFECT OF FLEXURAL STIFFNESS ON DYNAMIC RESPONSE PARAMETER

FIGURE 6. EFFECT OF TORSIONAL STIFFNESS ON DYNAMIC RESPONSE PARAMETER

FIGURE 7. EFFECT OF DAMPING ON DYNAMIC RESPONSE PARAMETER

8.0 DYNAMIC ANALYSIS CONCLUSIONS

Based on the dynamic modeling of the single-wide (T-1) and the double-wide (T-2A and B), the following *tentative* conclusions concerning degradation to mobile homes during transit have been drawn:

- The principal parameter affecting high inertial repetitive loads is the effective torsional stiffness $(J_F \text{ and } J_R)$ of the mobile home.
- The effective flexural stiffness for the rear section of a unit (EI_R) is inversely proportional to the inertial loadings induced in this section.
- The effective flexural stiffness for the front section (EI_F) of a mobile home is directly proportional to the induced inertial loadings.
- Changes in torsional stiffness $(J_R \text{ and } J_F)$ affect degradation of the rear section of a unit to a larger degree than the front section (from axle to hitch).
- Accumulative degradation of the rear section of a mobile home is more sensitive to transport speed than is the front section.
- For Conditions I and II the T-1 and T-2 units' rear sections are anticipated to degrade at a substantially faster rate than their front sections.*
- The rear section of the dry side (T-2B) of the double-wide is anticipated to degrade at a greater rate during transit than the rear section of the wet side (T-2A).[†]
- For the required initial and secondary moves (Conditions I and II), the T-1 was determined to have a longer useful life than the T-2.
- Degradation due to typical setup and takedown procedures may cause more degradation to a mobile home than in-transit phenomena.
- The degradation effect of setup-takedown procedures is greatest in the rear section of a mobile home.

As alluded to in this text, further details concerning the above findings may be found in Volume II (Section I) of this report.

*Based on Tables 14, 17 and 19 in Volume II. †Based on Tables 17 and 19 in Volume II.

REFERENCES

1. Bearint, D.E. and Cress, H.A., "The Development of Performance Based Tests to Determine the Minimum Structural Integrity of Mobile Homes," Final Report, Battelle Memorial Institute, Columbus, Ohio, July 25, 1966.

2. United Computer Systems, APEX/FORTRAN Reference Manual, 1976.

APPENDIX A

SAMPLE PROBLEMS OF PREDICTIVE METHODOLOGY

In an effort to give a better understanding of the predictive equations, three illustrative "hypothetical" examples are given in the following:

A. A mortgage company has defined a high risk mobile home as one which has approximately a 32-percent probability (standard deviation) of experiencing at an upper rear corner location, inertia loadings (vertical direction) of 8.2 G's*or more when being transported over a paved highway at 55 mph. In terms of the pertinent structural properties, this "base" unit has:

$$EI_B = 164 \times 10^8 \text{ lb.-in.}^2$$

 $J_B = 10 \text{ in.}^4 (n = 1)$
 $C_{DB} = 0.10$

The number of probable occurrences at which this acceleration level will be exceeded assuming a frequency response (f_B) of 5 Hz is:

$$N_B = \frac{(7.2 \times 10^5)(0.317)5}{55} = 2.07 \times 10^4 \text{ (per 100 miles)}$$

The mortgage company is interested in making a secondary loan on a particular mobile home. The owner plans to transport the unit from Childress to San Antonio, Texas (d = 400 miles) at the maximum allowable speed (55 mph) over essentially well paved and secondary roads. The unit's structural integrity is estimated in terms of its effective flexural stiffness, torsional stiffness, apparent frequency, and structural damping, i.e.,

$$EI = 120 \times 10^{8}$$
 lb-in.²
 $J = 1000$ in.⁴ ($n = 3$)
 $C_{D} = 0.10$
 $f = 5$ Hz[†]

^{*}This value would be based on available data or from predictive equations with input of "poor structural properties" (i.e., EI_B , J_B etc.). †It is noted that the apparent response frequency is dependent upon the type of road traveled as well as anticipated speed and structural makeup of the unit. Here it is assumed same as "base" value. The procedure for estimating f is given in Appendix A of this report.

Substituting this data into equation (1), the mortgage company obtains:

$$\sigma_R = 6.42 \times 10^4 \frac{(55)^{0.734}(1)}{(120 \times 10^8)^{0.468} (0.10)^{0.363} \left[\text{Ln} \ 10^3 - \frac{\text{Ln} \ 10^2}{9} \right]^{2.046}}$$
$$= \frac{1.22 \times 10^6}{1.01 \times 10^6} = 1.2 \text{ G's}$$

The standard deviation (RMS) of the mobile home is 1.2 G's..

The probability of exceeding 8.2 G's $[P(\sigma_i > \sigma_B)^*]$ is less than 0.002 (0.2 percent). Assuming 0.002 and substituting this data into equation (3) one obtains:

$$RUL = 1 - \frac{(7.2 \times 10^3)(5)(400)(0.002)}{55(2.07 \times 10^4)}$$
$$= 1 - 0.03 = 0.97$$

The unit's anticipated RUL when it reaches San Antonio is 97 percent or the unit lost 3 percent of its useful life during the move.

B. The second hypothetical example is same as the former except that the proposed road conditions are primarily unpaved (wavy). In this instance (from Table 1) rc = 2.5.

Substituting this change into equation (1), the RMS vertical acceleration is:

$$\sigma_R = 6.42 \times 10^4 \frac{(55)^{0.734} (2.5)}{(120 \times 10^8)^{0.468} (0.10)^{0.363}} \left[\text{Ln } 10^3 - \frac{\text{Ln } 10^2}{9} \right]^{2.046}$$
$$= \frac{3.04 \times 10^6}{1.01 \times 10^6} = 3.0 \text{ G's}$$

The probability $P(a_R > a_B)$ of exceeding 8.2 G's (2.73 σ) is approximately 0.007 (0.7 percent). Substituting the required data in (3):

$$RUL = 1 - \frac{(7.2 \times 10^3)(5)(400)(0.007)}{55(2.07) \times 10^4}$$
$$= 1 - 0.09 = 0.91$$

The units anticipated RUL when it reaches San Antonio is 91 percent (the move would consume an estimated 9 percent of the mobile homes "useful life"). It is noted that in Example B the mobile home was assumed transported 400 miles over unpaved road to show an example where the RUL is substantially reduced.

For a variety of different road conditions and speed during transit of the unit, equations (1), (2) and (3) are modified as:

 $*\sigma_{\rm B} = 8.2 \ G; \ \sigma = 1.2 \ G; \ hence \ \sigma_{\rm B} = 6.83 \ \sigma \ and \ P(\sigma_i > 6.83 \ \sigma) \ is \ less \ than \ .002$

$$\sigma_{RK} = 6.42 \times 10^4 \frac{V_k^{0.734} r_{Ck}}{E l^{0.468} C_D^{0.363} \left[\ln 10^n - \frac{\ln 10^{n-1}}{n^2} \right]^{2.046}}$$
(1')

$$\sigma_{FK} = 7.13 \times 10^{-3} \frac{EI^{0.208} V_k^{0.530} rc_k}{C_D^{0.448} \left[\ln 10^n - \frac{\ln 10^{n-1}}{n^2} \right]^{1.610}}$$
(2')

$$RUL = 1 - \frac{7.2 \times 10^3}{N_B} \frac{\Sigma d_k f_k P_k(\sigma_i > \sigma_B)}{V_k} \quad k = 1, 2, 3 \dots$$
(3')

where the subscript "k" denotes the different anticipated road conditions (rc_k) during transit, the corresponding miles of each type of road (d_k) and proposed speed $(V_k$ for each road).

As an example, consider the following:

C. The above unit is to be transported under the following conditions to San Antonio from Childress, Texas (a total of 400 miles).

• $d_1 \approx 200$ miles

 $V_1 = 55 \text{ mph}$

 $rc_1 = 1$ (paved road)

 $f_1 \approx 4 \text{ Hz}$

• $d_2 = 100$ miles

 $V_2 = 45 \text{ mph}$

 $rc_2 = 2.5$ [unpaved (waves) road]

 $f_2 = 5 \, \text{Hz}$

• $d_3 = 100$ miles

V₃ = 35 mph

 $rc_3 = 3.0$ (gravel road)

 $f_3 = 6 \, \text{Hz}$

It is decided that equation (1'), the response of the rear section, will be used to evaluate anticipated RUL. Accordingly, for each road condition we obtain:

$$\sigma_{RI} = 6.42 \times 10^4 \frac{(55)^{0.734}(1)}{(120 \times 10^8)^{0.468} (0.10)^{0.363} \left[\text{Ln } 10^3 - \frac{\text{Ln } 10^2}{9} \right]^{2.046}}$$
$$= \frac{1.22 \times 10^6}{1.01 \times 10^6} = 1.2 \text{ G's}$$

The above are the RMS vertical accelerations for the unit for the three different road speeds and road conditions. The corresponding probabilities of exceeding the "base" RMS value (8.2 G's) are:

$$P_1(\sigma_{R1} > \sigma_B) < 0.002 \ (0.2 \text{ percent})$$

 $P_2(\sigma_{R2} > \sigma_B) = P_3(\sigma_{R3} > \sigma_B) \cong 0.003 \ (0.3 \text{ percent})$

These probabilities along with the corresponding velocities, frequencies and distances are substituted into expression (3') i.e.,

$$RUL = 1 - \frac{7.2 \times 10^3}{2.07 \times 10^4} \left[\frac{(200)(4)(0.002)}{55} + \frac{(100)(5)(0.002)}{45} + \frac{(100)(6)(0.003)}{35} \right] = 1 - 0.04 = 0.96$$

which approximates the remaining useful life of the mobile home upon reaching the installation site as 96 percent or in terms of degradation, the trip has "cost" 4 percent of the unit's RUL.

DYNAMIC ANALYSIS RESEARCH AND DEVELOPMENT TEXT

DYNAMIC ANALYSIS RESEARCH AND DEVELOPMENT TEXT

Prepared by

J. J. Labra, Ph.D.

ABSTRACT

This volume is the result of extensive computer modeling of intransit mobile homes. The study included a parametric investigation of the effect of changes in structural properties of mobile homes to probabilistic dynamic response and vice versa. In addition, the effect of road type and transport speed was also evaluated in terms of induced dynamic loadings. Results include regression equations that can be used by designers to define probable dynamic loadings of a mobile home during transit. Moreover, methodology is presented that can be used to gain insight into the anticipated remaining useful life of a particular unit.

TABLE OF CONTENTS

	· · · ·																								Page
LIST OF F	IGURES					•		.0					·		÷	1	•	·	·			•			iv
LIST OF T	ABLES				÷		•	. '				i.	-		•		•	•		1		ł		1	v
INTRODU	СТІОМ		•	•				·	•	÷	•	-	·				i,				•	·	•	·	1
DEFINITIO	ONS		•		•	•			·	•	•	•	•	•			•		•	•	÷	•		•	4
PRELIMIN	ARY METHODOLOGY			•	·		•		•		•	•	÷	•	•		•		•	÷	•		·	·	7
DYNAMIC	ANALYSIS			•		•		•	•	•		·		•			•	•		•	•	•	•	•	9
١.	Background Discussion		-		•	•			•				•	•			•					•		•	9
11.	Development	•••	-						•		•	•	•	•	·	•		·		·	·	•		•	10
Ш.	Model Application .				•	•	•	·	•	•		·	•	•					·	•			·		14
IV.	Model Limitations .			•	•	•	•	•	•	•	•	•	•		•	•			•	•	•			•	2 9
v.	Predictive Analysis :					•	•	•	•		•	•			•	•	•		•	-	-	-		•	30
VI.	Dynamic Analysis Conc	lusions				ł		·	·	·		•	•				•			•		•			61
VII.	Predictive Equation Lin	nitation	s.					•	•		•	•	•	•		•		•				•	-		62
REFEREN	CES					·	•		•			•	•	•		•	•	•		•	•		•		63
APPENDIX A: APPROXIMATING "APPARENT" FREQUENCY OF MOBILE HOME REAR SECTION.																									
APPENDIX B: THEORETICAL PREDICTIVE ANALYSIS-EXAMPLES OF POTENTIAL APPLICATIONS OF DESIGN LOADS																									
APPENDI	C: EFFECT OF STRU	CTUR	٩L	PRO	OPI	ER	T1E	is c	DN	IN	-TF	RA	NS	IT	EX	CIJ	ГА	тю) N	s.					C-1

LIST OF FIGURES

Figure		Page
ü	Projected Degradation Cycles of a Mobile Home	7-A
1-4	Mobile Home Response Sensitivity To Variations In Structural Properties (45 mph/Paved Road)	15-18
5,6	Effect of Mobile Home Speed on Structural Response	21, 22
7,8	Effect of Road Roughness on Mobile Home Response	23, <u>2</u> 4
9,10	Dynamic Loadings To Single Wide (T-1)	26, 28

LIST OF TABLES

Table		Page
1	Star Structural Models of Mobile Homes	12
2	Values of PSD Equation Coefficients for Various Road Surfaces	13
3	Single Wide (T-1) Model Dynamic Response Loads (G's)	25
4	Single Wide (T-1) Model Dynamic Response Loads (G's)	27
5	Table 5	31
6	Transportation Array (Condition I)	37
7	Analytically Evaluated T-1 Degradation Due To Initial Move (Condition I)	39
8	Analytically Evaluated T-2B Degradation Due To Initial Move (Condition I)	41
9	Analytically Evaluated T-2A Degradation Due To Initial Move (Condition I)	42
10	Transportation Array For Each Move (Condition II)	43
11	Analytically Evaluated T-1 Degradation Due To Initial Setup and Takedown and Initial Secondary Move (Condition II)	45
12	Analytically Evaluated T-1 Degradation Due To Secondary Setup and Takedown and Second Secondary Move (Condition II)	46
13	Typical Summations In Transportation Modes For T-1 Unit	47
14	Estimated Fifteen Year Degradation (Conditions I and II) For Typical Single-Wide (T-1) Mobile Home	48
15	Analytically Evaluated T-2B Degradation Due To Initial Setup and Takedown and Secondary Move (Condition II)	50
16	Typical Summations In Transportation Modes For T-2 Mobile Home	51
17	Estimated Twenty Year Degradation (Conditions I and II) For Typical (Half) Double-Wide (T-2B) Mobile Home	52
18	Analytically Evaluated T-2A Degradation Due To Initial Setup and Takedown and Secondary Move (Condition II)	54
19	Estimated Twenty Year Degradation (Conditions I and II) For Typical (Half) Double-Wide (T-2A) Mobile Home	55
20	Analytically Evaluated T-1 Degradation Due To Each Secondary Move	56
21	Estimated Degradation For Typical Single-Wide (T-1) Mobile Home Excluding Setup- Takedown Effects	. 57

LIST OF TABLES (Cont'd)

Table		Page
22	Analytically Evaluated T-2B Degradation Due To Secondary Move Excluding Setup-	
/	Takedown Effects	59
23	Analytically Evaluated T-2A Degradation Due To Secondary Move Excluding Setup-	
	Takedown Effects	60

- 1

1.

INTRODUCTION

The mobile home program conducted by the Institute is an eight task work effort entitled "Measurement and Evaluation of Structural Durability and Transportation Effects on Mobile Homes". These factors include over-theroad transportation, on-site setups and takedowns, and occupancy during the designated periods of time.

The objectives of the overall mobile home program are noted as:

- accurately measure, by analysis and/or test, the effects of highway transportation and site installation activities upon the structural durability performance of typical mobile homes (both single-wide and double-wide types) during their useful lives;
- (2) to evaluate the current Federal Mobile Home Construction and Safety Standards to determine if clarification or revision is needed, particularly in "Subpart J", based upon the results of this research program;
- (3) to develop a transportation-analysis methodology which could be used as a guide by enforcement agencies in uniformly evaluating the adequacy of manufacturer's plans and calculations for compliance with the Federal Construction and Safety Standards; and
- (4) to develop an effective transportation field test method to judge the actual performance of a mobile home in meeting the Federal Standard.

The program is divided into eight (8) distinct Tasks or individual work efforts and a separate volume or report will be prepared for each task in order to submit the sequential work efforts in progressive steps for approval by the GTR.

The basic program involves the development of an analytical and predictive methodology for use on mobile home design and analysis in TASK I that is to be verified by experimental testing in TASK III. In order to better understand the program, the contractual requirements of TASK I, they are quoted as follows:

TASK I: ANALYTICAL DYNAMIC STRESS ANALYSIS: SwRI shall perform a comprehensive analytical dynamic stress and fatigue analysis and assessment for the new single-wide (T1) and the new doublewide (T2) mobile homes. The analyses shall identify and compute the probable dynamic loads and stresses which may be cumulatively imposed upon these new mobile homes as a result of normal transportation and site installation activities and assess the capability of the mobile homes to successfully resist these effects over their useful life spans.

SwRI shall calculate, analyze and assess the performance of the aforementioned mobile home assuming the following two separate and distinct loading conditions:

Condition I: Newly purchased units transported between 250 to 500 miles from the manufacturer's plant and installed upon the purchaser's site (initial transportation);

Condition II: The aforementioned units after the following activities have occurred:

T1: Fifteen (15) years of use, including three occupancy periods and two secondary transportation movements ranging between 300 to 600 miles. An added distributed weight of 4,000 pounds of occupants' personal effects shall be included in the transportation calculations.

T2: Twenty (20) years of use including two occupancy periods and one (1) secondary transportation movement ranging between 300 to 600 miles. An added distributed total weight of 8,000 pounds of occupants' personal effects shall be included in the transportation calculations. For purposes of this task the SwRI shall assume a mix of seasonal highway travel factors (including wind forces) which will simulate various interstate, secondary and rural road conditions in terms of climate, grade, roadway surface, speed and traffic. Prior to conducting the dynamic stress and fatigue analyses, SwRI shall develop, justify and provide for approval by the GTR, the assumptions made as to the magnitude of raw shock and vibration forces that could realistically be encountered by each of the mobile home's chassis and frames under varying transportation and set-up conditions.

The SwRI's dynamic stress and fatigue analyses shall be clearly presented on exploded isometric type of drawings which shall display the transportation and site installation input forces and the resulting loads and stresses imposed upon the mobile homes, both as integrated structures and their separate systems. Supporting calculations shall be in full detail and presented in an organized manner to key with the specific drawings. The Institute shall identify and calculate the applicable input shock (measured in gravitational "G" forces) and vibration (frequency in Hertz). The stresses resulting from these induced forces (measured in terms of fatigue, bending, shear, etc.) and deflections upon the various structural members shall be identified and calculated. The performance of these structural members shall be assessed. SwRI shall separately compute, analyze and assess the probable structural degradation, or consumed life, for both Conditions I and II earlier defined, at the following points and locations as a minimum:

Structure: Roof-At the connection of the roof trusses to the sidewall framing, at the roof membrane/ sidewall interface, on the top and bottom chords of the roof trusses, on top of the furnace vent outlet. Ceiling-At the attachment to the roof trusses. Exterior Walls-At the sidewall and endwall interface with window and door frames, on window glazing, on exterior siding panels particularly on the foreward side of the mobile home. Interior Walls-On sidewall and endwall paneling, on partition walls particularly at the juncture with the sidewall and the ceiling. Floor-At selected points particularly over the axles and in the corridor, at joist splices and large notches; and at window and door locations. Frame-On the longitudinal "I" beams, crossmembers and outriggers particularly above the axles.

Plumbing: On the shower stall, bathroom sink and tub, toilet and flush tank, water heater, kitchen sink, selected locations on piping, joints and connections and supports.

Heating and Cooling: At the connection of the furnace vent with the furnace, at the supply duct connection with the furnace, on the longest supply duct and on the air-conditioning unit.

Electrical: On selected "snap-in" type receptacles.

Running Gear: On axles, wheels, tires, brakes, spring suspension, drawbar and coupling mechanism.

SwRI, upon completion of all of the above-defined research shall provide a comprehensive report embodying the results.

The analyses and assessments for both Conditions I and II above shall be presented in the following form:

- 1. Exploded isometric scale drawings identifying the probable input forces and the resulting loads and stresses imposed upon specific members or sections of each of the mobile homes.
- 2. Calculations fully supporting the drawings and graphs.
- 3. An evaluation assessing the performance of specific sections of each mobile home as well as the entire unit as an integral structure, and
- 4. Narrative explaining the concept, methodology and meaning of the analytical results.

The above requirements constitute a pioneering effort in predictive analyses for an integrated composite structure such as is used in the fabrication of a mobile home, containing steel, wood, aluminum, plastics assembled with glue, staples, nails, bolts and screws.

In addition to providing the above listed contract-deliverables, for the completion of TASK I, it is also necessary to provide the requisite analytical, predictive and detailed stress analysis as the basis for the conduct of the actual experimental instrumentation and test program of two (2) used and two (2) new mobile homes to confirm, if possible, the predictions of TASK I.

The second s

3

DEFINITIONS

The following pages contain definitions of physical words or terms used within the context of the TASK I effort.

CONSUMED LIFE: This is defined using the structural system of the mobile home as the basis for progressive degradation that eventually deteriorates the unit to the point that the useful life has been used up or consumed rendering the home unfit for:

- Transportation Modes
- Live-ability or occupancy
- Mortgage, Financial or Insurance Risk (See RUL, Remaining Useful Life and Structural Degradation)

STRUCTURAL DEGRADATION: Degradation measured in the form of structural stiffness and integrity with a factory new mobile home noted as "un-degraded". The reduction in structural stiffness is measured in two forms: (1) vertical stiffness designated as EI and (2) torsional stiffness designated as GJ. Other indicators of structural degradation are: increased deflections with decreased accelerations indicating a "softening" or loosening of the structure.

REMAINING USEFUL LIFE (RUL): TASK I utilizes this percent of useful life that is used up due to the transportation, setup and takedown cycle with a new/un-used mobile home designated as a unit of 1.0 or has 100 percent of its useful life left. Any operation will degrade the mobile home to some degree there-on. A zero percent RUL indicates the unit (or part of the unit) has been totally degraded.

DYNAMIC ANALYSIS MODEL: In order to totally analyze the mobile home, it was necessary to separate the TASK I predictive analysis into two modes: dynamic and static. The dynamic model evaluates the dynamic loads (or accelerations) generated by the mobile home during the transportation mode. The dynamic model is of the lump mass-beam element configuration with the key masses placed at the proper distance from the centerline of the system. During highway operations, this configuration generates the various accelerations, velocities and displacements as a result of induced excitations from the road surface. From their data, loads can be generated for use in the static finite element model in order to develop the various stress patterns in designated components of the mobile home.

FINITE ELEMENT STATIC ANALYSIS/MODEL: The finite element model consists of dividing the various components of the mobile home into a fine mesh system that is compatible with the actual structural system. All nodal points of the mesh on each component interconnect in order that the program can complete individual element analysis as well as the overall component and mobile home analyses. The finite element method analysis can be used with various basic computer programs such as STARDYNE, STRUDAL or ANSYS. The analysis output can provide stresses at selected points or junctions under various loadings that are usually obtained from the dynamic model. In this analysis, the mobile home structure was divided into major components such as chassis, floor, left wall, right wall, front end wall, rear end wall, roof and individual partitions within the mobile home.

VERTICAL STIFFNESS: The average mobile home can be considered a long box-like structure that has a certain structural stiffness with respect to bending in the vertical plane. Usually the longer the mobile home, the less the vertical stiffness and conversely the shorter the mobile home the greater the stiffness. Vertical stiffness is the ability of the mobile home structure to resist vertical loads/deflection and is synonymous with "flexural rigidity" and "EI". The mobile home can have two basic EI's, one forward of the running gear and one aft of the running gear.

TORSIONAL STIFFNESS: The average mobile home can be considered a long box-like structure that has a certain structural stiffness with respect to torsion about the fore and aft longitudinal axis. The torsional rigidity, like the flexural rigidity is higher in the shorter length mobile homes and lower in the longer mobile homes. Also, the torsional rigidity is a function of the "completeness" of the box structure with respect to the cross section

of the mobile home. If there is no plywood structure on the roof under the metal to complete the structural torque box, the torsional rigidity or stiffness is lower than the mobile homes with the maximum section properties.

DYNAMIC LOADS AND DYNAMIC RESPONSE: During development of the RUL and dynamic model, it was anticipated that the TASK I program would be divided into the:

-Dynamic lump mass model

-Predictive, (RUL) remaining useful life formula

-Finite element static analysis model

-Exploded isometrics of detailed points on the mobile home for stress analysis

The finite element static analysis model requires inputs other than the static one "g" loadings. These inputs simulate the actual road condition excitations induced in the mobile home during transit. Accordingly, the acceleration levels from the dynamic model are input to the finite element as "equivalent" G (inertial) loads. The repetitive roadrun dynamic response, even if at a low G level, can be very damaging in terms of accumulative degradation.

STRUCTURAL INTEGRITY VERSUS DEGRADATION: The predictive analysis contained in Volumes I and II of TASK I, is based on the assumption that there exists a direct correlation between the structural integrity of the mobile home and the degree to which it has been or can be degraded. This degradation is attributable to-:

-Transportation modes

-Setup

-Take down

-Occupancy periods of high traffic and poor maintenance.

The structural integrity of a mobile home is measured as a function of the flexural rigidity and torsional stiffness; both of which may change significantly during transit as well as setup-takedown procedures. The mobile home can have a varying stiffness, both in flexural rigidity and torsional rigidity from the front of a mobile home to the rear. However, for the purpose of this report, the mobile home structural rigidity has been analyzed in two areas only: hitch to front axle and front axle to rear wall.

BEAM ELEMENTS: These elements are referred to in two areas:

-Dynamic model

-Finite element model

These elements predominently refer to elements used in the finite element analysis/model because the chassis acts as a beam; the floor acts as a beam and the side walls act as a beam. Also, the dynamic analysis utilizes a simplified lump/mass model with the various eccentric beam elements taken off the longitudinal beam (or axis) for the various dynamic responses generated by designated road conditions and velocities as inputs.

As an example, the sidewall or beams are divided into various elements or a grid mesh of approximately 32-inch centers (to match the 16-in. stud spacing). Each element of this side wall beam is specifically designated or located by the nodal points connecting each corner of the element to the adjacent element. Each beam element has the capacity of determining the stress at any point around the periphery of the element. Therefore, the finer the mesh, the finer the stress points. But, the finer the mesh, the more costly the program to run and analyze or interpret.

POWER SPECTRAL DENSITY (PSD): In terms of physical reality, the spectral density at any particular frequency may be regarded as the average power passing when a random signal is filtered by a narrow band pass filter centered at that frequency.

5

EFFECTIVE FLEXURAL RIGIDITY (EI): This is the equivalent bending (vertical) stiffness of a mobile home if the *a priori* assumption is made that the unit in flexure can be modeled as an Euler beam.

EFFECTIVE TORSIONAL RIGIDITY (GJ OR J): This is the mobile home's equivalent structural resistance to torsion if the *a priori* assumption is made that the unit in torsion responds as a closed channeled rectangular tube.

MOBILE HOME TEST UNITS: The mobile home test units are designated by the following prefixes:

T-1 1976 14 X 64-Single wide	(new))
------------------------------	-------	---

T-2A 1976 Double wide 24 X 56-Wet half (new)

T-2B 1976 Double wide 24 X 56-Dry half (new)

*T-3 1971 14 X 64-Single wide (used)

*T-4A 1974 Double Wide 24 X 56-Wet half (used)

*T-4B 1974 Double Wide 24 X 56-Dry half (used)

ATTACHMENTS OR FASTENERS: Refers to mechanical devices such as tacks, nails, bolts, screws or staples used to assemble the various joints or structural components. This does not include glue or welding.

JOINTS: Comprises the interface between two pieces of structure or components that are assembled using the attachments noted above. Examples of joints are stud to plate; header to stud; shear wall to side wall; side wall to end wall and roof to wall.

EXPLODED ISOMETRICS: The test mobile homes are shown in an overall exploded isometric configuration with a breakdown of the major components. The critical joints of each model are then detailed in an enlarged/exploded isometric drawing showing the load/stress input, transfer or flow. The exploded isometrics offer a pictorial presentation of the output from the finite element analysis.

RANDOM LOAD INPUT: Induced dynamic inertial loads incurred by the mobile home during transit due to the random excitations from the road surface.

TRANSPORTATION MODE: The mobile home transportation mode is divided into two sections as follows: Condition I covers the transportation from the manufacturer to the dealer and from the dealer to the initial setup site, including setup. Condition II covers the secondary moves including take down, transportation and setup.

PRELIMINARY METHODOLOGY

At the outset of this program, the initial problem was to determine the methodology for the pioneering development effort of the predictive analyses, a simplified dynamic analysis, as well as the possible applications of the finite element theory to a composite material assembly or structure, such as a mobile home. Also, one of the outstanding questions that need be answered at some point in the program pertains to the definition of "consumed life" or "when is a mobile home unfit for transportation, live-ability and a bad financial risk?" A recommendation will be made after completion of TASK III as to a more positive definition of these factors. However, a preliminary definition is contained in the preceding section.

Inspection and discussion of/with mobile home dealers, mobile home transporters, mobile home financial institutions and mobile home owners as well as repair shops resulted in a wealth of information pertaining to the various degradation factors associated with mobile home transportation and setup/takedown operations. From these data, the initial methodology or approach to the problem was developed in the form of anticipated or projected factors or projections of the probable direction or course the degradation cycle will follow.

It is anticipated at this time that a mobile home will degrade in proportion to the structural integrity or structural stiffness of the overall assembly. A steady rate of degradation, anticipated in the form of a downward curve as presented in Figure *ii* is generated by factors associated with transportation and setup/takedown cycles starting with a new mobile home that is considered as new with 100 percent integrity. Each trip over any type of road will degrade the structure to some degree. Also, the usual setup and takedown as accomplished by many transporters or dealers, adds to the degradation along with the time and environmental or weathering factors such as wind, rain, snow and temperature variations plus occupancy loads.

Various factors need be developed for these variables that will be used to develop the theoretical curves for the degradation cycle wherein mode 1 could include wind, snow, occupancy and material aging. Mode 2 could be designated as transportation, while mode 3 could be designated for setup and takedown factors. Torsion is to be included in these early predictions since it has been found to be a significant and critical factor in the structural response of the mobile home type structure.

The predictive analysis, dynamic analysis, and finite element analysis required in TASK I and discussed within this program requires an in-depth pioneering effort involving the many parameters associated with the transportation mode of mobile homes being moved from one site or location to another plus the setup and takedown mode as well as the occupancy mode. Due to the broad spectrum of operating conditions and parameters involved in the mobile home structure and running gear on various types of roads and under varying environmental conditions combined with the setup/takedown and occupancy forces, the three above-noted basic types of analysis will be necessary to comply with the requirements of TASK I.

The first program constitutes a SwRI-developed theoretical predictive analysis of "Remaining Useful Life" (RUL). The formulation was developed for the utilization of basic parameters that are available or can be generated via tests on the mobile home in question utilizing simplified tests with basic equipment. The predictive analysis will utilize factors such as velocity, effective vertical stiffness, effective torsional stiffness, road surface type or class and structural damping plus other factors that can be programmed into the development of the predictive formulas.

During the development of the various parameters required for the assembly of the predictive analysis, it was first necessary to also develop the simplified dynamic model because the degradation generated during the transportation mode occurs as a result of various dynamic applications with a certain degree of dampening between the wheel/axle and the mobile home box structure.

The simplified dynamic model is flexible in that the varying types of parameters can be added or subtracted, increased or decreased to fit the mobile home in question. Also, the model can be applied to both single- and double-wide units with emphasis on the placement of off-center masses such as refrigerator, bath units, washer, dryer, ovens, stoves and water heaters. The weight eccentricity due to location has a greater dynamic effect on the double-wide units than on the single wide units because of the absence of the rigidity in the mating wall. Wind effects are also a part of the dynamic factors and are considered significant due to the under-carriage system that is more narrow than the box structure and the soft spring systems that contribute to basic lateral and torsional instability. From the dynamic analysis, predictive accelerations at various locations and directions can be assessed as a result of the accelerations generated during the transportation mode.

1.0

These accelerations, in turn, can be applied to the finite element programs in the form of equivalent static loading for the analysis of components or joints. Once again, the effects of wind loads during the transportation mode can be applied or added to the dynamic loads generated due to vehicle velocity and road conditions for the overall input load spectrum for use in the finite element model. All of these data/analyses (with exception of the finite element analyses) are presented in Volume II. The finite element model is presented in Volume III while the exploded isometrics are presented in Volume IV.

8

DYNAMIC ANALYSIS

I. BACKGROUND DISCUSSION

During the past decade in the United States, there has been a significant increase in the utilization of mobile homes as a normal family dwelling. It has also been realized by the mobile home industry and the Federal Government that mobile homes are subjected to unique conditions (e.g., manufacturing, transportation and siting) which differ significantly from conventional housing. Because of these conditions, typical mobile homes during their lifetime may experience unusual dynamic as well as static loading conditions. The static loadings may be the result of placement, leveling and settling of the mobile home in its foundation and also due to environmental conditions. The dynamic loadings may include environmental as well as transportational-related loads (e.g., road roughness, railroad crossings, potholes). This is exemplified by the number of intransit unit losses during high wind periods and rain storms.

As a result of these rather complex loading phenomena, mobile homes have exhibited significant problems over relatively short periods of time. This performance problem is closely related to the reduction or degradation in the structural integrity of the mobile unit. Therefore, the structural integrity of the newly manufactured mobile homes, especially those in excess of 50-ft long, is important since any transportation except a very smooth highway and slow towing speeds will induce dynamic forces in the unit which may seriously diminish the unit's "remaining useful life."

The major damage to the mobile home's structure by external forces as well as occupant forces (e.g., furniture locations, excessive concentration of furniture, etc.) is fatigue-like in nature. Repeated dynamic and/or static loads which may be minor for each application, can, on a cumulative basis, result in progressive degradation and eventual structural failure.

The main objective of Task I is to develop the analytical methodology which will identify these variables as well as compute the probable dynamic and static loads and resulting stresses due to normal transportation and site installation activities. Since the dynamic loading conditions are highly random in nature, any methodology must be probabilistic in nature and should be based upon analytical and experimental studies. Additionally, an in-depth analytical investigation of mobile home response to both dynamic and static loads has been performed by SwRI. This phase, utilizing sophisticated finite element computer programs has identified those pertinent variables associated with the mobile home's structural integrity which affect the rate of degradation. This analytical phase has also estimated the probable G loadings which would be experienced by a mobile home in transit, under various transportation conditions, such as different towing speeds and road conditions (paved, rough, gravel, wavy). Based on these findings, regression equations have been formulated which can be utilized to estimate a mobile home's remaining useful life. This formulation will be modified, if necessary, after the experimental phase of this study is complete. A detailed discussion of the approach SwRI has taken to date as well as the resulting methodology and regression formulae are given in the following sections. In the dynamic analysis volume SwRI addresses the problem of mobile home degradation resulting from in-transit and setup and takedown effects. In the static analysis volume a more detailed look at degradation due to setups and takedowns is considered, in addition to the effect on specific components within the unit.

II. DEVELOPMENT

II.1. Model Selection

The beneficial aspects of simulating the dynamic response of a mobile home due to transportation-related excitations includes the ability to investigate the effect of changes in inherent structural properties and variations in external loadings on the unit. Accordingly, for this analysis, the Institute required a math model which would effectively model the mobile home's structural properties and the random excitations from a road surface that is imposed on the unit. After considering various available computer programs to handle these aspects, Control Data Corporation's MRI/STARDYNE analysis system⁽¹⁾ was selected to consider the dynamic analysis phase of Task I.

The MRI/STARDYNE analysis system consists of a series of compatible, digital computer programs designed to analyze linear, elastic structural models. These programs provide the analyst with a sophisticated, cost effective, structural-dynamical analysis system. Specifically, the STARDYNE system can be used to evaluate a wide variety of static and dynamic problems, e.g.

- The static capability includes the computation of structural deformation and member loads and stresses caused by an arbitrary set of thermal, nodal applied loads and/or prescribed displacements.
- Utilizing either the direct integration or the normal mode technique, dynamic response analysis can be
 performed for a wide range of loading conditions, including transient, steady state, harmonic, random
 and shock spectra excitation types.

Dynamic response results can be presented as structural deformations (displacements, velocities, or accelerations) and/or internal member loads/stresses.

II.2. Model Construction

The programs (of the STARDYNE system) chosen by the Institute as most applicable to the present study are STAR and DYNRE 3. The STAR program has two distinct functions; they are static load analysis and eigenvalue (natural frequency) eigenfunction (mode shape) extraction. This program was used to construct the dynamic model which consists of 17 beam elements, 18 nodal points and three material properties (steel, wood, rubber). In the construction of this model, the nodal points located at the mobile home's weight distribution concentration points were displaced from the beam elements to simulate the eccentricities in the internal loading environment due to concentrated masses such as furniture, kitchen appliances, bathroom fixtures, etc. The suspension systems at the hitch and wheel locations were modeled by beam elements with similar compressive resistive properties of typical suspension systems. For our model, this program performs a modal analysis of the mobile home, extracting the various eigenvalues and eigenfunctions based on the computer-calculated stiffness and associated mass matrix. In the present study, the STAR program was utilized with varying structural characteristics of the mobile home to simulate various degrees of structural degradation.

The DYNRE 3 program was utilized to evaluate mobile home response to random road excitations. It was used in conjunction with the structural models formulated by the STAR program. In DYNRE 3, the random dynamic road excitations are input in terms of power spectral density (PSD) functions. In terms of physical reality, the power spectral density at any particular frequency, may be regarded as the average power passing when a random signal is filtered by a narrow power pass filter. In this analysis, it is the limiting mean square value (e.g., of acceleration, velocity and displacement) per unit bandwidth i.e., the limit of the mean square value in a given rectangular bandwidth divided by the bandwidth as the bandwidth approaches zero. The output from this program includes:

- Root mean square (*RMS*) response of the mobile home (i.e., displacement, velocity and accelerations) at the designated nodal points.
- Power spectral density (PSD) curves for selected locations (nodal points) in the unit.

II.3. Computer Model Input and Methodology

For the dynamic model described above, certain structural input data for the mobile home as well as road surface condition were required. In terms of the structural program STAR, the most essential input requirements were the effective flexural stiffness (EI) of the mobile home and the effective torsional stiffness (GJ). In a previous study⁽²⁾, investigators evaluating mobile home degradation concluded that the effective flexural stiffness of a mobile unit was a significant factor relating to the structural integrity of a mobile unit as well as a key in determining its potential to degrade as a result of transit. In Ref. 2 it was noted that when a unit was subjected to careful EI measurements both before and after extensive roadway loadings, the value of EI changed significantly (i.e., decreased).

Due to these findings, the STAR program was run with various values of EI to simulate the degradation phenomenon due to transit as well as setups and takedowns. In addition to this structural aspect, the computer program was run varying the effective torsional stiffness (GJ) of the unit. SwRI early in this study, believed that the effective GJ could be a significant factor in terms of defining the structural adequacy of a unit to withstand numerous moves from take down site to installation site. Accordingly, utilizing the STAR program, a total of twenty (20) structural models (each with different EI and GJ combinations) were computed to simulate the various degrees of structural integrity (or degradation) of a mobile home (see Table 1).

The road condition excitation data input to the DYNRE 3 program were based on previous research efforts. Specifically, descriptions of highway roughness measurements in terms of power spectra (PSD) have been studied by Pevzner⁽³⁾, Parkhilovskiy⁽⁴⁾ and Van Deusen⁽⁵⁾. These studies followed an investigation in 1958 by Thompson⁽⁶⁾ on airport runway roughness measurements. More recently, roughness in terms of power spectra has been studied by Jaeger and Schuring⁽⁷⁾ who investigated surface roughness for the moon's Mare Cognitum. A detailed description of this approach is given in Bekker's "Introduction to Terrain Vehicle Systems"⁽⁸⁾.

In the present study, the PSD values for various road conditions quoted in Ref. 5 were utilized, as shown in Table 2. These coefficients are input into the empirically derived equation (5)

$$PSD(\Omega) = K_{\nu}\Omega^{-n_{\nu}}$$

to estimate the road excitation *PSD* for a given frequency Ω where K_{ν} and n_{ν} are constants related to the type of road traveled and Ω is spatial frequency in cycles per foot. It is noted that equation (1) was obtained by approximating *PSD* data collected experimentally and gives a good approximation of the *PSD* for the ground profile in the low frequency range (i.e., 0 to 6.0 Hz). For the DYNRE 3 program Equation (1) was modified from a spatial to temporal domain to be compatible with the program input requirements (i.e., *PSD* in G^2/Hz). It is further noted that while Table 2 includes both paved and unpaved roads, only paved roads were considered as being typical for initial and secondary moves of mobile homes. Accordingly, while paved, unpaved and gravel roads were considered in the overall methodology of Task I, the conclusions derived from the dynamic analysis are based on paved highways and secondary roads.

(1)

TABLE 1

STAR STRUCTURAL MODELS OF MOBILE HOMES

	Effective Torsional Stiffness $(\overline{J})^{**}$ in.								
$\overline{\mathrm{EI}}$ (lb-in. ²)*	10	23	10 ²	10 ³	104				
88 x 10 ⁸	x†	x	x	x	x				
158 x 10 ⁸	x	x	x	x	x				
194 x 10 ⁸	x	x	x	x	x				
264 x 10 ⁸	x	x	x	х	x				

*Effective flexural stiffness

**Effective torsional stiffness divided by torsional rigidity constant (G) [†]Each X signifies a model with specified effective flexural and torsional stiffnesses.

TABLE 2

VALUES OF PSD EQUATION COEFFICIENTS FOR VARIOUS ROAD SURFACES

Surface	<u> </u>	n _v [*]
Paved road	1.2×10^{-6}	2.1
Unpaved with gravel	1.1×10^{-5}	2.1
Unpaved, waved	3.7×10^{-6}	2.4
Unpaved, rough	2.0 x 10^{-6}	3.8
Virgin, cross-country	1.6×10^{-3}	2.0

*Empirically evaluated constants defined by B.D. Van Deusen. ⁽⁵⁾

III. MODEL APPLICATION

III.1. Parametric Investigation

If the rate of degradation of a mobile home due to transportation effects as well as setups and takedowns is to be defined and hopefully, substantially reduced, it is essential that the pertinent parameters having the greatest effect on these phenomena be identified. In the dynamic model described above, those parameters that were suspect at the beginning of this investigation were:

- Effective flexural stiffness (EI),
- Effective torsional stiffness (GJ),
- Road surface condition,
- Mobile home transporting speed,
- Mobile home damping properties.

The effective flexural stiffness of the mobile home is the equivalent vertical bending stiffness of the unit, if it is considered as a simple beam, firmly supported at the hitch and wheel location. In the reference $study^{(2)}$, Battelle Memorial Institute (BMI) evaluated this effective stiffness by jacking up the unit at the wheel and hitch locations and then by applying known loads in the vertical direction, first at the midpoint of the unit between the hitch and the wheels, and then at the rear of the home. Deflections were measured and then by using Euler's beam equation, the effective stiffness (EI) was estimated. It was BMI's belief that this structural property had a major influence on degradation, and could be used as a tool to estimate the quality and/or degradation of a mobile unit.

Similar to the effective bending stiffness, the effective torsional stiffness (GJ or J) can be considered in studying the mobile home's response to torsion (racking). Accordingly, in this parametric study, these stiffnesses, as well as speed, damping and road condition were investigated to determine which variable(s) has a significant effect on degradation. A series of simulations were performed for a 60-ft long, 14,000-lb unit, varying the parameters outlined above.

III.1.a Flexural and Torsional Stiffness Effects

In the first series of simulations, variations in the mobile home's flexural and torsional stiffness were made (Table 1). In these computer runs a paved road was modeled, the speed of the unit was maintained at 45 mph and the damping of the unit was specified at 0.04 and 0.10. The response parameters monitored were the vehicle's root mean square (RMS), accelerations, velocities and displacements. (It is noted that by definition a random response will be probabilistically equal to or less than the RMS value 68.3 percent of the time.)

Results emphasized the sensitivity of induced "G" loadings in the mobile home to variations in effective torsional stiffness (GJ). This is clearly shown in Figures 1 through 4 where the "monitored" RMS accelerations at a rear upper corner of the mobile home dramatically increase as the effective torsional stiffness is reduced. Figures 1 through 4 also show that variation in effective flexural stiffness (EI) does not effect the mobile home response accelerations to the same degree as the torsional stiffness. It is further noted that an increase in damping (from 0.04 to 0.10) can substantially diminish the G loadings the unit may experience during a move.

In terms of probability of occurrence, the significance that the torsional stiffness of a mobile home has on probable G loadings experienced during transporting of the unit from site to site is illustrated in Appendix C.

FIGURE 1

15

FIGURE 2

RMS ACCELERATION (C'S) VERTICAL

LATERAL RMS ACCELERATION (6'S)

FIGURE 4

III.1.b. Effect of Road Condition and In-Transit Speed

The second series of simulations investigated the influence of speed and road condition on the rate of degradation of a mobile home. As shown in Figures 5 and 6, for a paved road the mobile home response does not vary significantly as the speed increases from 45 to 65 mph. However, it was anticipated that the velocity effect on degradation for a unit traveling along a paved road would be small in comparison to other types of road surfaces (e.g., gravel, rough, etc.). Accordingly, simulations were made of a mobile home traveling at 45 mph along both paved and unpaved roads. As illustrated in Figures 7 and 8, the acceleration levels within the unit can be substantially increased going from a paved to unpaved road, while maintaining the same speed.

III.2. (T-1) Model-1976 14 X 65-ft

As alluded to in the aforementioned parametric study, a total of twenty (20) structural models of mobile homes were constructed to simulate the dynamic response of a unit during transporting between site locations. Of these models, the one which structurally comes closest to the mobile home test unit T-1, has a flexural and torsional stiffness of:

$E1 = 264 \times 10^8 \text{ lb-in.}^2$

 $J = 10^4 \text{ in.}^4$

This model was utilized to simulate the T-1 traveling along a well paved road at 45 mph. As anticipated, due to the unit's stiff construction, the RMS (root mean square) vertical acceleration response (in G's) throughout the unit, as shown in Figure 9 and Table 3 was rather small. The lateral acceleration levels (not shown in figure) were approximately 75 percent the vertical G loads.

While small in amplitude, these dynamic loadings are cyclic in nature. The "apparent" frequency of random load input (based on analysis in Appendix A) for this particular model is:

$$f = 11.74 \frac{\text{EI}^{0.036} \text{C}_{\text{D}}^{0.427}}{V^{0.102} \text{J}^{0.028}}$$
$$= \frac{11.74(264 \times 10^8)^{0.036} (0.2)^{0.427}}{(45)^{0.102} (10^4)^{0.028}}$$

= 7.34 Hz

where a damping coefficient (C_D) of 20 percent was utilized for the single wide model. Based on the above, dynamic loadings equal to or greater than those RMS values illustrated in Figure 9, (31.7 percent probability of being exceeded) can be assumed having an occurrence rate of:

$$f_{\rm rms} = 7.34(0.317)$$

= 2.32 Hz

over 2 cycles per second or 8,000 cycles per hour (16,000 load applications per hour). Here then, exists an environment where dynamically induced inertial loads, though small in magnitude can conceivably result in substantial degradation because of a cumulative damage effect. The degradation for the T-1 was simulated with the dynamic model by reducing the torsional stiffness of the unit from 10⁴ to 10³ in.⁴ while keeping constant the other structural properties of the model. The effect which this reduction in torsional stiffness had on the induced vertical RMS G loads, is shown in Table 4 and Figure 10. Here again, since the T-1 initially was considered structurally very stiff the vertical RMS loadings were approximately 0.3 G's or less. When compared to Figure 9, however, an approximate 50-percent increase in G loadings is realized (left side, rear).

VERTICAL ACCELERATION RMS (G'S)

LATERAL ACCELERATION RMS (G'S)

FIGURE 6

Location (in.)	Left Side	Centerline	Right Side
-235**	. 226	.214	. 202
-180	. 192	. 179	. 167
-120	. 159	. 148	. 138
-60	. 137	. 131	. 125
Rear most axle	. 129	. 128	. 128
Center axle	. 129	. 128	. 128
Front axle	. 129	. 128	. 128
60***	. 163	.154	.145
120	.201	. 188	.176
180	.227	.216	.205
240	.243	.233	.223
300	.243	.233	. 223
360	. 226	.216	.206
420	.200	. 191	. 181

SINGLE WIDE (T-1) MODEL DYNAMIC RESPONSE LOADS (G's)*

 $\begin{array}{c} \text{Refer to} \\ \text{page 19 for} \\ \text{discussion of} \\ \text{these factors.} \end{array} \left(\begin{array}{c} \text{EI} = 264 \times 10^8 \text{ lb-in.}^2 \\ \text{J} = 10^4 \text{ in.}^4 \\ \text{Velocity} = 45 \text{ mph} \\ \text{C}_D = 20\% \\ \text{f} = 7.34 \text{ Hz} \\ \text{f}_{rms} = 2.32 \text{ Hz} \end{array} \right)$

*Vertical RMS accelerations **Behind rear most axle ***In front of foremost axle

Note: Values are small due to strong construction as well as paved (smooth) road. In addition, as previously noted, the RMS value represents a level which would be exceeded approximately 32 percent of the time during transit.

Location (in.)	Left Side	Centerline	Right Side
-235**	. 348	. 222	. 096
-180	.323	. 196	.069
-120	.264	. 159	. 054
-60	. 193	. 134	. 075
Rear most axle	. 130	. 129	. 128
Center axle	. 130	. 129	. 128
Front axle	. 130	. 129	. 128
60**	.257	. 168	. 079
120	.330	.209	.088
180	.316	. 222	. 128
240	.308	.239	.170
300	. 293	.240	. 187
360	.268	. 226	.184
420	.234	.200	. 166

SINGLE WIDE (T-1) MODEL DYNAMIC RESPONSE LOADS (G's)*

	$[EI = 264 \times 10^{\circ} \text{ lb-in.}^2]$
Refer to	$J = 10^3 \text{ in.}^3$
page 19 for	Velocity = 45 mph
discussion of) C _D = 20%
these factors.	f = 7.34 Hz
	f _{rms} = 2.32 Hz

*Vertical RMS acceleration **Behind rear most axle ***In front of foremost axle

IV. MODEL LIMITATIONS

The Institute realizes the analysis of degradation in mobile homes resulting from transportation-related effects is difficult because of the complexity of a typical unit and the random nature of the induced dynamic loads. For example, due to interior walls, fixtures, etc., the flexural and torsional stiffness for a mobile home will vary substantially between the front and rear sections of a unit. The dynamic model, however, was constructed with these structural properties considered independent of the location within the unit. Accordingly, the dynamic model simulations described above can realistically only be considered a simplification of a unique phenomenon which is stochastic. With this in mind, the findings in terms of exact values should only be used in terms of defining structural parameter sensitivity to overall mobile home degradation. This sensitivity approach was investigated by SwRI in developing predictive equations for estimating the remaining useful life (*RUL*) of a mobile home.

V. PREDICTIVE ANALYSIS

V.1. Methodology and Formulation*

Based on the findings outlined in the previous section, predictive equations have been formulated which incorporate the structural aspects of the mobile home as well as speed and road conditions and which address the problem of in-transit and setup-takedown degradation. These equations are based in part, on results from the United Computer Systems (UCS) MULFIT computer program⁽⁹⁾ which were used to develop regression equations based on SwRI findings. Specifically, from the dynamic model simulations utilizing the data collected, the MULFIT program performed a "best fit" analysis of the data and derived the following expressions for evaluating mobile home degradation due to initial and secondary moves.

$$\sigma_R = 6.42 \times 10^4 \frac{V^{0.734}}{E I^{0.468} C_D^{0.363} (\ln J)^{2.046}}$$
(2)†

$$\sigma_F = 7.13 \times 10^{-3} \frac{EI^{0.208} V^{0.530}}{C_D^{0.448} (\text{Ln J})^{1.610}}$$
(3)†

In the above,

 σ_R - is the RMS \ddagger vertical acceleration (G units) of the mobile home at rear corner,

 σ_F -is the RMS vertical acceleration at an upper side wall location approximately midpoint between front axle and hitch,

V-is transport velocity (mph),

EI—is the effective vertical flexural stiffness (lb-in.²),

J-is the effective torsional stiffness (in.⁴) and

 C_D —is the structural damping of the unit ($0 < C_D < 1.0$).

Since the MULFIT program could not input *PSD* functions, equations (2) and (3) were modified to handle the various road condition effects on the unit as well as a reduction in the torsional stiffness (J) during the move. These modified equations were taken as:

$$\sigma_{R} = 6.42 \times 10^{4} \frac{V^{0.734} r_{C}}{EI^{0.468} C_{D}^{0.363} \left[\ln 10^{n} - \frac{\ln 10^{n-1}}{n^{2}} \right]^{2.046}}$$
(4)

$$\sigma_F = 7.13 \times 10^{-3} \frac{EI^{0.208} V^{0.530} r_C}{C_D^{0.448} \left[\ln 10^n - \frac{\ln 10^{n-1}}{n^2} \right]^{1.610}}$$
(5)

where rc and n are found in Table 5. Equations (4) and (5) give an estimation of what the dynamic response of a particular mobile home will be during its move to a planned site. They also define the change in dynamic response to a unit due to setups and takedowns. This latter aspect is achieved by substituting the appropriate reduced flexural and torsional stiffnesses (due to on-site procedures) into expressions (4) and (5).

^{*}Subject to modifications based on experimental findings from Task III study.

 $[\]pm$ Coefficient 6.42 × 10⁴ and 7.13 × 10⁻³ defined to make expressions dimensionally homogeneous. \pm Root mean square values also referred to as standard deviations.

Road Condition		rc
Paved (smooth) *		1.0
Paved (waves) **		1.2
Paved (rough) **	1.1	1.5
Unpaved (waves)		2.5
Gravel		3.0
Unpaved (rough)		10.0

. •

Effective Tors	ional Stiffness (\overline{J} in. ⁴)	<u>n</u>
	10	1
· ·	10 ²	2
	10 ³	3
	10 ⁴	4
	10 ^m	m

*Typical of primary roadways **Representative of secondary roadways The remaining useful life (RUL) equation based on the above is:

$$RUL = 1 - \frac{(7.2 \times 10^3) f dP(\sigma_i > \sigma_B)}{V N_B} \qquad i = R \text{ or } F \quad (\text{Rear or Front}) \qquad (6)^*$$

where

f = "apparent" frequency of response of unit (Hz)

V = planned velocity of unit (mph),

d = distance between sites (miles),

 $P(\sigma_i > \sigma_B)$ is the probability of the unit exceeding the "base" RMS acceleration and N_B is estimated number of times the "base" RMS value will be exceeded per 100 miles traveled by the unit. The aforementioned "base" values are input by the user and are assumed to be the RMS vertical acceleration response (σ_B) and number of occurrences (N_B) that a "zero remaining useful life" or unsafe mobile home would experience if it were transported 100 miles. As an example, from these simulations the following "base" values were taken for the upper rear wall location:

 $f_B = 5$ Hz (frequency of response),

 $V_B = 55 \text{ mph}$ (on paved road),

 $\sigma_{R} = 7.4 \text{ G's} \ddagger (\text{RMS vertical acceleration}).$

From these values the probability $[P'(a_B)]$ of the base unit exceeding a_B is simply 0.317 or approximately 32 percent. Accordingly, based on the expression (6) for an RUL = 0, the estimated number of occurrences that a_B will be exceeded per 100 miles traveled is:

$$N_B = 7.2 \times 10^5 \frac{f_B}{V_B} [P'(\sigma_B)] = 2.07 \times 10^4$$

The overall procedure for estimating the *RUL* of a specific unit entails the following:

- (1) The user specifies the "base" structural parameters of a proposed "zero" life unit as well as planned velocity and probable road condition for this unit. He then utilizes equations (4) and (5) to estimate the RMS acceleration (σ_B) for this "zero" life unit at the rear corner and midpoint wall location between axle and hitch.
- (2) The user estimates the number of occurrences (N_B) (per 100 miles traveled by the "zero" life unit) that σ_R will be exceeded. This is obtained from:

$$N_B = 7.2 \times 10^5 \frac{f_B}{V_B} \left[P'(\sigma_B) \right]$$

where f_B and V_B are estimated "base" frequency of response (Hz) and "base" velocity (mph).**

(3) The user now estimates the RMS vertical accelerations (σ_i) for the present mobile home in question. This is obtained by inserting the appropriate structural parameters into equations (4) and (5) along with the anticipated road condition and in-transit speed. (These values are either measured or estimated from available tables such as Table 5.)

 $P(\sigma_i > \sigma_B)$ is a function of mobile home speed, stiffness, damping as well as the type of road the unit is traveling. #Measured at upper rear corner of unit.

^{•7.3} \times 10³ coefficient defined to make expressions dimensionally homogeneous.

^{*}These values would be based on best available data.

- (4) Having determined the standard deviations (σ_i) for the mobile home, the probability of exceeding σ_R [i.e., $P(\sigma_i > \sigma_R)$] can be obtained from any standard statistical handbook.
- (5) The user then inputs $P(\sigma_i > \sigma_B)$ into (6) to obtain an estimation on the *RUL* of the unit when it reaches its setup site.

It is noted in expression (5) that the RMS response for the location between axle and hitch is directly proportional to the unit's effective flexural stiffness (*EI*). Due to this, a newer mobile home would experience higher inertia loadings (G's) in this area than after this stiffness parameter has degraded. As a result, if the "base" values of a highly degraded unit were input into (5), the RMS response (σ_{FB}) would give an unrealistic level of degradation to the front section of the mobile home. This problem can be minimized if the user, when evaluating σ_{FB} , utilizes in (5) the actual flexural stiffness *EI* in place of *EI*_B. This can be justified since, as shown in Figures 3 and 4, the dynamic response of the "modeled" mobile homes were found to vary only slightly to changes in flexural stiffness.

V.2. Examples

In an effort to give a better understanding of the predictive equations, three illustrative "hypothetical" examples are given in the following:

A. A mortgage company has defined a high risk mobile home as one which has approximately a 32-percent probability (standard deviation) of experiencing at an upper rear corner location, inertia loadings (vertical direction) of 8.2 G's*or more when being transported over a paved highway at 55 mph. In terms of the pertinent structural properties, this "base" unit has:

 $EI_B = 164 \times 10^8 \text{ lb.-in.}^2$ $J_B = 10 \text{ in.}^4 (n = 1)$ $C_{DB} = 0.10$

The number of probable occurrences at which this acceleration level will be exceeded assuming a frequency response (f_B) of 5 Hz is:

$$N_B = \frac{(7.2 \times 10^5)(0.317)5}{55} = 2.07 \times 10^4 \text{ (per 100 miles)}$$

The mortgage company is interested in making a secondary loan on a particular mobile home. The owner plans to transport the unit from Childress to San Antonio, Texas (d = 400 miles) at the maximum allowable speed (55 mph) over essentially well paved and secondary roads. The unit's structural integrity is estimated in terms of its effective flexural stiffness, torsional stiffness, apparent frequency, and structural damping, i.e.,

$$EI = 120 \times 10^{8}$$
 lb-in.²
 $J = 1000$ in.⁴ ($n = 3$)
 $C_{D} = 0.10$
 $f = 5$ Hz[†]

*This value would be based on available data or from predictive equations with input of "poor structural properties" (i.e., EI_B , J_B etc.). †It is noted that the apparent response frequency is dependent upon the type of road traveled as well as anticipated speed and structural makeup of the unit. Here it is assumed same as "base" value. The procedure for estimating f is given in Appendix A of this report. Substituting this data into (4) the mortgage company obtains:

$$\sigma_R = 6.42 \times 10^4 \frac{(55)^{0.734}(1)}{(120 \times 10^8)^{0.468} (0.10)^{0.363} \left[\text{Ln } 10^3 - \frac{\text{Ln } 10^2}{9} \right]^{2.046}}$$
$$= \frac{1.22 \times 10^6}{1.01 \times 10^6} = 1.2 \text{ G's}$$

The standard deviation (RMS) of the mobile home is 1.2 G's..

The probability of exceeding 8.2 G's $[P(\sigma_i > \sigma_B)^*]$ is less than 0.002 (0.2 percent). Assuming 0.002 and substituting this data into equation (6) one obtains:

$$RUL = 1 - \frac{(7.2 \times 10^3)(5)(400)(0.002)}{55(2.07 \times 10^4)}$$
$$= 1 - 0.03 = 0.97$$

The unit's anticipated RUL when it reaches San Antonio is 97 percent or the unit lost 3 percent of its useful life during the move.

B. The second hypothetical example is same as the former except that the proposed road conditions are primarily unpaved (wavy). In this instance (from Table 5) rc = 2.5.

Substituting this change into equation (4), the RMS vertical acceleration is:

$$\sigma_R = 6.42 \times 10^4 \frac{(55)^{0.734} (2.5)}{(120 \times 10^8)^{0.468} (0.10)^{0.363}} \left[\text{Ln } 10^3 - \frac{\text{Ln } 10^2}{9} \right]^{2.046}$$
$$= \frac{3.04 \times 10^6}{1.01 \times 10^6} = 3.0 \text{ G's}$$

The probability $P(\sigma_R > \sigma_B)$ of exceeding 8.2 G's (2.73 σ) is approximately 0.007 (0.7 percent). Substituting the required data in (6):

$$RUL = 1 - \frac{(7.2 \times 10^3)(5)(400)(0.007)}{55(2.07) \times 10^4)}$$
$$= 1 - 0.09 = 0.91$$

The units anticipated RUL when it reaches San Antonio is 91 percent (the move would consume an estimated 9 percent of the mobile homes "useful life"). It is noted that in Example B the mobile home was assumed transported 400 miles over unpaved road to show an example where the RUL is substantially reduced.

For a variety of different road conditions and speed during transit of the unit, equations (4), (5) and (6) are modified as:

 $*\sigma_{\rm B} = 8.2 \ G; \ \sigma = 1.2 \ G; \ hence \ \sigma_{\rm B} = 6.83 \ \sigma \ and \ P(\sigma_i > 6.83 \ \sigma) \ is \ less \ than \ .002$

$$\sigma_{RK} = 6.42 \times 10^4 \frac{V_k^{0.734} rc_k}{EI^{0.468} C_D^{0.363} \left[\ln 10^n - \frac{\ln 10^{n-1}}{n^2} \right]^{2.046}}$$
(4')

$$\sigma_{FK} = 7.13 \times 10^{-3} \frac{EI^{0.208} V_k^{0.530} r_{c_k}}{C_D^{0.448} \left[\text{Ln } 10^n - \frac{\text{Ln } 10^{n-1}}{n^2} \right]^{1.610}}$$
(5')

$$RUL = 1 - \frac{7.2 \times 10^3}{N_B} \frac{\Sigma d_k f_k P_k(\sigma_i > \sigma_B)}{V_k} \quad k = 1, 2, 3 \dots$$
(6')

where the subscript "k" denotes the different anticipated road conditions (rc_k) during transit, the corresponding miles of each type of road (d_k) and proposed speed $(V_k$ for each road).

As an example considering the following:

C. The above unit is to be transported under the following conditions to San Antonio from Childress, Texas (a total of 400 miles).

• $d_1 = 200$ miles

 $V_1 = 55 \text{ mph}$

 $rc_1 = 1$ (paved road)

 $f_1 = 4 \, \text{Hz}$

• $d_2 = 100$ miles

 $V_2 = 45 \text{ mph}$

 $rc_2 = 2.5$ [unpaved (waves) road]

 $f_2 = 5 \, \text{Hz}$

• $d_3 = 100$ miles

V₃ = 35 mph

 $rc_3 = 3.0$ (gravel road)

 $f_3 = 6 \, \text{Hz}$

It is decided that equation (4'), the response of the rear section, will be used to evaluate anticipated *RUL*. Accordingly, for each road condition we obtain:

$$\sigma_{RI} = 6.42 \times 10^4 \frac{(55)^{0.734}(1)}{(120 \times 10^8)^{0.468} (0.10)^{0.363} \left[\text{Ln } 10^3 - \frac{\text{Ln } 10^2}{9} \right]^{2.046}}$$
$$= \frac{1.22 \times 10^6}{1.01 \times 10^6} = 1.2 \text{ G's}$$

$$\sigma_{R2} = 6.42 \times 10^4 \frac{(45)^{0.734}(2.5)}{(120 \times 10^8)^{0.468}(0.10)^{0.363} \left[\text{Ln } 10^3 - \frac{\text{Ln } 10^2}{9} \right]^{2.046}}$$
$$= \frac{2.62 \times 10^6}{1.01 \times 10^6} = 2.60 \text{ G's}$$
$$\sigma_{R3} = 6.42 \times 10^4 \frac{(35)^{0.734}(3.0)}{(120 \times 10^8)^{0.468}(0.10)^{0.363} \left[\text{Ln } 10^3 - \frac{\text{Ln } 10^2}{9} \right]^{2.046}}$$
$$= \frac{2.62 \times 10^6}{1.01 \times 10^6} = 2.60 \text{ G's}$$

The above are the RMS vertical accelerations for the unit for the three different road speeds and road conditions. The corresponding probabilities of exceeding the "base" RMS value (8.2 G's) are:

$$P_1(\sigma_{R1} > \sigma_B) < 0.002 \ (0.2 \text{ percent})$$

 $P_2(\sigma_{R2} > \sigma_B) = P_3(\sigma_{R3} > \sigma_B) \cong 0.003 \ (0.3 \text{ percent})$

These probabilities along with the corresponding velocities, frequencies and distances are substituted into expression (6') i.e.,

$$RUL = 1 - \frac{7.2 \times 10^3}{2.07 \times 10^4} \left[\frac{(200)(4)(0.002)}{55} + \frac{(100)(5)(0.002)}{45} + \frac{(100)(6)(0.003)}{35} \right] = 1 - 0.04 = 0.96$$

which approximates the remaining useful life of the mobile home upon reaching the installation site as 96 percent or in terms of degradation, the trip has "cost" 4 percent of the unit's *RUL*.

V.3. Application to Single-Wide (T-1) and Double-Wide (T-2)

As alluded to in the previous sections, transportation degradation is related to both the structural makeup of the unit as well as the transportation related variables (i.e., road travelled and speed). Accordingly, an assessment of the performance of the T-1 and T-2 (A and B) under conditions I and II of Task I can vary substantially depending upon these variables. Because of this, the performance of the units for each "condition" will be investigated for various transportation modes (distance, speed, road type).

V.3.1. Condition I (T-1)

For this initial transportation condition (250-500 miles) from the manufacturer's plant to the owner's site the transportation modes shown in Table 6 were considered. Based on preliminary experimental data for the T-1, the structural properties for a "new" single-wide were taken as:

$$EI_R = 1000 \times 10^8 \text{ lb-in.}^2$$

 $J_R = 3500 \text{ in.}^4$
 $EI_F = 250 \times 10^8 \text{ lb-in.}^2$
 $J_F = 875 \text{ in.}^4$
 $C_{DF} = C_{DF} = C_D = 0.20$

TRANSPORTATION ARRAY (CONDITION I)

•1

	DISTANCI	E (miles)	ROA	AD CONDITIC	×NC	TYPIC/	AL SPEEI	(hqm) (
CONDITION	250	500	Well Paved	Paved (waves)	Paved (rough)	35	45	50
IA	Х		Х					Х
18		х	х				201	Х
IC	х	-			Х	Х		
D .		х			X	Х		10
IE	х			х			Х	
1.F		х	11 20	х		たんで	Х	

(primary roadways; above average secondary roads).2 (typical secondary roadways).5 (rough secondary roads) *Well paved; rc = 1.0 (p Paved (Waves); rc = 1.2 Paved (Rough); rc = 1.5

....

where the subscripts "R" and "F" signify structural properties pertaining to the rear and front sections of the unit. For a "zero life" or "base" unit, the structural properties were assumed as:

$$EI_{RB} = EI_R = 1000 \times 10^8 \text{ lb-in.}^2$$

 $EI_{FB} = EI_F = 250 \times 10^8 \text{ lb-in.}^2$
 $J_{RB} = (0.05) J_R = 175 \text{ in.}^4$
 $J_{FB} = (0.05) J_F = 43.8 \text{ in.}^4$

where it was conjectured that a reduction in flexural stiffness (EI) during a unit's "life span" would not change (reduce) substantially in comparison to the torsional stiffness and hence, can be assumed constant. A reduction by 95 percent of the unit's "original" torsional stiffness would be considered structurally unsafe. It was further assumed that this "base" unit could withstand a maximum 100-mile move between sites over a paved (rough) road at an average speed of 55 mph (i.e., before RUL = 0). Under these conditions the RMS vertical acceleration response and the "apparent" frequency at the rear and front locations of the base unit are:

$$\sigma_{FB} = 3.15 \text{ G's}$$

 $f_{FB} \simeq f_{RB} \simeq 8 \text{ Hz}$
 $\sigma_{RB} = 0.81 \text{ G's}$

Based on the above assumptions, predictive equations (4), (5) and (6) were utilized to define anticipated remaining useful life (*RUL*) or degradation for the various transportation modes given in Table 6. The results in terms of anticipated RMS vertical acceleration levels for the rear and front sections* of the T-1, as well as degradation are given in Table 7. As noted in this table the degree of degradation was evaluated to be as low as 0.3 percent for the rear section of the single-wide and as high as over 10 percent for the front section, depending on the typical speed and the roughness of the (paved) road. Furthermore, from Table 7 it is shown that the dynamic response and the degree of degradation for the front or fore-section of the T-1 is anticipated to be greater than the rear portion of the unit. This is attributed to the front section having torsionally weaker structural properties in comparison to the rear portion of the unit.

V.3.2 Condition I (T-2B)

For this half section of the double-wide, which does not contain the plumbing fixtures (dry side), the pertinent structural properties (based on limited experimental data) were taken as:

$$EI_R = 730 \times 10^8 \text{ lb-in.}^2$$

 $J_R = 2600 \text{ in.}^4$
 $EI_F = 170 \times 10^8 \text{ lb-in.}^2$
 $J_F = 600 \text{ in.}^4$
 $C_{DF} = C_{DF} = C_D = 0.20$

Making the *a priori* assumption that the T-2 can tolerate acceleration levels no greater than the T-1, the previously defined "base" RMS values were used, i.e.,

^{*}Upper rear corner and midpoint location between axle and hitch.

ANALYTICALLY EVALUATED T-1 DEGRADATION DUE TO INITIAL MOVE (CONDITION I)

;	RMS Vertical Ac	celeration (G's)	Degradation	n (percent)	
N	Rear Location	Front Location	Rear Section	Front Section	
	.22	.89	0.3	0.5	
	.22	.89	0.6	1.0	
	.26	1.10	2.4	5.2	
	.26	1.10	4.8	10.4	
	.25	1.00	1.5	2.0	T
-	.25	1.00	3.0	4.0	_

"Rear monitoring location at rear most upper corner. Front monitoring location at upper wall-roof interface, midway between axle and hitch.

$$\sigma_{FR} = 3.15 \, \text{G's}$$

$$f_{FB} \cong f_{RB} \cong 8 \text{ Hz}$$

$$\sigma_{RB} = 0.81 \text{ G's}$$

As with the T-I, based on the above for the various transportation modes defined in Table 6, anticipated RMS acceleration levels and degradation for the T-2B are given in Table 8.

As noted, anticipated degradation for the initial move varied from a low of 0.2 percent for the front section to a high of 28 percent for the rear section, depending on the road traversed by the unit and the transport speed. It is further noted that the predictive analysis anticipated a higher degree of degradation for the rear section of the T-2B in comparison to its front section. This is opposite the anticipated degradation effect for the T-1 and is due, in part, to the T-1 having a structurally very sound rear section compared to the T-2B rear section. It is also due to the fact that the flexural stiffness (EI_F) for the front section was found to be directly proportional to its flexural stiffness. Accordingly, the combination of a weaker rear section for the T-2B and a flexurally less stiff front section, when compared with the T-1, resulted in this anticipated *reverse sense* of degradation.

V.3.3. Condition I (T-2A)

For this half section of the double-wide (wet side), based on preliminary experimental data, the required structural properties for the predictive equations were taken as:

$$EI_R = 720 \times 10^8 \text{ lb-in.}^2$$

 $J_R = 2500 \text{ in.}^4$
 $EI_F = 170 \times 10^8 \text{ lb-in.}^2$
 $J_F = 600 \text{ in.}^4$
 $C_{DF} = C_{DR} = C_D = 0.2$

As with T-1 and T-2B, utilizing the previously defined assumptions, the anticipated RMS acceleration levels and degradation for the T-2A are given in Table 9. As noted, degradation to the rear section of this half of the double-wide is somewhat greater than the T-2B.

V.3.4. Condition II (T-1)

For this condition, the T-1 undergoes fifteen (15) years of use including three (3) occupancy periods and two secondary moves ranging from 300 to 600 miles (including 4000 lb of added internal weight). As with Condition I, the unit's degradation will depend, in part, on the transportation modes involved (i.e., road condition, speed, etc.). Accordingly, for these secondary moves, the transportation modes shown in Table 10 were considered.

From preliminary experimental data for the T-1, each setup and takedown degrades the effective torsional and flexural stiffnesses for the front and rear sections of the unit in the following manner:

- Thirty (30) percent reduction in torsional stiffness for the front section (J_F).
- Forty (40) percent reduction in torsional stiffness for the rear section (J_R) .
- Twenty (20) percent reduction in flexural stiffness for the rear section (EI_R).
- Fifty-five (55) percent reduction in flexural stiffness for the front section (EI_F) .

Based on the above, for each secondary move the structural parameters (EI, J) were reduced by these percentages when utilized with the predictive equations for defining transportation-related degradation.

ANALYTICALLY EVALUATED T-2B DEGRADATION DUE TO INITIAL MOVE (CONDITION I)

WOTHT THON	RMS Vertical Ac	celeration (G's)*	Degradation	n (percent)
NOTITONOO	Rear Location	Front Location	Rear Section	Front Section
IA	.28	.91	3.4	.2
1B	.28	.91	6.8	4
IC	.32	1.13	14.1	6.4
D D	.32	1.13	28.2	12.8
IE	.31	1.03	8.8	2.1
1F	.31	1.03	17.5	4.2

*Rear monitoring location at rear most upper corner. Front monitoring location at upper wall-roof interface, midway between axle and hitch.

ANALYTICALLY EVALUATED T-2A DEGRADATION DUE TO INITIAL MOVE (CONDITION I)

		 	·				
(percent)	Front Section	.2	7	6.4	12.8	2.1	4.2
Degradation	Rear Section	4.6	9.2	17.7	35.4	11.0	22 0
celeration (G's)*	Front Location	.91	.91	1.13	1.13	1.03	1.03
RMS Vertical Acc	Rear Location	29	. 29	* .33	.33	.32	.32
	CONDITION	1.A	18	lC	1D	lE	IF

*Rear monitoring location at rear most upper corner. Front monitoring location at upper wall-roof interface, midway between axle and hitch.

TRANSPORTATION ARRAY FOR EACH MOVE (CONDITION II)

٠

(mph)	50	Х	х				0
al Speed	45	10 A			51.6	х	х
Typic	35			х	х		
n*	Paved (Rough)			X	X		
ad Conditio	Paved (Waves)					Х	х
Roa	Well Paved	Х	Х				
(miles)	600		х		х		х
Distance	300	Х	*2.272.0	Х		х	
	CONDITION	2A	2B	2C	2D	2E	2F

43

1.5 N 11 8 Ľ IJ *Well Paved; rc Paved (Waves); (Rough); Paved

A. First Secondary Move – As alluded to above, the pertinent structural parameters utilized for the Condition i analysis were estimated to degrade to the following values after the units first setup and takedown:

 $EI_R = 800 \times 10^8 \text{ lb-in.}^2$ $J_R = 2100 \text{ in.}^4$ $EI_F = 113 \times 10^8 \text{ lb-in.}^2$ $J_F = 613 \text{ in.}^4$

Utilizing the same "base" conditions defined in the previous section, the predictive equations (4), (5) and (6) were used to estimate degradation of the T-1 for the modes shown in Table 10. The degrees of degradation for this *initial* secondary move are given in Table 11. As noted in this table, the degradation to the unit varied from 0.2 percent to 42.2 percent depending on the transportation mode. In comparison with Table 7, it is also noted that for this *initial* secondary move, the rear section is shown degrading at a greater rate than the front section. This is the result of the dynamic responses (RMS value) for the front section being directly proportional to the effective stiffness (EIF). Accordingly, when a reduction in EI_F due to Condition I and setup and takedown occurs, the G levels experienced between axle(s) and hitch also diminish.

B. Second Secondary Move-As per case A, the reduced structural stiffness for the T-1 based on the aforementioned percentages were taken as:

 $EI_R = 640 \times 10^8 \text{ lb-in.}^2$ $J_R = 1260 \text{ in.}^4$ $EI_F = 51 \times 10^8 \text{ lb-in.}^2$ $J_R = 429 \text{ in.}^4$

With these effective stiffnesses and the transportation modes defined in Table 10, the degrees of degradation for the T-1 are shown in Table 12. As noted, the analytically evaluated degrees of degradation varied from *undefinable* for the front section to 100 percent for the rear section.*

V.3.5. Condition I and II (T-1)

Based on the predictive analysis, the total degradation to this unit is assumed to be the sum of the degradation percentages for the various moves and setups and takedowns. As previously stated, the degradation depends in part, upon the transportation modes experienced by the unit during the specified 15-year period. Based on the "best" and "worst" conditions from Tables 6 and 10, an assumed 15-year transportation mode array is given in Table 13. For these transportation modes, the probabilistic degradation to the T-1 was analytically evaluated and is shown in Table 14. In terms of the entire unit (front and rear sections), the lowest anticipated degradation to the unit is approximately 36 percent. For seven (7) of the defined twelve (12) transportation modes the unit is anticipated to be totally degraded (i.e., zero RUL) after or during transit to its proposed third site (second secondary move).

Furthermore, as noted in Table 14, the rate of degradation is anticipated to be substantially greater for the rear section of the single-wide in comparison to the front section. The maximum level of degradation to the front section of the unit is limited to 20 percent.

V.3.6. Condition II (T-2B)

For this condition, the T-2 unit (both wet and dry sides) experience twenty (20) years of use including two (2) occupancy periods and one (1) secondary transportation move ranging from 300 to 600 miles[†]. Accordingly,

^{*} Note: The analysis does not consider the degradation incurred by the unit during its final setup at its third and last site. This would be included if the unit was taken down to be moved to a *fourth* site. † Includes added distributed weight of 8000 lb (occupant's personal effects).

ANALYTICALLY EVALUATED T-1 DEGRADATION DUE TO INITIAL SETUP AND TAKEDOWN AND INITIAL SECONDARY MOVE (CONDITION II)

.

1					· · · · ·	i		
	(percent)	Front Section	0.2	0.4	3.3	6.6	0.9	1.9
	Degradation	Rear Section	5.4	10.8	21.1	42.2	13.2	26.4
	eleration (G's)	Front Location	.83	.83	1.03	1.03	.94	.94
	RMS Vertical Acc	Rear Location	.29	.29	.33	.33	.32	.32
		CONDITION	2A	2B	2C	2D	2E	2F

ANALYTICALLY EVALUATED T-1 DECRADATION DUE TO SECONDARY SETUP AND TAKEDOWN AND SECOND SECONDARY MOVE (CONDITION 11)

-		m	1	T			
(percent)	Front Section	negligible*	negligible*	1.9	3.6	0.5	6.0
Degradation	Rear Section	30.0	60.0	80.0	100.0	55.3	100.0
eleration (G's)	Front Location	.78	.78	.97	.97	.88	.88
RMS Vertical Acc	Rear Location	.37	.37	.42	.42	.41	.41
	CONDITION	2A	28	2C	2D	2E	2F

*Probabilities of exceeding "base" RMS values where extremely small

TYPICAL SUMMATIONS IN TRANSPORTATION MODES FOR T-1 UNIT

00 Paved (Haves) (Rough) 35 45 50 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x		TANCE (miles)	RC Well	DAD CONDITIC Paved	N Paved	TYPI(CAL SPEED	(udm)
x x	550 170	0	Paved	(Waves)	(Rough)	35	45	50
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x <td>х</td> <td></td> <td>х</td> <td></td> <td></td> <td></td> <td>0</td> <td>Х</td>	х		х				0	Х
X X X X X X X X		X	Х					Х
x x	Х		Х		х	х	``	х
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x		X	Х		Х	х		х
x x	Х		Х	Х			Х	х
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	^	X	Х	Х			х	х
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x	Х				х	х		
x x x x x x x x x x x x x x x		×	~		х	X	to I	
x x x x x x x x x x x x x	X			х	Х	Х	Х	
X X X		X		х	х	Х	Х	2.1
x	х			х.			X	
		x		х		-	X	

*Conditions are summations taken from Tables 6 and 10. Includes degradation due to setup-takedown procedures.

ESTIMATED FIFTEEN YEAR DEGRADATION (CONDITIONS I AND II) FOR TYPICAL SINGLE WIDE (T-1) MOBILE HOME

TRANSPORTATION MODE(S)*	DEGRADATION	(percent)
	Rear Section	Front Section
IA plus 2A	35.7	0.7
1B plus 2B	71.4	1.4
1A plus 2C	100.0	5.7
1B plus 2D	100.0	11.2
lA plus 2E	68.8	1.9
1B plus 2F	100.0	3.8
1C plus 2C	100.0	10.4
1D plus 2D	100.0	20.6
1C plus 2E	70.9	6.6
1D plus 2F	100.0	13.2
IE plus 2E	70.0	4.8
IF plus 2F	100.0	6.8

*Includes degradation due to setup and takedown procedures.

the transportation modes considered shown in Table 10 still are applicable. In addition, as per the T-1 unit, preliminary experimental data indicated the following reduction in structural properties for the T-2B to be the result of a single setup and takedown:

- Forty (40) percent reduction in effective flexural stiffness for the front section (EIF).
- Fifty (50) percent reduction in effective flexural stiffness for the rear section (EI_R) .
- Forty-five (45) percent reduction in effective torsional stiffness for the front section (J_F) .
- Sixty (60) percent reduction in the effective torsional stiffness (J_R) for the rear section of the unit.

Based on this data and the assumed initial structural properties for the T-2B (defined in Section V.3.2.), the reduced stiffnesses after setup and takedown of the unit were assumed as:

 $EI_R = 365 \times 10^8 \text{ lb-in.}^2$ $J_R = 1040 \text{ in.}^4$ $EI_F = 102 \times 10^8 \text{ lb-in.}^2$ $J_F = 330 \text{ in.}^4$

With these structural properties, the anticipated dynamic response and amount of degradation during the unit's secondary move, are given in Table 15. As shown in this table, prior to, or upon arrival at the secondary setup site, the T-2B's rear section is predicted to have *totally degraded*. Conversely, only minimal degradation to the front section is anticipated. The total anticipated degradation to the T-2B for both the initial move to the owner's setup site and secondary move (in terms of transportation modes given in Table 16), are shown in Table 17.

V.3.7. Condition II (T-2A)

As with the T-2B, preliminary experimental data indicated the following reductions in flexural and torsional stiffness due to a single setup and takedown.

- Fifty (50) percent reduction in EI_F ,
- Six (6) percent reduction in EI_R ,
- Fifty (50) percent reduction in J_F, and
- Twenty (20) percent reduction in J_R .

Utilizing the initial data defined in Section V.3.3. for the T-2A, the pertinent structural properties after takedown were defined as:

$$EI_R = 677 \times 10^8 \text{ lb-in.}^2$$

 $J_R = 2000 \text{ in.}^4$
 $EI_F = 85 \times 10^8 \text{ lb-in.}^2$
 $J_F = 300 \text{ in.}^4$
 $C_{DF} = C_{DR} = C_D = 0.2$

ANALYTICALLY EVALUATED T-2B DEGRADATION DUE TO INITIAL SETUP AND TAKEDOWN AND SECONDARY MOVE (CONDITION II)

on (G's) Degradation (percent)	Location Rear Section Front Section	.83 100.0 0.2	.83 100.0 0.4	.03 100.0 3.3	.03 100.0 6.6	.94 100.0	.94 100.0 1.9
RMS Vertical Accel	Rear Location	.51	.51	.59	.59	.57	.57
	CONDITION	2A	28	2C	2D	2E	2F

TYPICAL SUMMATIONS IN TRANSPORTATION MODES FOR T-2 MOBILE HOME

fqm)	50	×	х	Х	х	Х	×					1.24	
AL SPEED	45					Х	Х			Х	X	X	×
TYPIC	35			X	X			Х	х	x	х		1 л. т
N	Paved (Rough)			Х	X			Х	х	х	х		
AD CONDITIC	Paved (Waves)					Х	X			Х	Х	х	x
RC	Well Paved	х	х	Х	Х	x	X					-	10 10
E (miles)	1100		X		Х		Х		х	and the second	X		X
DISTANC	550	X		Х		X	1	Х		X		х	
	CONTLITON(S) *	lA plus 2A	1B plus 2B	IA plus 2C	lB plus 2D	1A plus 2E	IB plus 2F	lC pius 2C	1D plus 2D	1C plus 2E	1D plus 2F	1E plus 2E	IF plus 2F

*Conditions are summations taken from Tables 6 and 10.

51

ESTIMATED TWFNTY YEAR DEGRADATION (CONDITIONS I AND II) FOR TYPICAL (HALF) DOUBLE WIDE (T-2B) MOBILE HOME

TRANSPORTATION MODE(S)	DEGRADATION	(percent)
	Rear Section	Front Section
1A plus 2A	100.0	0.4
1B plus 2B	100.0	0.8
IA plus 2C	100.0	3.5
IB plus 2D	100-0	7.0
1A plus 2E	100.0	1.1
1B plus 2F	100.0	2.3
1C plus 2C	100.0	2.6
1D plus 2D	100.0	19.4
IC plus 2E	100.0	7.3
1D plus 2F	100.0	14.7
1E plus 2E	100.0	3.0
IF plus 2F	100.0	6.1
Substituting the above properties into the predictive equations (4), (5) and (6) for the transportation modes defined on Table 10, one obtains the anticipated degradation to this half of the double-wide because of *setup*, *take-down* and *secondary move*. These results are given in Table 18. As noted, the rear section of the half of the double-wide is anticipated to degrade at a substantially faster rate than the front portion of the unit. In addition, when compared with Table 15 it is seen that the rear section of this unit will probabilistically degrade at a slower rate than the corresponding section of the T-2B.

The total degradation for the T-2A for the transportation modes given in Table 16 (i.e., Conditions I and II) are given in Table 19. As illustrated by this table, the T-2A is predicted overall to degrade less than the T-2B during its move to the secondary setup site. Specifically, only *one* transportation mode would result in *total* degradation of the rear portion of the unit compared with *all* the modes for the secondary move of the T-2B. In addition, as with the T-2B, the front section of the T-2A is anticipated to degrade at a slower rate than the rear section of the unit.

V.4. Comparison of In-Transit Versus Setup-Takedown Degradation

In the previous section (V.3.), degradation due to initial and secondary moves as well as on-site procedures were analytically evaluated for both the single-wide (T-1) and double-wide (T-2) units. The same methodology can be applied to gain insight on the sensitivity to degradation that typical on-site procedures possess in comparison to degradation experienced by a unit while on the road. This will be handled by making the *a priori* assumption that the unit makes the initial and secondary moves without any setups and takedowns. Accordingly, the evaluated degradation would then be wholly due to in-transit phenomena. A comparison of this section findings with Section V.3 would then define the amount of degradation due solely to typical on-site procedures.

V.4.1. Single Wide (T-1)

For the single-wide (T-1), the degradation due to the initial moves is as shown in Table 7 (for the transportation modes defined in Table 6). For the secondary moves, Table 10 as well as Table 13 are still valid with the exception that *no* setup-takedown degradation is assumed after each move. In terms of structural properties for the unit, the initial values assumed will be held constant for *all* the moves. While it is realized that this is not the case, at present there does exist enough information available which would permit one to conjecture on a definable relationship between the structural parameters (EI_F , EI_R , J_F , J_R) and in-transit conditions (e.g., speed, road-type). Furthermore, in terms of reductions in torsional stiffness, a reduced parameter was input to the predictive equations to account for reductions in this variable due to a move. Furthermore, in terms of the flexural stiffness, it was noted that a change in this variable has only a small effect on the dynamic response of the unit. Accordingly, based on the above, the following expressions for the T-1 are assumed valid for *all* the moves:

 $EI_R = 1000 \times 10^8 \text{ lb-in.}^2$ $J_R = 3500 \text{ in.}^4$ $EI_F = 250 \times 10^8 \text{ lb-in.}^2$ $C_{DF} = C_{DR} = C_D = 0.2$

Substituting the above expressions into the predictive equations (4), (5) and (6) for the conditions given in Table 10, one obtains the degradation results shown in Table 20 for each secondary move. For the total transportation mode array (Table 13), the anticipated degradation is given in Table 21.

Comparing Table 21 with Table 14, it is noted that the setup-takedown procedure attributed to well over 90 percent of the degradation in the rear section of the T-1 for most of the transportation modes.* Contrary to this phenomenon, the front section was evaluated to degrade *more* when no setups and takedowns were considered. The values in this instance, however, cannot be wholly relied upon and are attributed to the predictive equation for front unit response (equation 5) being directly proportional to flexural stiffness (EI_F) .

^{*}Divide typical values from Table 21 by the corresponding values from Table 14 to estimate degradation attributed to in-transit move only.

TABLE 18

ANALYTICALLY EVALUATED T-2A DEGRADATION DUE TO INITIAL SETUP AND TAKEDOWN AND SECONDARY MOVE (CONDITION II)

(percent)	Front Section	1.2	2.4	12.8	25.6	6.4	2.6
Degradation	Rear Section	9, 4	18.8	36.3	72.6	24.1	48.1
eleration (G's)	Front Location	67	- 97	1.20	1.20	1.10	1.10
RMS Vertical Acc	Rear Location	.31	.31	.36	36	.35	.35
	CONDITION	2A	2B	2C	2D	2E	2F

54

TABLE 19

ESTIMATED TWENTY YEAR DEGRADATION (CONDITIONS I AND II) FOR TYPICAL (HALF) DOUBLE WIDE (T-2A) MOBILE HOME

TABLE 20

ANALYTICALLY EVALUATED T-1 DEGRADATION DUE TO EACH SECONDARY MOVE*

(percent)	Front Section	0.6	1.2	6.2	12.5	2.9	4.8
Degradation	Rear Section	0.4	0.7	2.9	5.8	1.8	3.6
celeration (G's)	Front Location	.89	.89	1.10	1.10	1.00	1.00
RMS Vertical Acc	Rear Location	.22	.22	.26	.26	.25	.25
	CONDITION	2A	2B	2C	2D	2E	2F

*Excluding setup-takedown degradation

TABLE 21

ESTIMATED DEGRADATION FOR TYPICAL SINGLE WIDE (T-1) MOBILE HOME EXCLUDING SETUP-TAKEDOWN EFFECTS

N (percent)	Front Section	1.7	3.4	12.9	26.0	6.3	10.6	17.6	35.4	11.0	20.0	7.8	13.6
DEGRADATIO	Rear Section	1.1	2.0	6.1	12.2	3.9	7.8	8.2	16.4	6.0	12.0	5.1	10.2
TRANSPORTATION MODE(S)		la plus 2A	13 plus 2B	lA plus 2C	1B plus 2D	lA plus 2E	IB plus 2F	1C plus 2C	1D plus 2D	IC plus 2E	ID plus 2F	lE plus 2E	IF plus 2F

57

Due to the above limiting assumptions, it is anticipated that the degradation (percentages) shown in Table 21 are probabilistically *low* for the rear section of the T-1 and *high* for the front section. The table is of value, however, in that it exemplifies the following:

- Setup and takedown procedures for Conditions I and II for the T-1 may cause a larger degree of degradation to the unit's rear section in comparison to the corresponding degradation resulting from move between sites.
- A reduced flexural stiffness for the front section of the unit may result in significant "savings" in terms of a smaller degradation rate.

V.4.2. Double-Wide (T-2)

As per the case with the single-wide, in an effort to define degradation due to setups and takedowns for this unit, the same *a priori* assumptions concerning structural stiffnesses are made. Accordingly, for the initial moves, degradation evaluations defined in Tables 8 and 9 are still valid, as well as the transportation arrays illustrated in Tables 10 and 16. With the above conditions imposed, precluding degradation resulting from setups and takedowns, the degree(s) of degradation for the T-2A and T-2B were evaluated as shown in Tables 22 and 23 (for secondary move only). A comparison of Tables 15, 18, 22 and 23 illustrates a substantial savings in "useful life" when degradation due to setup-takedown procedures are excluded. As with the T-1, however, the values in Tables 22 and 23 are anticipated to be on the low side. With this in mind, the following pertinent findings can be made from these tables:

- The majority of the degradation to the rear section of the T-2B may be due to setup-takedown techniques.
- The degradation effects of setup and takedown for the T-2A is not as severe as for the T-2B.
- For both the T-2A and T-2B, typical setup and takedown procedures degrade the rear sections of the unit to a greater extent than what is incurred by the front sections.

TABLE 22

ANALYTICALLY EVALUATED T-2B DEGRADATION DUE TO SECONDARY MOVE EXCLUDING SETUP-TAKEDOWN EFFECTS

	RMS Vertical Acc	eleration (G's)	Degradation	(percent)
CONDITION	Rear Location	Front Location	Rear Section	Front Section
2A	.28	.91	4.8	.2
2B	.28	16.	8.2	.5
20	.32	1.13	I6.9	7.7
2D	.32	1.13	33.8	15.4
2E	.31	1.03	10.6	2.5
2F	.31	1.03	21.0	5.0

59

TABLE 23

ANALYTICALLY EVALUATED T-2A DEGRADATION DUE TO SECONDARY MOVE EXCLUDING SETUP-TAKEDOWN EFFECTS

	RMS Vertical Acc	eleration (G's)	Degradation	(percent)
CONDITION	Rear Location	Front Location	Rear Section	Front Section
2Å	- 29	.91	5.5	.2
2B	. 29	16.	11.0	.5
20	.33	1.13	21.2	7.7
2D	.33	1.13	42.5	15.4
2E	.32	1.03	13.2	2.5
2F	.32	1.03	26.4	5.0

60

VI. DYNAMIC ANALYSIS CONCLUSIONS

Based on the dynamic modeling of the single-wide (T-1) and the double-wide (T-2A and B) the following *tentative* conclusions concerning degradation to mobile homes during transit have been drawn:

- The principal parameter affecting high inertial repetitive loads is the effective torsional stiffness $(J_F \text{ and } J_R)$ of the mobile home.
- The effective flexural stiffness for the rear section of a unit (EI_R) is inversely proportional to the inertial loadings induced in this section.
- The effective flexural stiffness for the front section (EI_F) of a mobile home is directly proportional to the induced inertial loadings.
- Changes in torsional stiffness $(J_R \text{ and } J_F)$ affect degradation of the rear section of a unit to a larger degree than the front section (from axle to hitch).
- Accumulative degradation of the rear section of a mobile home is more sensitive to transport speed than is the front section.
- For Conditions I and II (see Tables 14, 17 and 19) the T-1 and T-2 units' rear sections are anticipated to degrade at a substantially faster rate than their front sections.
- The rear section of the dry side (T-2B) of the double-wide is anticipated to degrade at a greater rate during transit than the rear section of the wet side (T-2A) (see Tables 17 and 19).
- For the required initial and secondary moves (Conditions I and II), the T-1 was determined to have a longer useful life than the T-2.
- Degradation due to typical setup and takedown procedures may cause more degradation to a mobile home than in-transit phenomena.
- The degradation effect of setup-takedown procedures is greatest in the rear section of a mobile home.

VII. PREDICTIVE EQUATION LIMITATIONS

The predictive equations as well as conclusions are based on a regression analysis of the dynamic model simulations. Due to this dependency wholly on an analytical model, their utilization as an effective tool to measure mobile home degradation should be restrained until the experimental phase (Task III) of the present contract is complete. This cautionary measure is warranted, due to the complexity of a mobile home structure. Accordingly, care must be used at present in utilizing the predictive *RUL* formulae.

It is also noted that, in the above analysis, a "zero" life mobile home was based on certain percent reductions in the unit's original structural integrity. Whether or not such figures are *apropos* cannot be confirmed until the data collected from actual testing (Task III) are evaluated. Furthermore, it may be that significant structural stiffness reductions in a unit which is initially very stiff can be realized and still be "useful" in terms of a family dwelling. Conversely, a unit which is initially rather weak structurally may not be able to sustain near this level of degradation and be either safe to transport or suitable to live in.

It is realized, however, that a substantial reduction in the mobile home's structural integrity will have a pronounced effect on its level of risk in terms of safety during transporting of the unit, resalability, repairability potential, etc. Accordingly in the above analyses, the estimated degradation was based on conjectured structural properties of a zero life unit. Based on the experimental phase of this study, these structural property values may warrant change as well as the overall methodology used to define transportation-related degradation for typical mobile homes.

REFERENCES

- 1. CDC Corporation, "MRI/STARDYNE, Static and Dynamic Structural Analysis of Systems for Scope 3.4 Operating System". User Information Manual, 1976.
- Bearint, D.E. and Cress, H.A., "The Development of Performance Based Tests to Determine the Minimum Structural Integrity of Mobile Homes", Final Report, Battelle Memorial Institute, Columbus, Ohio, July 25, 1966.
- 3. Pevzner, A.A. Tihonov, "Issledovanye Statistitcheskih Svoystv Mikroprofilya Osnovnyh Tipov Automobilnyh Dorog" (Statistical Properties of Highway Microprofile) Avtomobilnya Promyshlennost, Vol. 30, No. 1, 1964.
- 4. Parkholovskiy, I.G., "Spekralnya Plotnost Rasperdelenya Nerovnosti Mikroprofilya Dorog. . ." (Spectral Density of Road Roughness) *Promiphlenost*, No. 10, 1961.
- 5. Van Deusen, B.D., "A Study of the Vehicle Ride Dynamic Aspects of Ground Mobility", Chrysler Corporation Rep., No. 3114, 1965.
- 6. Thompson, W.S., "Measurement of Power Spectra of Runway Roughness. ..", Langley Aeronautical Lab., NACA TN 4303, Washington, D.C., 1958.
- 7. Jaeger, R.M. and Schuring, D.J., "Spectrum Analysis of Mare Cognitum", Journal of Geophysics Res., Vol. 71, No. 8, 1966.
- 8. Bekker, M.G., "Introduction to Terrain-Vehicle Systems", The University of Michigan Press, 1969.
- 9. United Computer Systems, APEX/FORTRAN Reference Manual, 1976.

APPENDIX A APPROXIMATING "APPARENT" FREQUENCY OF MOBILE HOME REAR SECTION

As stated in the Task I report, from the STARDYNE computer results, it was noted that the response frequency of the unit is dependent on the structure, speed and road surface during transit. In an effort to better define the apparent frequency, the UCS MULFIT computer program has been utilized to calculate a regression equation based on the early STARDYNE runs.

In this evaluation of the response frequency (in vertical direction), it was assumed that the frequency can be approximated by:

$$f = \frac{1}{2\pi} \frac{\sigma_i}{\sigma_r} \tag{A-1}$$

where σ_{z} and σ_{z} are the RMS vertical velocity and displacement of the mobile home's rear section (node 1 in STAR-DYNE runs). Assuming (A-1), σ_{z} and σ_{z} regression equations were calculated (by MULFIT) as:

$$\sigma_{z} = 168.5 \frac{\nu^{0.504}}{EI^{0.211} J^{0.005} C_{D}^{0.115}}$$
(A-2)
$$\sigma_{z} = 2.28 \frac{\nu^{0.606} J^{0.023}}{EI^{0.247} C_{D}^{0.542}}$$
(A-3)

where

V = home velocity (mph),

El = effective flexural stiffness (lb-in.²),

J = effective torsional stiffness (in.⁴),

 C_D = damping constant.

and where σ_{z} and σ_{z} are in in./sec and inches respectively.

Substituting (A-2) and (A-3) into equation (A-1), the apparent response frequency (in Hz) for the rear section of the unit (on paved roadway) is:

$$f = 11.74 \frac{EI^{0.036} C_D^{0.427}}{V^{0.102} I^{0.028}}$$
(A-4)

This regression equation was then modified to consider the various road surface effects on the frequency, i.e.,

$$f = 11.74R \frac{EI^{0.036}C_D^{0.427}}{V^{0.102}V^{0.028}}$$
(A-5)

where R is a constant dependent upon the road traveled by the mobile home (Table A-1). Equation (A-5) should be used to estimate f in equations (6) and (6') of the Task I report.

TABLE A-1

EFFECT OF ROAD SURFACE ON FREQUENCY OF MOBILE HOME

Road Type	<u>R</u>
Paved	1.00
Unpaved (gravel)	1.00
Unpaved (waves)	. 86
Unpaved (rough)	.05

APPENDIX B THEORETICAL-PREDICTIVE ANALYSIS EXAMPLES OF POTENTIAL APPLICATION OF DESIGN LOADS

As a result of the Dynamic Analysis and correlation of data with the necessary factors to develop the Remaining Useful Life Analysis, the following method of obtaining design loads for mobile home manufacturers is recommended. In the TASK I report, a set of predictive equations are presented to be used as a tool for estimating degradation due to the effects of transportation. These regression formulae can also be utilized to define dynamic load levels for both the rear and front sections of the unit. This latter aspect can be of use to the manufacturer during the construction of the individual homes. Specifically, if the probable dynamic load levels within a particular unit can be defined prior to the design of the unit, then the designer can determine if the present construction warrants modifications to enhance its structural integrity.

Based on the above premise, a set of graphs were constructed to estimate design load requirements for mobile homes. Figures B-1 through B-4 are given to define dynamic load levels for the rear section, while Figures B-5 through B-8 are for the front section (between axle and hitch). In either case, the resultant design loads are a function of the input structural stiffnesses (EI and J), damping property (C_D), and speed and road conditions. Accordingly, depending upon the structural integrity of the unit as well as the anticipated speed and road to be safely traversed, the dynamic response (in G's) can be estimated for which the unit can be designed to withstand.

It is noted that resultant loads obtained from Figures B4 and B-8 present a 99-percent confidence level. That is, 99 percent of the induced dynamic loads to the unit for a specific travel condition (speed, road) will probabilistically be equal to or less than these values. The graphs can hence be used by a manufacturer to define acceptable design requirements for structural components within a mobile home.

As noted, these enclosed graphs allow the builder, designer, etc., to set his own design loads by presenting a range of structural properties $(EI, J \text{ and } C_D)$. The values input can be based on actual field test data of existing units or be based on anticipated structural properties after a degree of degradation has occurred. This latter approach would be advantageous since, the dynamic response (and load levels) are anticipated to increase as the unit degrades. In the following, an example is given of how the enclosed figures may be used.

EXAMPLE:

A mobile home manufacturer is interested in structurally enhancing its units by strengthening components in the rear section of the unit where a high degree of degradation has been reported during moves. From available data on test procedures, the following structural properties for the rear section of this particular unit are:

$$EI_{R'} = 600 \times 10^{8} \text{ lb-in.}^{2}$$

 $J_{R'} = 3000 \text{ in.}^{4}$
 $C_{D'} = 0.2$

To minimize actual degradation and, since the dynamic loads for the rear section will increase as degradation occurs, the manufacturer *assumes* a reduction in the above structural properties, i.e.,

$$EI_R = 400 \times 10^8 \text{ lb-in.}^2$$

 $J_R = 2000 \text{ in.}^4$
 $C_D = 0.2$

For the above properties, he obtains from Figures B-1 through B-3 the following:

$$\lambda_{R1} = 0.6$$

 $\lambda_{R2} = 0.558$

$\lambda_{R3} \approx 63.4$

The product of these values $(\lambda_{R1} \times \lambda_{R2} \times \lambda_{R3})$ is then input into Figure B.4. The manufacturer is interested in defining loads (to be designed against) induced by the unit traveling along a gravel road at 35 mph. Accordingly, as shown in Figure B.4, a vertical line is drawn to intersect the appropriate curve from which a horizontal line is formed. For this case, the recommended design load is 1.92 G's. Hence, components within the rear section of the unit, designed to withstand *both vertical and lateral loads* of this magnitude, would significantly enhance the useful life of the homes by minimizing transportation-related degradation.

i

÷

B-4

B-5

FIGURE B-4. DEFINING ANTICIPATED DYNAMIC RESPONSE FOR REAR SECTION OF HOME

EFFECT OF DAMPING ON DYNAMIC RESPONSE PARAMETER FIGURE B-7.

B-9

FIGURE B-8. DEFINING ANTICIPATED DYNAMIC RESPONSE FOR FRONT SECTION OF HOME

APPENDIX C

EFFECT OF STRUCTURAL PROPERTIES ON IN-TRANSIT EXCITATIONS

The effect of torsional stiffness on probable G loadings induced in an in-transit mobile home is shown in Figures C-1 and C-2. As shown in these figures, a torsionally weak mobile home (i.e., J = 10 in.⁴) would have over a 90-percent probability of experiencing a one G or more loading compared to less than a 10-percent probability for the torsionally stiffer unit (i.e., $\overline{J} = 10^4$ in.⁴). These findings can also be shown in terms of probable loadings and number of occurrences during the transporting of the Unit (Figures C-3 and C-4). For example, a comparison of probable lateral G loadings in Figure C-4, show that for the same occurrence rate of 100 times per mile, the weakest unit experiences over 5 G's while the stiffest unit experiences less than 0.1 G.

The type of road traveled as well as in-transit speed also has a significant effect on transportation-related degradation to a mobile home. It is of interest to note that for the unpaved road, the acceleration levels were found to be substantially smaller for a torsionally very stiff unit when compared with a torsionally weak unit traveling an unpaved road at the same speed. This is shown in Figures C-5 and C-6, emphasizing the substantial influence a torsionally very rigid mobile home has on diminishing the rate of degradation. The combined effect of speed and road condition is illustrated in Figure C-7. Note that the probable acceleration responses (for all types of roads) for the stiffer unit ($J = 10^4$ in.⁴) are less than 2 G's while for the torsionally weak unit (J = 10 in.⁴), the probable acceleration levels go as high as 20+ G's.

PROBABILITY

FIGURE C-1

C-2

PROBABILITY

FIGURE C-2

VERTICAL ACCELERATION (G'S)

FIGURE C-3

FIGURE C-4

EFFECT OF ROAD CONDITION AND TORSIONAL STIFFNESS ON PROBABLE ACCELERATION LEVELS

NUMBER OF OCCURRENCES PER 100 MILES TRAVELED

FIGURE C-7

YTIJI8A8099

FINITE ELEMENT MODEL AND ANALYSIS

FINITE ELEMENT MODEL AND ANALYSIS

Prepared by

C. R. Ursell, II E. O. Wiles L. R. Calcote, Ph.D.

ABSTRACT

Finite element modeling and analysis of mobile homes are used to predict the stresses and loads imposed upon test units in dynamic and static loading conditions. A finite element model is a mathematical representation of a complex structure by a simpler collection of discrete members. For this effort, the computer program ANSYS develops the models and uses them to generate stress and displacement plots of mobile home members. Analysis of these data details the effects of the various loadings on the mobile homes.
TABLE OF CONTENTS

Secti	on			Page
LIST	OF ILLUSTRATIONS			iv
LIST	OF TABLES			vii
DEFIN	ITIONS			viii
I.	INTRODUCTION			1
II.	BACKGROUND DISCUSSION			2
III.	DEVELOPMENT			5
IV.	PROBLEM AREAS			15
v.	T-1 ANALYSIS METHODOLOGY			17
VI.	DISCUSSION OF T-1 RESULTS			27
VII.	T-2 ANALYSIS METHODOLOGY			47
VIII.	DISCUSSION OF T-2A RESULTS			61
IX.	DISCUSSION OF T-2B RESULTS		6 - 2 - ¹	70
х.	CONCLUSIONS AND RECOMMENDATIONS			80
APPEN	DIX A ANSYS COMPUTER PROGRAM DEVE	LOPMENT		A.1
APPEN	DIX B INTERPRETATION OF NODE FORC ELEMENT COMPUTER PROGRAM	E OUTPUT FRC	M ANSYS	B.1

.

LIST OF ILLUSTRATIONS

Figure		Page
1	- FINITE ELEMENT COMPUTER MODEL DEVELOPMENT AND ANALYSIS	4
2	FINITE ELEMENT MODEL OF T-5	6
3	COMPUTER GRAPHIC MODEL OF T-5	8
4	T-1 MOBILE HOME LAYOUT	18
5	FINITE ELEMENT MODEL OF T-1	19
6	COMPUTER GRAPHIC MODEL OF T-1	21
7	T-1 EOUIVALENT STATIC LOAD DIRECTIONAL SENSE	26
8	COMPARISON OF T-1 STRESS PLOTS - FLOOR	28
9	COMPARISON OF T-1 STRESS PLOTS - CEILING	30
10	COMPARISON OF T-1 STRESS PLOTS - LEFT SIDE	32
11	COMPARISON OF T-1 STRESS PLOTS - RIGHT SIDE	34
12	COMPARISON OF T-1 STRESS PLOTS - FRONT	36
13	COMPARISON OF T-1 STRESS PLOTS - REAR	38
14	COMPARISON OF T-1 DISPLACEMENT PLOTS - FLOOR AND CEILING	42
15	COMPARISON OF T-1 DISPLACEMENT PLOTS ~ LEFT AND RIGHT SIDEWALLS	43
16	COMPARISON OF T-1 DISPLACEMENT PLOTS - FRONT AND REAR SIDEWALLS	44
17	T-2A MOBILE HOME LAYOUT	48
18	FINITE ELEMENT MODEL OF T-2A	49
19	COMPUTER GRAPHIC MODEL OF T-2A	5ľ
20	T-2B MOBILE HOME LAYOUT	53
21	FINITE ELEMENT MODEL OF T-2B	54
22	COMPUTER GRAPHIC MODEL OF T-2B	56
23	T-2A and T-2B EQUIVALENT STATIC LOAD DIRECTIONAL SENSE	59
24	COMPARISON OF T-2A STRESS PLOTS - FLOOR	62

iv

LIST OF ILLUSTRATIONS (Cont'd)

Figur	<u>e</u>	Page
25	COMPARISON OF T-2A STRESS PLOTS - CEILING	63
26	COMPARISON OF T-2A STRESS PLOTS - LEFT SIDE	64
27	COMPARISON OF T-2A STRESS PLOTS - FRONT END	65
28	COMPARISON OF T-2A DISPLACEMENT PLOT - FLOOR AND CEILING	66
29	COMPARISON OF T-2A DISPLACEMENT PLOTS - LEFT SIDE AND FRONT END	67
30	COMPARISON OF T-2B STRESS PLOTS - FLOOR	71
31	COMPARISON OF T-2B STRESS PLOTS - CEILING	72
32	COMPARISON OF T-2B STRESS PLOTS - RIGHT SIDE	73
33	COMPARISON OF T-2B STRESS PLOTS - FRONT END	74
34	COMPARISON OF T-2B DISPLACEMENT PLOTS - FLOOR AND CEILING	77
35	COMPARISON OF T-2B DISPLACEMENT PLOTS - RIGHT SIDE AND FRONT END) 78
A.1	T-1 MOBILE HOME LAYOUT	A.4
A.2	TYPICAL FINITE ELEMENT COMPUTER MODEL (T-1)	A.5
A.3	ANSYS INPUT DATA, ANALYSIS OPTIONS	A.8
A.4	ANSYS INPUT DATA, ELEMENT TYPES AND REAL CONSTANTS	A.9
A.5	ANSYS INPUT DATA, ELEMENT DEFINITION	A.10
A.6	ANSYS INPUT DATA, NODE DEFINITIONS	A.11
A.7	ANSYS INPUT AND OUTPUT, GEOMETRY PLOTS	A.12
A.8	ANSYS INPUT DATA, MATERIAL PROPERTIES	A.13
A.9	ANSYS INPUT DATA, COUPLED DEGREES OF FREEDOM DEFINITIONS	A.14
A.10	ANSYS INPUT DATA, LOAD STEP OPTIONS AND SPECIFIED DISPLACE- MENTS	A.15
A.11	ANSYS INPUT DATA, SPECIFIED FORCES	A.16
A.12	ANSYS INPUT DATA, POST-PROCESSING ROUTINE	A.17
A.13	ANSYS OUTPUT DATA, DISPLACEMENT SOLUTION	A.18

v

LIST OF ILLUSTRATIONS (Cont'd)

Figure		Page
A.14	ANSYS OUTPUT DATA, ELEMENT STRESSES	A.19
A.15	ANSYS OUTPUT DATA, SURFACE STRESS PLOTS	A.20
B.1	ANSYS OUTPUT DATA, ELEMENT STRESSES	B.3
B.2	FREE BODY DIAGRAMS OF ELEMENTS 376 and 439	B.3
B.3	FREE BODY, SHEAR, AND MOMENT DIAGRAMS OF ELEMENT 376	B.6

LIST OF TABLES

<u>Table</u>	en la companya de la	Page
1	STIFFNESS CALCULATIONS	11
2	COMPARISON OF FIELD TEST RESULTS AND FINITE ELEMENT PREDICTIONS	13
3	DESCRIPTION OF LOAD CASES AND LOAD CONDITIONS	23
4	SUMMARY OF T-1 MAXIMUM DISPLACEMENTS	46
5	SUMMARY OF T-2A MAXIMUM DISPLACEMENTS	68
6	SUMMARY OF T-2B MAXIMUM DISPLACEMENTS	79
B.1	COMPUTER CALCULATED STRESSES FOR ELEMENTS 376 and 439	B.2
B. 2	NODAL FORCES AND MOMENTS	в.7

•

.

.

. 1

DEFINITIONS

The following pages contain definitions of words or terms used in this document.

ANSYS - A large-scale general purpose computer program developed by Swanson Analysis Systems, Incorporated, Elizabeth, Pennsylvania. Analysis capabilities of the program include: (1) static and dynamic, (2) plastic, creep and swelling, (3) small and large deflection, (4) steady state and transient heat transfer, and (5) steady state fluid flow types of problems. The matrix displacement method of analysis based on finite element idealization of the structure is employed in the program. The library of finite element types in the program numbers more than 40 for static and dynamic analyses and 10 for heat transfer analyses. This variety of elements gives the program user the capability of analyzing frame structures, piping systems, two-dimensional plane and axisymmetric solids, flat plates, three-dimensional solids, axisymmetric and threedimensional shells, and nonlinear problems. In this study, the program is used for static analysis of the mobile home structure, idealized as an assemblage of bar, beam, and membrane elements.

ELEMENT - A component part of a structure for which the relationships between forces and displacements at a finite number of points (or nodes) on the element are known. In this study, elements used are bars, prismatic beams, tapered beams, and membranes.

NODAL POINT - A point in space where two or more elements are connected in the idealization of the structure.

viii

DEGREE OF FREEDOM - The direction of force or displacement at a node. For example, the three-dimensional elastic beam element used in the study has two nodes, one at each end. The element has six degrees of freedom at each node: translations in the nodal x, y, and z directions and rotations about the nodal x, y, and z axes.

BOUNDARY CONDITIONS - Specified external loads and/or displacements applied at the nodes of the idealized structure.

RESTRAINT - A displacement boundary condition specified as zero in ANSYS. For example, if the node at the hitch is assumed stationary, displacements in the x, y, and z directions are all specified as zero.

MODULUS OF ELASTICITY - The slope of the stress-strain diagram of a material in the elastic range.

MASS DENSITY - The mass of a body per unit volume. When multiplied by the acceleration of gravity, the mass density becomes the specific weight in pounds per unit volume.

GRAVITY LOAD - Load applied to the structure by the weight of a component part.

EQUIVALENT STATIC LOAD - The load obtained by multiplying the weight of a structural component by its root-mean-square acceleration, as determined from the dynamic analysis (32 percent probability of not being exceeded or multiply by a factor of 3 to obtain 99.9 percent probability).

MAXIMUM/MINIMUM IN-PLANE STRESSES - The maximum and minimum principal stresses acting in the plane of a membrane element. (Note that a membrane element is not capable of resisting a force component applied perpendicular to the plane of the element.)

STRESS CONTOUR PLOT - A plot of a membrane element showing contours (or lines) of constant maximum or minimum stress levels.

ix

EXPONENTIAL - Standard form of presentation of a number in E format, showing the number of places the indicated decimal must be moved to the right (plus exponent) or left (negative exponent). For example , 1.4 E + 03 = 1400., and 1.4 E - 02 = 0.014.

CARD SET - A group of input cards used in ANSYS for common input data (e.g., card set D defines the element types and card set E defines the nodes to which the elements are connected). The total conglomorate of all the various card sets forms the specified input data required to conduct a run of the program.

ISOTROPIC - Characteristic of a material that has identical properties in all directions.

х

I. INTRODUCTION

The objective of Task I, Volume III was to develop and apply a finite analysis theory or methodology that would accurately measure the stresses and/or loads in a mobile home resulting from various forces imposed by the transportation mode or the setup/takedown mode. This analysis would be applicable to both the single- and double-wide models. Accordingly, in Task I, a comprehensive dynamic and static analysis was performed by SwRI to identify and assess the probable dynamic and static loads occurring in mobile homes during transit and typical setup and takedowns.

For the static finite element model, realistic inputs were necessary to develop and validate the formulation. Actual dimensions of the mobile home units were used as well as the predicted accelerations and loads developed in the dynamic analysis. These were used as input into the finite element model as equivalent static loads, noting that the analysis was limited to static loads. The model was used in conjunction with the "predictive analysis" to analyze the structure at any two given points in the degradation cycle.* The accelerations and loads, which vary with degradation,** were inserted into the computer program to measure the loads and stresses at the two points in the degradation cycle.

The data employed herein will be used for correlation with actual test analysis in Task III.

* Refer to Task III, Volume III. ** Condition I parameters were used: Avg. 500 miles.

II. BACKGROUND DISCUSSION

The overall objectives of the finite element method of analysis were to:

- Identify critical structural areas in a mobile home (i.e., stress concentrations around door or window openings and at load application points);
- Assess the mobile home structure and the effects that static and dynamic loads have on it;
- . Consider the effects of setup and takedown procedures;
- . Evaluate resulting data for use in economic analysis;
- Support (if possible) the Development of an Analytical Methodology required by Task V;
- Evaluate resulting data for use in recommendations for Subpart J.

Through the application of the finite element analysis, the influence of transportation effects was established by comparing stresstrajectory plots before and after application of (dynamically induced) equivalent static loads to the structure. Restart capabilities were available in the computer program to apply new loads without regenerating the master stiffness matrix. When the structural model was changed, such as by relocating wall panels, doors or windows, the associated input data were appropriately modified and complete computer runs conducted. The capability of the computer program to be modified easily enabled the modeling of the mobile home units at various stages in their life. Comparison of results of different conditions of the same unit can be used as a predictive tool in the analysis of the consumed life and remaining useful life of the mobile home.

The proposed computer programs for use in the static investigation included ANSYS, STARDYNE, and STRUDL. An evaluation of these programs revealed that each have advantages and disadvantages for studying the mobile home degradation problem. As an example, the member release features in STARDYNE and STRUDL are much superior to the necessity for degree of freedom coupling in ANSYS; however, neither STARDYNE nor STRUDL have the important stress plot capability for the membrane elements. Furthermore, STARDYNE does not have the tapered beam element warranted for members such as outriggers and roof trusses. Consequently, despite the programming effort required to effect member releases, ANSYS was selected as the most appropriate program for the study.

ANSYS is a large-scale general purpose computer program designed for the solution of several classes of engineering analysis problems. For the analysis of mobile homes in this program, the static analysis capabilities of the ANSYS computer program were utilized.

The method of analysis in ANSYS is based on finite element idealization. Therefore, each structure analyzed in this program was broken down into an approximate assembly of discrete structural elements connected at a finite number of points (nodal points). After a unit was properly modeled, loading conditions were defined to represent the transportation or setup/takedown mode. From this input, a solution was generated that obtained the nodal point displacements at each node in the structure which in turn, enabled the calculation of the forces and stresses within each structural element.

Figure 1 is a brief summary of this computer modeling procedure with ANSYS. A detailed description of the ANSYS computer program and its application to the mobile home is contained in the appendix.

FIGURE 1.

FINITE ELEMENT COMPUTER MODEL DEVELOPMENT AND ANALYSIS

III. DEVELOPMENT

The first step in the development of the finite element method analysis was to model the T-5 mobile home (the first unit transported to Southwest Research). This unit was 12-ft wide and 65-ft long with two axles. The model consisted of the series of idealized finite or discrete elements shown in Figures 2 and 3. Measurements of the structure were made and properties of the various materials were estimated for the required input to the program. (A description of the input data necessary for a typical computer run can be found in the appendix.)

At the start of the developmental effort, only membrane elements were used for the floor, ceiling, and walls. This approach was taken to minimize computer time. The model was then loaded with the distributed weights of the various elements and the concentrated weights of typical appliances and furniture.

At this stage the thicknesses to be used for the wall, floor and ceiling elements had to be determined. Two methodologies were utilized for this determination. The first assumed a material thickness based upon the estimated weight of the panels and their respective areas. The results of this analysis indicated unrealistically low stresses in the home but areas of high stress concentration in the vicinity of the axles and at the edges of some doors and windows. At this point, it was decided to run the same model with what was considered the smallest wall thickness in the home (one layer of 5/32-in. lauan plywood). The difference in the original and the final thickness varied from about 0.45 to

FIGURE 2. FINITE ELEMENT MODEL OF T-5

NOTE: Numbers shown indicate nodal point locations

7

420	421	422	401
52	403	404	390
87	333	339	2
21	252	373	50 3
n	52	23	8
5 35	36 3	37 3	24 3
33	22 3	13	65
32	3	6	30
306	50	8	29
162	292	52	274
16	142	82.2	265
2 2	263	264	250
2	8	2/	2
247	4 24	5	8
233	23	53	220
213	214	215	202
-	182	83	01
51 19	164	165	ISI
0	47	48	SS
Ā		~	~
130	13	1	31
10	1011		8
2	1		1 1
5		22	8
ហ្គ	1	8 5	4
ц С		33 6	33
(n)		11	×
a	Ļ	4 v	
	- '		N

RIGHT SIDE

FIGURE 2 (Cont'd)

FIGURE 3. COMPUTER GRAPHIC MODEL OF T-5

1 VALL

.

•

.

•

•

•

٥ Ter

Mart C

•

•

.

•

13.24 ł Gassie Computer

FIGURE 3 (Cont'd)

The war at a lease of

•

•

.

•

MALL A

. .

.

•

.

.

.

.

0.15-in. wood thickness for the first and second approach, respectively. Comparison of the two results showed that the stresses in the thinner wall were only slightly greater. The interesting feature, however, was that the stress concentration locations did not significantly change between the two analyses. These results demonstrated that the high stress concentration areas were not significantly sensitive to the wall thickness.

On inspecting the deflections predicted with this finite element model, it was noted that the membrane elements alone were not adequate and stiffening was required to prevent unrealistic deflections of the structure about the chassis beams. To alleviate this problem, stud stiffeners for the walls, joists for the floor, and the roof trusses for the ceiling were added to the model. Computer simulations were then made to correlate the model predictions with the field measurements shown in Table 1. The 400-1b load was selected and the following runs were made:

- . The 400-1b rear loading was added to the dead loads of the fully stiffened structure. Subtracting the dead load deflection from the combined load deflection yielded 0.277 - 0.206 = 0.071 inch for the 400-1b load. With a field measurement of 0.412 inch, the model was too stiff.
- Since the model prediction should be linear, it was decided to remove all dead loads and apply only the 400-lb load. This would eliminate the double runs of combined load and then dead load only. For this run, the wall studs were reduced from two 2 x 3's at each panel interface to only one 2 x 3, and the rotational inertias were reduced to zero. The results, however, yielded a deflection of 0.034 inch which was too small.
- Due to the actual construction, it was considered that the wall stud connections at the floor and ceiling could not transmit moments. In order to release these moments and develop pinned connections, it was necessary with the ANSYS program to double number all of the common nodes and couple the translational degrees of freedom. With this condition of "pinned" stud points, the computer yielded a deflection of

TABLE 1

$\frac{\text{STIFFNESS CALCULATIONS}}{(T-5 \text{ USED 12 ft x 65 ft})}$

From Battelle Memorial Institute Final Report:* $(\overline{EI})_{f} = 36 \ell_{f}^{3} \left(\frac{P}{y}\right)_{f} \& (\overline{EI})_{r} = 575 \ell_{r}^{3} \left(\frac{P}{y}\right)_{r} \left[1 + \frac{\ell_{f}}{\ell_{r}}\right]$

For Forward Loading:

l _f (ft)	P (lb)	y (in)	$\left(\frac{P}{y}\right)_{f}$ (lb/in)	$(\overline{\mathrm{EI}})_{\mathrm{f}}$ (lb-in ²)
37.33	100	0.043	2326	4.356 x 10^9
37.33	200	0.062	3226	6.041 x 10^9
37.33	300	0.090	3333	6.242×10^9
37.33	400	0.115	3478	6.513 x 10 ⁹
37.33	500	0.163	3067	5.744 x 10^9
			Contraction 1.5	9

 $Avg = 5.779 \times 10^{9} lb - in^{2}$

For Rear Loading:

ℓ_r (ft)	P (lb)	y (in)	$\frac{\left(\frac{P}{y}\right)_{r}}{\left(\frac{lb}{in}\right)}$	$(\overline{EI})_{r}$ (lb-in ²)
20.67	100	0.114	877	1.250×10^{10}
20.67	200	0,187	1070	1.525×10^{10}
20.67	300	0.331	906	1.291×10^{10}
20.67	400	0.412	971	1.384×10^{10}
20.67	500	0.504	992	1.413×10^{10}
20.67	730	0.638	1144	1.630×10^{10}
			Avg =	$1.416 \times 10^{10} \text{ lb} - \text{in}^2$

* D. E. Bearint and H. A. Cress, "The Development of Performance - Based Tests to Determine the Minimum Structural Integrity of Mobile Homes," Batelle Memorial Institute, July 25, 1966, p. 29. 0.034 inch. Additional runs, reducing the wall panel thickness from 5/34-inch to 1/32-inch, and another removing the the ceiling and interior walls to check the effect of an open structure (with 1/32-inch wall panel thickness), predicted deflections of 0.093 inch and 0.118 inch, respectively. Each of these deflections indicated the unit modeled was still too stiff.

It was calculated that, with a 400-lb rear load, the chassis beams by themselves would deflect 0.9 inch. Thus, it was conjectured that the wall panels were carrying a disproportionate share of the load and effecting a deep beam type of response. Consequently, it was decided to reduce the wall panel modulus of elasticity to simulate the "looseness" that was apparent in many of the joint connections. Hand calculations were made to determine the approximate modulus of elasticity needed to effect the EI value determined from field measurements. The wall panels were returned to the 5/32-inch thickness, and the modulus of elasticity was reduced from 1.45 x 10⁶ psi to 50,000 psi. Interior walls were not put back in the model. The deflection was 0.313 inch, fairly close to the 0.412 measured value.

- The forward loading of 400-1b was checked with the reduced modulus. A deflection of 0.051 inch was predicted as opposed to a measured value of 0.115 inch.
- The program was again modified to uncouple the wall panels, as well as the wall studs, at the wall/ceiling and wall/floor connect points. The deflection for the 400-lb forward loading was 0.051 inch which represented no change from the previous run.

To determine the degree of accuracy obtained with the final model,

linear extrapolations were calculated from the 400-1b load run. The results are shown in Table 2, where it can be seen that the comparisons of the simulation results and in-field measured results are fairly consistent. Specifically, the model predicted averages of 39 percent of the measured deflections for forward loading and 78 percent for rear loading. These results were considered to be about as close as could reasonably be expected, and further reductions in the modulus of elasticity for tuning purposes were considered unwarranted.

TABLE 2

COMPARISON OF FIELD TEST RESULTS AND FINITE ELEMENT PREDICTIONS

Forward Loading:

1.11.2	Defle	ctions (in.)	Error
Load (lb)	Test	F. E.*	F.E./Test
100	0.043	0.013	0.30
200	0.062	0.026	0.42
300	0.090	0.038	0.42
400	0.115	0.051 (run)	0.44
500	0.163	0.064	0.39
		s arts light to an	Av. 0.39

Rear Loading:

	Deflec	tions (in.)	Error
Load (lb)	Test	F. E.	F.E./Test
100	0.114	0.078	0.68
200	0.187	0.157	0.84
300	0.331	0.235	0.71
400	0.412	0.313 (run)	0.76
500	0.504	0.391	0.78
730	0.638	0.571	0.89
		A	.v. 0.78

* F. E. = Finite Element

The attempt to minimize the complexity of the model by using only membrane panel elements was not successful; stiffeners had to be added to obtain reasonable results. It was decided that all future models should be prepared on 32-in. modules (every other wall stud) and that the structure should be idealized to fit this pattern in order to reduce the size as much as possible and eliminate the necessity for the odd-shaped panels as shown in Figure 2. This approach requires that certain members - windows, doors, etc. - be moved slightly to fit the pattern. The size of the model, however, can be reduced significantly without affecting the results. Furthermore, the model should be developed in the same way the unit is constructed; i.e., model <u>separately</u> the floor, the walls, and the ceiling. The separate models can then be combined by coupling the translational degrees of freedom at the wall stud/floor joist and wall stud/ceiling truss connect points.

IV. PROBLEM AREAS

The finite element approach assumes a compatibility between contiguous elements that, in actuality, does not exist in a typical mobile home (particularly in the advanced stages of degradation). In order to simulate the condition that wall panel connections to the studs have loosened and movement has taken place before the full loads are transmitted into the panels, the elasticity modulus of the wall panels was reduced. The predicted stresses, however, are directly proportionate to the modulus used. Thus, for an upper boundary on the stress levels, the actual modulus of the panel material should be used.

The shear panels were modelled with a linear elastic and isotropic membrane element that yeilds stress results from loadings, regardless of load magnitudes. Local buckling of individual panels can be investigated by comparing the compressive loads of each element to a hand-calculated buckling strength (dependent upon the material properties and dimensions of the panel in question). Because of the large quantity of shear panel elements in the mobile home models, a buckling analysis was not feasible. Furthermore, to compare the cyclic stresses imposed on the material with fatigue data of the material itself is not realistic. As mentioned before, the problem exists in the connections of the shear panels and studs, and fatigue tests of typical panel configurations would be required to generate the needed data. The process of determining flexural and torsional stiffnesses of the unit by simple field measurements, and then relating these values to degradation appears to be a much simpler technique. The design loads for appliances, fixtures, etc., can also be determined by dynamic

analysis. The effect of (dynamic) equivalent static loads on stress concentration areas can then be determined from the finite element analysis. This methodology has been applied in the analysis of the T-1 and T-2 units.

V. T-1 ANALYSIS METHODOLOGY

The model for the T-l mobile home is detailed in Figures 4, 5 and 6. On comparing this model with the T-5 model in Figures 2 and 3, it is noted that a coarser, modular mesh idealization is used. However, the use of separate parts for the chassis, floor, walls, and ceiling is considered more representative of the actual structure. These separate modules are integrated into the program input by coupling the translational degrees of freedom at the common nodes. The following computer runs were then conducted:

> Data check run to generate geometry plots (see Figure 6) and check boundary conditions, elements, material property definitions, and other input data for completeness and inconsistencies.

 Load 1 - Gravity load run to generate the base-line stresses and deformations for the unit under gravity loads of the structure and its furnishings.

. Load 2 - Gravity loads of the structure and its furnishings plus equivalent static loads from the dynamic analysis (well-paved road, 45 mph, Test Run No. 1).

 Load 3 - Gravity loads of the structure and its furnishings plus equivalent static loads from the dynamic analysis (well-paved road, 45 mph, Test Run No. 5).

. Load 4 - Gravity loads of the structure and its furnishings plus a concentrated load of 4000 lb acting on the right longitudinal I-beam at the rear of the chassis (nodal point 2 on Figure 3). This loading case, unlike the preceding two cases, was developed to simulate site installation activities where the unit is jacked up at each corner and set on blocks. (For this loading condition, the unit was restrained at the hitch, the three axles, and at the front end at the longitudinal I-beams. This last restraint assumes that the front end was blocked prior to this step in the installation procedure.)

• Load 5 - Gravity loads of the structure and its furnishings plus equivalent static loads from the dynamic analysis. This load case represents probabilistic "worst case" conditions.

Load Cases I through 5 are summarized in Table 3. *See Table 3 for description of Conditions I and II.

Condition I*

Condition II*

a) Floor Plan

NOTE: Numbers shown indicate nodal point locations.

FIGURE 5. FINITE ELEMENT MODEL OF T-1

FIGURE 5 (Cont'd)

CEILING PLAN

M	2	×	
1			R.
2	R		•
	7	-	1
1		•	•
×			ĸ
	н		•
	×		H
		-	•
-/	•	8	
3	×		•
<u>- ``</u>	M		
н	R	H	
-	7	•	
	R		ĸ
×		×	A
Ħ	ж	×	R R
		M	9
н			
•A	ĸ	2	2
- W			R

PLAN CHASSIS FIGURE 6. COMPUTER GRAPHIC MODEL OF T-1

NOTE: This figure contains the geometry plots from an ANSYS computer run to document the correct location of all elements in the model defined in Figure 5.

LEFT

ŝ

100

.

. .

THOIR .

FRONT SHELF • FRONT • • .

14' × 64'

FIGURE 6 (Cont'd)

Monel Os COMPLITER GRAPHIC

ŝ TABLE

DESCRIPTION OF LOAD CASES AND LOAD CONDITIONS

AD CASES AND LOAD CONDITIONS	Gravity Load - Weight of Mobile Home Unit With Furnishings Included	Furnishings Added With Dynamic Loading Induced by Well-Paved Road at 45 mph (Test Run No. 1)	Furnishings Added With Dynamic Loading Induced by Well-Paved Road at 45 mph (Test Run No. 5)	Setup/Takedown (Jackup) Loading with Furnishings Included	Worst Case Condition - Furnishings Plus Dynamic Loading Induced by Paved, Secondary Road	
TION OF LO	LOAD CASE 1	LOAD CASE 2	LOAD CASE 3	LOAD CASE 4	LOAD CASE 5	
DESCRIPT		CONDITION I		CONDITION	II A	

The equivalent static loads used from the dynamic analysis for Load Cases 2, 3 and 5 were based upon three times the RMS*, or sigma (σ), values calculated in Task I, Volume I of this report. These values probabilistically assure a 99.9 percentile level that the dynamic loads induced via the road condition are equal to or less than the associated G levels.

From the dynamic analysis, the computer-evaluated RMS (G loads) were obtained throughout the mobile home unit. With these values, the forces were calculated for the components that most influence the dynamic loadings. Knowing the acceleration of these components, SwRI factored their weights to produce the equivalent static loads to be input into the finite element program - thus, symbolizing the dynamic condition. For example, if a vertical $G_{\rm RMS}$ value of 3.0 G's is obtained from the dynamic analysis for a position where a particular component of weight W is located, its contributing load in the finite element program would be 3 times the $G_{\rm RMS}$ value times W, or 9W. The equivalent static load of 30 times weight would correlate to 9 times W or 9W. When this is done for all components considered (with their respective $G_{\rm RMS}$ and weight values), the mobile home model is subjected to a static load equivalent to the forces induced by the dynamic response characteristics obtained from the dynamic analysis.

It is noted that in applying the equivalent static loads from the dynamic analysis to the unit, the assumed directional sense for all vertical loads was downward (-z direction) and all lateral loads were applied from left to right looking from the rear to the front of the unit (-y direction).

* Root mean square values of acceleration response.

In actuality, the loading directions would be random in nature. The assumed directions represent a possible service loading condition. (Figure 7)

Complete details of a typical computer run are contained in the appendix.

,

FIGURE 7. T-1 EQUIVALENT STATIC LOAD DIRECTIONAL SENSE

VI. DISCUSSION OF T-1 RESULTS

Output plots*for the ANSYS program were specified for stress trajectories and displacements of the membrane elements in the floor, walls, and ceiling. Output results for all elements of the structure are available in the computer output sheets (available upon request at Southwest Research). The before and after results of the analysis (i.e., results for dead load only and results for dead load plus equivalent static loads from the dynamic analysis) are shown in Figures 8 through 13.

Note that the two stress plots for each load case associated with each component (floor, ceiling, etc.) of the unit refer to the maximum and minimum in-plane principal stresses.

These plots can be useful in several ways:

- . For each load case, the plots locate areas where stress gradients are high (the lines of equal stress come closer together indicating stress concentrations).
- When comparing load cases, the plots locate areas of changing stress due to the different load applications.

The stress plots of the various load cases for the T-l mobile home show definite patterns of high stress concentrations at locations of maximum bending along the unit, around doors and windows, and particularly at the corners of these openings.

Comparison of the stress plots for Condition I, Load Cases 1, 2 and 3 reveals that the increases in stress levels were small. The conditions for analyses, although not severe (well-paved road, 45 mph), were based on equivalent static loads induced by a range of acceleration levels from 0.1 to 1.0 G's, vertically and laterally. The result of these loads is more recognizable only in cases such as Figure 8, where stress contours do vary in a more obvious pattern between the first load case and the next two load cases.

*See Appendix C for method of interpretation.

FIGURE 9. COMPARISON OF T-1 STRESS PLOTS - CEILING

Load 5 * (max.)

Load 5 (min.)

* For load description, see Figure 8 or Table 3.

FIGURE 11 (Cont'd'

FIGURE 12. COMPARISON OF T-1 STRESS PLOTS - FRONT

Load 5 (min.)

* For load description, see Figure 8 or Table 3.

FIGURE 12 (Cont'd)

*For load description, see Figure 8 or Table 3.

FIGURE 13. COMPARISON OF T-1 STRESS PLOTS - REAR

· ·

* For load description, see Figure 8 or Table 3. - Lynne o of Iaule J.

. .

FIGURE 13 (Cont'd)

Refining these results one step further, however, a comparison of the ANSYS output plot summary data between Load Cases 1 and 2 shows increases in maximum stress levels in the order of +10 percent tensile, +10 percent compressive in the floor; and +9 percent tensile, +7 percent compressive in the ceîling; +13 percent compressive on the front sides.

Little change is noted in the levels of maximum stress between Load Cases 2 and 3 because of their similar loading conditions. Yet, these results do support the type of changes in stresses expected in the behavior of the unit caused by the loading conditions defined for this study. These are static (or equivalent static) loads. One of the most degrading phenomena* is the repetitive 0.1 to 1.0 g cyclic loading at a 10-Hz frequency for the entire duration of the transportation cycle.

Comparison of the stress plots between Load Cases 1 and 4 (Condition I and II, respectively) shows results quite different from the previous comparison of Load Cases 1, 2 and 3.** It is evident from the stress plot information that the stresses have developed a substantially different pattern. Changes in maximum stress levels occur in the order of +14 percent tensile, -30 percent compressive in the floor; -28 percent tensile, -52 percent compressive in the ceiling; -63 percent tensile, -37 percent compressive in the right side; +13 percent tensile, +44 percent compressive in the left side; -10 percent tensile, +22 percent compressive in the left side; and -42 percent tensile, -6 percent compressive for the front side. Unlike the comparison between Load Cases 1 and 2 above, these results substantiate the expectation that certain sections

*See Task III, Volume I for supporting data. **See definitions for Load Cases in Table 3.

of the unit will experience a stress <u>relief</u> rather than an increase because of the nature of the jacking load imposed in this particular loading scheme.

Unlike the previous load cases, a comparison of results between the baseline and "worst-case" conditions, Load Cases 1 and 5, respectively, indicates severe changes in maximum stress levels. Results show increases in maximum stress of +117 percent tensile, +113 percent compressive in the floor; +96 percent tensile, +63 percent compressive in the ceiling; +110 percent tensile, +141 percent compressive in the right side; +178 percent tensile, +170 percent compressive in the left side; +154 percent tensile, +138 percent compressive in the left side; and +130 percent tensile, +132 percent compressive in the front side of the unit. EI and J stiffness factors used were from the mobile home in test and analysis.

Examining the stress plots for Load Case 5 in Figures 8 through 13 the critical areas, or areas of high stress levels and/or concentrations, remain along the perimeter and around the window and door openings of each section of the unit as in previous loading cases; but, the magnitude of the stress levels is much more critical. It should be recalled that the previous load cases using equivalent static loads from the dynamic analysis were based upon acceleration levels ranging from 0.1 to 1.0 G's, vertically.* Load Case 5 was based on infrequent acceleration levels from 5.0 to 9.4 G's.

The deformations of the structure for each load case are shown in Figures 14 through 16. Unlike the stress data, the deformation data were calculated from the reduced elasticity modulus for the wall panels, developed during the correlation of the T-5 mobile home computer model. Note that because of the scale factor involved, the results shown in

41

*+1-G static loads on new mobile homes.

Load 1*

Load 2

Load 1

Load 3

Load 3

Load 4

FLOOR

CEILING

*For load descriptions, see Figure 8 or Table 3. The deformations are not to scale. See Table 4 for actual deflections.

FIGURE 14.

COMPARISON OF T-1 DISPLACEMENT PLOTS -FLOOR AND CEILING

Load 3

(front)

Load 4

Ford

LEFT SIDEWALL

Load 5

RIGHT SIDEWALL

*For load descriptions, see Figure 8 or Table 3. The deformations are not to scale. See Table 4 for actual deflections.

.

FIGURE 15. COMPARISON OF T-1 DISPLACEMENT PLOTS -LEFT AND RIGHT SIDEWALLS

IDDD FEST

pane secola

TOTAL PROPERTY OF TAXABLE PROPERTY.

REAR SIDEWALL

*For load descriptions, see Figure 8 or Table 3. The deformations are not to scale. See Table 4 for actual deflections.

FRONT SIDEWALL

FIGURE 16. COMPARISON OF T-1 DISPLACEMENT PLOTS -FRONT AND REAR SIDEWALLS these figures are magnified considerably to readily identify the movement in the unit. It is necessary, therefore, to collaborate this information with the results compiled in Table 4 to define the magnitude of these movements.

In studying the results of each load case individually, it was revealed that several displacement characteristics appear common to each unit. The lateral displacement of the floor of the unit is considerably less than the rest of the unit. The vertical displacement of the front sidewall is less than the other components of the unit because of its proximity to the hitch.

Comparison of the results of Load Case 1 to Load Cases 2, 3 and 5 shows the torquing effect on the unit. Not only does the vertical deflection of the unit increase with the severity of loading, but also the twisting of the unit becomes more severe, particularly in Load Case 5. In this case, the lateral deflections sharply increased and the torquing effect lifted the left sidewall over 0.7 in. and dropped the right sidewall approximately 1.2 in. from their original positions (Load Case 1).

Comparison of the results of Load Case 4 with the other load cases shows results similar to that of the stress plots. The jacking load has decreased the deflections in both directions. This indicates areas of stress relief in many sections of the unit. However, areas such as over the main door on the right sidewall of the unit should be noted (see Figure 15). The lack of cross-sectional area at this point along the unit appears to be critical to its vertical bending strength.

TABLE 4

SUMMARY OF T-1 MAXIMUM DISPLACEMENTS

				Maximum	Deflection (1	In.)/Node Loca	tiont			
Mobile	. Load Ca	ise 1*	Load Cas	e 2	Load Cas	se 3	Load Ca	se 4	· Load C	ase 5
Component	Lateral*	Vertica1**	Lateral	Vertical	Lateral	Vertical	Lateral	Vertical	Lateral	Vertical
Floor	-0.010/228	-1.210/203	-0.570/241	-1.286/101	-0.886/250	-1.341/101	0.027/250	-0.803/171	-1.180/250	-4.159/197
Ceiling	0.230/543	-1.210/528	-0.329/451	-1.286/451	-0.374/451	-1.342/451	0.181/451	-0.803/504	-2.856/547	-4.160/320
Left Sidewall	0.228/425	-1.210/412	-0.324/352	-1.061/398	-0.369/352	-1.013/398	0.176/352	-0.803/390	-2.856/425	1.191/421
Right Sidewall	0.230/339	-0.969/254	-0.329/254	-1.286/254	-0.374/254	-1.342/254	0,181/254	-0.496/308	-2.852/339	-4.160/320
Rear Sidewall	-0.105/566	-0.969/566	-0.329/566	-1.286/566	-0.374/566	-1.342/566	0.181/566	0.308/566	-1.959/566	-3.650/566
Front Sidewall	0.230/578	-0.712/599	-0.158/600	-0.672/577	-0.171/592	-0.233/600	0.078/600	-0.103/599	-2.856/600	-3.373/577

†For node point locations, see Figure 5. *For load descriptions, see Figure 8 or Table 3. **For displacement directional sense, see Figure 7.

VII. T-2 ANALYSIS METHODOLOGY

The models for the T-2A (wet side) and T-2B (dry side) mobile home unit are detailed in Figures 17 through 19 and Figures 20 through 22, respectively. Again these models are a coarser, modular mesh idealization compared to that of the T-1. Separate parts for the chassis, floor, walls, and ceiling were utilized, integrating these parts into the computer program input by coupling the translational degrees of .freedom at the common nodes. The following computer runs were then conducted for each model, T-2A and T-2B:

- . Data check run to generate geometry plots (see Figures 24 and 27) and check boundary conditions, elements, material properties, definitions and other input data for completeness and inconsistencies.
- Load 1 Gravity load run to generate the base line stresses and deformations for each unit under gravity loads of the structure and its furnishings.
- Load 2 Gravity loads of each structure and its furnishings plus equivalent loads from the dynamic analysis (well-paved road, 45 mph).
- Load 4 Gravity loads of the structure and its furnishings plus a concentrated load of 4000 lb acting on the right longitudinal I-beam at the rear of the chassis (nodal point 2 on Figure 3). This loading case, unlike the preceding two cases, was developed to simulate site installation activities where the unit is jacked up at each corner and set on blocks. (For this loading condition, the unit was restrained at the hitch, the three axles, and at the front end at the longitudinal I-beams. This last restraint assumes that the front end was blocked prior to this step in the installation procedure.)

Load 5- Gravity loads of the structure and its furnishings plus equivalent static loads from the dynamic analysis. This load case represents probabilistic "worst case" conditions.

Load Cases 1 through 5 are summarized in Table 3. *See Table 3 for description of Conditions I and II.

Condition I

Condition II

r

T-2A 6 ELEMENT MODEL FINITE 18 FIGURE

FIGURE 18. (Cont'd)

	RIGHT SIDE	NOTE: This figure contains the geometry plots from an ANSYS computer run to document the correct location of all elements in the model defined in Figure 18.	
и и и и и и и и и и и и и и	Image: Second state Image: Second state<	L ALA	

FIGURE-19. COMPUTER GRAPHIC MODEL OF T-2A

FIGURE 19, (Cont'd)

FIGURE 21 - FINITE ELEMENT MODEL OF T-2B

Numbers shown indicate nodal point locations

NOTE:

COMPUTER GRAPHIC MODEL OF T-2B FIGURE 22.

ŧ

PLAN CHASSIS

FIGURE 22' (Cont'd)

Again, the equivalent static loads calculated from the dynamic analysis were based on three times the RMS, or sigma (σ), values defined in Volume I, Task I of this report. Values applied to each side of the T-2 unit were the same, except in directional sense.

From the dynamic analysis, the computer-evaluated RMS (G loads) were obtained throughout the mobile home unit. With these values, the forces were calculated for the components that most influence the dynamic loading. With the acceleration of the latter components known, these accelerations were factored to produce the equivalent static loads to be input into the finite element program, symbolizing the dynamic condition. For example: if a vertical $G_{\rm RMS}$ value of 3.0 G's is obtained from the dynamic analysis for a position where a particular component of weight W is located, its contributing load in the finite element program would be 3 times the $G_{\rm RMS}$ value times W, or 9W. The equivalent static load of 3\sigma times weight would correlate to 9 times W or 9W. When this is done for all components considered (with the respective $G_{\rm RMS}$ and weight values) the mobile home model is subjected to a static load equivalent to the forces induced by the dynamic response characteristics obtained from the dynamic analysis.

For the equivalent static loading of the T-2A, all vertical loads input from the dynamic analysis were assumed to be acting downward (-z direction), and all lateral loads were applied from right to left looking down the unit from rear to front (+y direction). For the equivalent static loading of the T-2B, all vertical loads input from the dynamic analysis were assumed to be acting downward (-z direction), and all lateral loads were applied from left to right looking down the unit from

rear to front (- y direction). The directional sense of these loading schemes is shown in Figure 23.

As in the T-l analysis, the loading directions in each of these two conditions are actually random in nature. The directions assumed represent a possible loading condition.

Details of a typical computer run similar to that used to analyze these units are contained in the appendix.

Page 47 contains the Condition I load cases for analysis. The Condition II load cases are the same with the only variable relating to the EI and J stiffness factors resulting from the degradation of the mobile home structure. As the mobile home structure degrades and loosens, the accelerations are reduced but the deflections increase resulting in higher stresses.

VIII. DISCUSSION OF T-2A RESULTS

Output plots *for the ANSYS program were specified for stress trajectories and displacements of the membrane elements in the floor, walls and ceiling. Plots could not be developed for walls containing too few membrane elements such as the marriage wall side of this double-wide. Output results for all elements of the structure are available in the computer output sheets (available upon request at Southwest Research).

The before and after stress results of the analysis (Condition I, Loads 1 and 2) are shown in Figures 24 through 27. Comparing the plots of Load Cases 1 and 2 shows increased stress levels in areas of maximum bending moments, particularly near axle locations on the floor, and window and door locations on the sidewalls. Because of the existence of an interior wall along most of the right side of the T-2A unit, the stresses were well distributed throughout the unit. The increased load in Load Case 2 had a limited effect on the stress pattern. Results from the plot data from the ANSYS output show that the increases in maximum stresses for various sections of the unit were: floor, +6 percent tensile and +4 percent compressive; ceiling, -1 percent tensile and +5 percent compressive; left side, -6 percent tensile and +3 percent compressive; right side, +27 percent tensile and +6 percent compressive; and front side, +3 percent tensile and +5 percent compressive.

The deformations of the structure for each load case are shown in Figures 28 and 29. A summary of the maximum deflections is compiled in Table 5. These deformation data were derived from the same load cases used to calculate the stress data, but the elasticity modulus of the wall panels was reduced, as detailed previously in the T-5 mobile home computer model. *See Appendix C for method of interpretation.

FIGURE 24. COMPARISON OF T-2A STRESS PLOTS - FLOOR

*See Table 3 for load descriptions.

FIGURE 25. COMPARISON OF T-2A STRESS PLOT - CEILING

*See Table 3 for load descriptions. FIGURE 27. COMPARISON OF T-2A STRESS PLOTS - FRONT END

Floor

Ceiling

*See Table 3 for load descriptions.

FIGURE 28. COMPARISON OF T-2A DISPLACEMENT PLOTS - FLOOR AND CEILING

(rear)

(front)

(left)

(right)

Load 1

Load 2

Load 1

Load 4

Load 4

*See Table 3 for load descriptions.

Load 5

FIGURE 29. COMPARISON OF T-2A DISPLACEMENTS PLOTS - LEFT SIDE AND FRONT END

TABLE 5

SUMMARY OF T-2A MAXIMUM DISPLACEMENTS

Mobile		Maxi	Lmum Deflecti	on (In.)/Nod	e Location†			-
Ноше	Load C	ase 1*	Load C	ase 2	Load Ca	ise 4	Load C	ase 5
component	Lateral **	Vertical**	Lateral	Vertical	Lateral	Vertical	Lateral	Vertical .
Floor	0.005/1256	-0.587/1226	-0.006/1256	-0.661/1226	-0.0162/1101	1.472/1101	-0.0710/110:	-5.10/1256
Ceiling	0.198/1679	-0.585/1658	0.281/1679	-0.661/1658	0.264/1578	-551/1683	4.93/1679	-8760/1683
Left Sidewall	0.188/1509	-0.587/1492	0.270/1509	-0.661/1492	0.248/1440	0.834/1402	2.37/1440	-5.10/1509
Right Sidewall	0.198/1356	-0.241/1343	0.281/1356	-0.218/1341	0.264/1322	1.472/1301	2.51/1322	3.94/1355
Rear Sidewall	0.057/1710	-0.304/1709	0.089/1710	-0.351/1709	0.247/1702	1.472/1701	0.505/1710	2.33/1702
Front Sidewall	0.198/1752	-0.343/1766	0.281/1752	-0.412/1766	-0.00862/176	0.0195/1753	6.02/1766	-5.10/1765

*For load descriptions, see Figure 24 or Table 3. †For node point locations, see Figure 18. **For displacement directional sense, see Figure 23(a). Analysis of the results of each load case revealed that the maximum vertical deflections occur at the left front end of the unit. It is on this area of the unit along the sidewall that the main exterior door and several large windows are located.

The effect of the lateral load was obtained through comparison of the two load cases revealing an increase in lateral displacements throughout the unit. Vertical deformations also increased. Since the lateral loads were input acting from right to left, these increased downward vertical deformations on the left sidewall of the unit were predictable.

The stresses and displacements of Load Case 4, presented in the same figures as Load Cases 1 and 2, twisted the rear of the mobile home counterclockwise about the forward axis. Coupled with this was a slight twist about the left lateral axis. Stress concentrations occurred in the floor and ceiling over the axles, at the right rear floor, right front side wall, and about the front wall window. The vertical displacements of the right wall, upward rear of the axles and downward forward of the axles, explain the floor over axle concentrations.

Load Case 5 also generated stress concentrations in the floor over the axles and around the front end wall window. This dynamic case forced the front end down to the left, the closed and heavier side. The left side experienced stress concentrations at the lower forward corner joining those of the floor at its left front corner.

IX. DISCUSSION OF T-2B RESULTS

Again, output plots*for the ANSYS program were specified for stress trajectories and displacements of the membrane elements in the floor, walls, and ceiling. Because of the large size of the wall membrane elements, walls containing too few elements had less than minimal information to develop a stress plot. Output results for all elements of the structure are available in the computer output sheets (available upon request at Southwest Research).

The before and after stress results of the analysis (Condition I, Loads 1 and 2 are shown in Figures 30 - 33. Inspection of the plots for the gravity load case shows significantly more areas of higher stress concentrations than T-2A. Although the structural components were modeled identically for the T-2A and T-2B, the latter has very little wall support along the left side of the unit (see Figure 21). Hence, the stress patterns were developed along a different path. This has greatly increased the stresses on the exterior face, or right side, of the unit.

A comparison of maximum stresses between Load Cases 1 and 2, taken from the ANSYS output plot data, shows stress increases of +2 percent tensile, +7 percent compressive in the floor; +5 percent tensile, +5 percent compressive in the ceiling; +12 percent tensile, +3 percent compressive in the right side; and +3 percent tensile, +5 percent compressive in the front side. Since the second load case for T-2A and T-2B was the same except for the directional sense of the lateral load, these results detail the net effect of opening one side of the unit and allowing the other side to accept a greater share of the load.

*See Appendix C for method of interpretation.

FIGURE 32. COMPARISON OF T-2B STRESS PLOTS - RIGHT SIDE

FIGURE 33. COMPARISON OF T-2B STRESS PLOTS - FRONT END

Results of the displacement plots are shown in Figures 34 and 35. A summary of the maximum deflections is compiled in Table 6. These deformation data were derived from the same load cases used to calculate the stress data. However, the elasticity modulus of the wall panels was reduced as detailed in the T-5 mobile home computer model correlation.

Examining the results of these two load cases, it was found that vertical deflections maximize at the left front area of the unit as in the T-2A model. In this model, there is no wall support existing along this area of the unit. Also, a problem area exists along the right sidewall because of a large window opening between the axles and front hitch. (Figure 35)

Through comparison of the results of the load cases, it again appears that the "torsional" deflection of the unit increased due to the lateral loads. As expected, however, the rotation of the ceiling and right sidewall were both in the direction of the applied lateral load.

The stress and displacement plots of Load Cases 4 and 5 accompany those of Load Cases 1 and 2 in Figures 30 through 33. The plots for Load Case 4 show the results of a counter-clockwise twist at the rear of the mobile home about the forward axis resulting from the simulated right rear jacking load. This loading condition created stress concentrations in the floor at that corner as indicated by the crowded isostress lines of Figure 30. Over the right side of the axles the floor also experienced high stresses. The displacement plots of Figures 34 and 35 show why these stresses occur. Almost all of the floor displacement occurred rearward of the axles. Other points of high stress for Load Case 4 were along the left side of the ceiling and around windows and doors.

The worst dynamic condition, Load Case 5, is also presented in the figures. Displacement plots show the mobile home to be uplifted to the left in the front

and slightly down in the rear. This situation concentrates stresses in the floor over the left side of the axles and at the forward end of the right wall, and especially about the window in the front end wall.

Load 5

FLOOR

CEILING

*See Table 3 for load descriptions.

FIGURE 34. COMPARISON OF T-2B DISPLACEMENT PLOTS - FLOOR AND CEILING

(front)

Load 1

(right)

Load 1

(rear)

.

RIGHT SIDE

*See Table 3 for load descriptions.

FIGURE 35. T-2B DISPLACEMENT PLOTS -- RIGHT SIDE AND FRONT END

(rear)

Load 2

Load 4

Load⁵ FRONT END

TABLE 6

SUMMARY OF T-2B MAXIMUM DISPLACEMENTS

Mobile		Ма	ıximum Deflec	tion (In.)/N	ode Location	+		8 N N N N N N N N N N N N N N N N N N N
Home Component	Load	Case 1 *	Load	Case 2	Load	Case 4	Load	Case 5
	Lateral **	Vertical**	Lateral	Vertical	Lateral	Vertical	Lateral	Vertical
Floor	0.005/257	-0.600/221	0.004/257	-0.742/221	-0.0196/101	1.31/101	0.0319/257	-2.75/261
Ceiling	-0.256/654	-0.586/609	-0.458/654	-0.742/613	0.396/500	1.305/500	3.354/650	-2.75/654
Left Sidewall	-0.091/409	0.182/400	-0.127/409	-0.167/400	0.389/401	0.385/401	0.389/409	-0.793/400
Right Sidewall	-0.251/395	-0.600/381	-0.452/395	-0742/381	0.396/301	1.306/300	3.354/395	1.996/394
Rear Sidewall	-0.058/702	-0.337/701	-0.071/703	-0.351/701	0.396/702	1.306/701	0.00583/710	-0.793/709
Front Sidewall	-0.256/768	-0.391/752	-0.458/768	-0548/752	-0.118/764	-0.0130/752	3.35/752	-2.75/768
	1 000 000	24 0000 07 000	Table 3		3			

*For load descriptions, see Figure 27 or Table 3. †For node point locations, see Figure 21. **For displacement directional sense, see Figure 23.

X. CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the static modeling of the single-wide (T-1) and the double wide (T-2A and B) mobile homes the following tentative conclusions can be drawn:

- . A reduced modulus of elasticity was developed for the wall panel elements to simulate more closely the stiffness of the actual mobile home structural system.
- . Stress concentrations were most predominant around window and door openings, over the axles and above the front hitch.
- . The stress concentrations were not sensitive to the wall thickness designated for the wall panels.
- . The "torquing" effect resulting from lateral loads significantly increases the lateral deformations and stresses associated with that type of load.
- . The jacking mode develops stress relief in some areas of the unit, and increased stress concentrations in other sections of the unit.
- . In the double-wide units, the elimination of an interior wall along the "marriage" joint increases vertical deflections in the unit, and increases stresses along the remaining exterior walls due to the transportation mode.
- . The resulting loads and stresses in the unit due to the transportation and setup/takedown modes appear low. This is a static case, however, and the effects of cyclic loading should continually be considered.

It has been shown how mobile home structures are idealized and analyzed by application of the ANSYS program. Although the process of model development (i.e., mesh generation, member size and dimension determinations, and material property characterizations) is not difficult to accomplish, it requires a painstaking, time-consuming effort to generate and punch the required input data. Meticulous care must be exercised in coding the data for ANSYS input, and the computer runs are expensive because of the large size of the problem. (See the appendix for a typical

computer run.) The problems might be reduced by developing a special purpose program with large wall panel elements (modules) that typically represent solid panels, panels with window openings, or panels with door openings. The development, however, would be a major undertaking, particularly if the plot capability were included.

The finite element analysis is a static analysis methodology. It is not the intent of the finite element analysis to predict the consumed life of the mobile home unit. It can be used in the "predictive analysis" only as a static checkpoint by analyzing the structure at any point in the degradation cycle. A more complete method of analyzing degradation would be to compare the structure at two different points in the cycle. For a set of given conditions developed in the dynamic analysis, it can be used to locate areas of stress concentration and determine what effect the equivalent static loads caused by the transport or the loads caused by setup and takedown procedures have on the structure. Such an analysis can be of importance in establishing areas of a unit that need stiffening to resist these loads. Remedial changes, however, in the structural configuration require input modifications and a complete rerun of the program to determine how the stresses are redistributed.

As previously mentioned, the volume of calculations and computer printout developed to complete the analysis of each finite element model was too large to include as part of this report. However, all records pertaining to the analysis of each mobile home unit, including the punch card computer decks, are on file at Southwest Research and are available on request.

APPENDIX A

ANSYS COMPUTER PROGRAM DEVELOPMENT

a service of the control states and a

ANSYS COMPUTER PROGRAM DEVELOPMENT

This appendix is included to provide a basic understanding of the ANSYS . computer program used to develop the static analysis computer models. This is accomplished in three steps: discussion of the problem-solving technique of the ANSYS program, a brief explanation of how a typical model was developed, and most importantly, an example using a typical computer run with input and output data.

1. ANSYS Analysis Methodology

The ANSYS computer program is a large scale general purpose computer program for the solution of several classes of engineering analysis problems. For the computer model of this report, the static analysis capabilities were utilized.

For the static analysis, the matrix displacement method of analysis based upon finite element idealization was employed to develop a solution. The structure analyzed was approximated as an assembly of discrete structural elements connected at a finite number of points (called nodal points). Knowing the forcedisplacement relationship for each of these discrete structural elements (the element "stiffness matrix"), the force-displacement relationship for the entire structure was assembled using standard matrix methods.

When sufficient boundary conditions were given for the displacement matrix to guarantee a unique solution, a solution was generated that obtained the nodal point displacements at each node in the structure. From these displacements, forces and stresses within each structural element were calculated.

2. Model Development

The static analysis of each mobile home unit (T-1, T-2A and T-2B) was developed under the same procedures for each finite element model. First, each unit was accurately measured and detailed. With this information, the layout of each unit was drawn to scale.

From the layout of each section of the unit (floor, walls, ceiling, etc.), a finite element mesh was developed for each component. As detailed in Figures A.1 and A.2, each component was idealized as a series of finite or discrete elements. Each element was connected to a set of nodes. Since all nodes were located within a three-dimensional orthogonal coordinate system, the elements, therefore, were properly defined and located within the system.

With the elements located, the next step was to define each type of element. For each analysis, all elements were either membrane (or shell) elements for the floor, wall and ceiling panels, elastic beam elements for the floor joists and wall studs, or tapered, unsymmetrical beam elements for the chassis outriggers and roof trusses. During this step in the analysis, it was also important to define the cross-sectional and material properties of each element.

Next, each section of the unit (floor, walls, ceiling, etc) was "pinned", or connected, together by coupling the translational degrees of freedom at the wall stud/floor joist and wall stud/roof truss connect points. This type of joint connection models more closely to the way the unit is constructed.

The remainder of the input data required to model each unit was for boundary and loading conditions. For the boundary restrictions, the translational displacement were defined as zero for the nodes at the hitch and at the axle/ chassis I-beam connection points.

The basic loading condition for all load cases was the unit's own weight and furnishing loads. The weight of the unit was developed by introducing a 1.0 g vertical acceleration to all elements in the model. Based on the material densities, this was equivalent to a static loading based on the weight of the unit.

Furnishing loads were applied as concentrated loads. The actual weight of each furnishing was applied equally to all nodes on which it rested.

NOTE: Numbers shown indicate modal point locations.

TYPICAL FINITE ELEMENT COMPUTER MODEL (T-1)

FIGURE A.2.

FIGURE A.2 (Cont'd)

Pertaining to the equivalent static loads, this system of concentrated loads was calculated based on the accelerations developed along the unit from the dynamic analysis in Task I, Volume I. Additional concentrated loads, acting vertically and laterally, were applied at the ceiling level of each wall section due to weight of the roof. Other concentrated loads were those caused by accelerations acting vertically and laterally on appliances, bathroom fixtures, and heating and water heater units.

3. Typical Input and Output Computer Data

This section of the appendix contains a typical computer run of the static model developed using the ANSYS analysis technique. Because of its length, however, only partial listings of many sections of the data are presented. All data for this example are taken from the T-1 mobile home model (see Figures A.1 and A.2), Load Case 1. Although the entire analysis is not presented, the segments presented contain elements common to each step of the analysis. ***** ANALYSIS OPTIONS (CARDS C1 AND C2) *****

	VALUE	VARIABLE NAME	COLUMNS	
NUVRER OF LAD STEPS	ທິດ ຈັດທ ທີ່ •	NSTEPS K20 KC0F K18 K17 K17 K17 K17 K7P0ST	×12 ×12 111 12 111 12 111 12 12 12 1	
REFERENCE TEMPERATURE UNIFORM TEMPERATURE	70.00 70.00	TAEF Tunif KPDV	1-12 13-24 79-80	
BLOCK SIZES	500 0247450	500 1500	5 D D	200

o

0

200

These cards (C1 and C2) defined the analysis options used in the solution of problem. These options included the "type" of analysis (static for this analysis), the number of loading cases, plotting options, a checking option, etc.

FIGURE A 3 ANSYS INPUT DATA, ANALYSIS OPTIONS

***** ELEMENT TYPES (CARD D) ****

INDTPR 000 U X 000 o C o OPTIONS 28 2A С -2 2 KEYSUB ч 18 1A ELASTIC BEAM, 3-D 8/n5/74 Quad Flat MEMBR SHELL1/30/73 3-D TAPERED BEAM 10/20/72 DESCRIPTION STIF TYPE 100

***** TARLE OF ELEMENT REAL CONSTANTS (CARD D2) *****

°on

Outriggers			00048* 00046* 00046*	26000 5,0000 26000	1,3250 0. 55000 0.	1.0000 0.55000 1.0000	0000 • 1 • 0006 • 7	8+000 9+0 8+000 8+000 8+000 8+000	17.400 000 17.400	0, 5,0000 0,0000
Lauan Plywood - Floor 7 - Joists 7 -	1 1	 13,700 13,700	•c	36,200	0529 °S	00***2	•		14.800	

The 3-D tapered beam was utilized for members In this The 3-D quadralateral flat membrane shell element, which las membrane stiffness but no bending stiffness, was used for the particle board particular case, the 3-D elastic beam element was used for elements such as wall Card Set D defines the elements used from the ANSYS element library. contained in the chassis and the roof trusses. floor, plywood walls and metal roof. studs and floor joints.

The D2 cards were used to define the element real constants. A new set of constants element real constant sets were computed and submitted as part of the ANSYS analysis. set 29 panel) utilized in the model. In the example above, set numbers 1 and 2 were used properties of a 3-D elastic beam element. For this particular model, a total of was defined for each member type (i.e., outriggers, hitch beam, roof truss, wall number 7 for a typical membrane element; and set number for the cross-sectional for tapered beams, where properties must be defined at each end of the element;

ANSYS INPUT DATA, ELEMENT TYPES AND REAL CONSTANTS

FIGURE A.4.

**** ELEMENT DEFINITIONS (CARD E) ****

		NUDE	Ð		MAT TYF	PE	ELEME	NT REAL	CONSTANTS		
€ ≯	50	t V N	500	515		THKI	THKE	THKE	THK	THET	
50.	1					-156			-0-	•0	
15	556	255	251	500							:
5	•	•		•		0+0	BEAM	CONS	; •	5	
1	•	u			····· ································		• 360	260	1.33	1.00	7,30
					the second process of the second s	. 840	17.4	250	1.27	5.00	•
					the state of the second s		1.00		•••	5,00	.0
						•	•	550	1.00	.480	5.00
		1				AREA	12	IY	THKZ	THKY	THET
e s	106	111		1			IP	-			
							20.01	2.0		***	•
						THKI	THKP	THKB	THK	THET	
120	266	292.	192	265		.156	-0-		-0.	.0	
	-			-		0-E	BEAM	CONS			
121	-	.	102	1	e T	. 840	.360	,260	1.33	1.00	7,30
						.840	17.4	, 250	1.27	5,00	•
		-				•	1,000		•	5,00	•
			C	1		•	.0	550	1.00	.480	5,00
:	1	***	* • • •		······································	AREA	Z I	IY	THKZ	THKY	THET
122	-11-				· · · · · · · · · · · · · · · · · · ·				5 1 1		
		1			• • • • • • •	•			n 0	11.0	•
					and and a second a se	•					

shell elements, elements 52 and 122 represent 3-D tapered beam elements, and This card set defined the nodes to which each element was connected and referenced the material type (see Figure A.8), element type (see Figure A.4) (See Figure In this example, elements 51 and 121 represent quadrilateral flat membrane and the real constants (see Figure A.4) associated with each element type. elements 53 and 123 are examples of 3-D elastic beam elements. A.2 for element locations.)

FIGURE A.5. ANSYS INPUT DATA, ELEMENT DEFINITIONS

***** NODE DEFINITIONS (CARD F) ****

THXZ • ÷ • è ROTATION (DEGREES) THYZ 000 តុ 000 0 ő ÷ è -... . 000 0 000 è 0 00 ē THXY ••• i -0 • ÷ ò • 00 0000 • e. -.... • ć ė ę 0. 41,000 000°96 41.000 80.000 96.000 41.000 +1,000 • 5 å -LOCATION -82.000 -82,000 41.000 82.0000 -82,000 41.000 82.000 -82.000 -41.000 -41.000 -41,000 82°000 -82.000 -82.000 41.000 -82.000 -82,000 .82.000 -82,000 000-58. -82.000 -82.000 -82,000 -82,000 82,000 * . • 00U-5F 64.000 96.000 96. PON 96,000 128,00 96.000 92**•**000 96.000 96.000 100.55 600.49 900.44 64.000 94.000 96,000 12,000 × . ċ • • • å NODE 50 65 05 9 5 18 50 22 525 653 354 552 92.0 262 5 204 265 266 521 261 21

this model, approximately 650 nodal points were generated to define the model. (These During the development of This card set was used to define the nodal point coordinates and local axis specifications for all the nodal points in the structure. nodes are shown in Figure A.2)

ANSYS INPUT DATA, NODE DEFINITIONS

FIGURE A.6.

ານ ໜ ານ ታ ታ ≠ ≠ 2	d Set G)	VIEM = 0.00 0.00 1.00 + IELPT = 2 KSIZE =-0 Gedmetry ANSYS	VIEW = 0.00 0.00 1.00 [°] - 4 IELPT = 2 KSIZE =-0 Geometry Ansys	VIEW = 0.00 -1.00 0.00 - 4 IELPT = 2 KSIZE =-0 Geometry Ansys	VIEW = 0.00 -1.00 0.00 - 4 IELPT = 2 KSIZE =-0 GEOMETRY ANSYS	e plots, which can contain ttive views, were used to exity of this model, ug as an inexpensive method to
	Geometry Plots (Car	-1.0000 1.0000 1 795 1.0000	45,0000 47,0000 45 1 245 1	0000 46 0000 0 1 795 46 0000	0.0000 96.0000 1 795 KPDV KPDV	plot request. These tated and/or perspec . Due to the comple ta check run, servir ements in the model.
95,0 97.0 -83, -81, 81,0 83,0	(a) Input Listing for	RANGE = 0.0000 756.000U -82.0000 82.0000 KTYPE = 5 DIST = -0.00 KSTART,KSTOP = CUMULATIVE PLOT NUMBER +	RANGE = 0.0000 756.0000 82.0000 82.0000 KTYPE = 5 DIST = -0.00 KSTAKT.KSTOP = CUMULATIVE PLOT NUMBER 5	RANGE = 0.0000 756.0000 -83.0000 -81.0000 KTYPE = 5 DIST = -0.60 KSTART.KSTOP = CUMULATIVE PLOT NUMBER 6	RANGE = D.UDOU 755.0000 81.0000 83.0000 kTYPE = 5 D1ST = -0.00 KSTART,KSTOP = CUMULATIVE PLOT NUMBER 7 (b) Output Listing fo	This card set defined the geometry expanded plots for local regions and ro develop a clear definition of the model geometry plots were developed in the da identify the correct location of all eld

FIGURE A.7. ANSYS INPUT AND OUTPUT DATA, GEOMETRY PLOTS

***** MATERIAL PROPERTIES (CARD H) *****

NOTE: Exponential Notation

Figure A.5. (In this listing, EX equals the elastic modulus, ALPX equals the coefficient of This card set was used to define the material properties of each element in the model. These properties were assigned to their respective elements with Card Set E, as shown in thermal expansion, NUXY equals Poisson's ration, and DENS equals the mass density of the element being defined.)

The elastic modulus for the Lauan Plywood was 1.5 x 10⁶ psi when calculating element NOTE:

stresses, and 5.0 x 10^4 psi when determing deflection data.

FIGURE A.8. ANSYS INPUT DATA, MATERIAL PROPERTIES

(L CAN																							119	611	119			
IONS (C	DES	563	563	563				555	555	525				155	155	551	552	255	255				U	un.	'n			
DEFINIT	PLED NO	251	251	251	554	554	559	EOT	EUT	103	553	553	553	351	351	351	-	-	-	261	261	261	265	265	265	269	269	269
OF FR.	COU	101	101	101	102	102	102	90	٩u	60	104	104	104	105	105	205	106	106	106	111	111	111	117	117	117	122	122	122
COUPLED DEG.	NUMBER	Ē	m	en,	ŝ	∩v	N	m	m	m	N	م	~	•	•	m	•	e 77	~	₹ v	പ	r.	7	7	+	ñu	ru	n
****	D.C.F.	UX U	۲	20	UX U	٨	20	UX	١٢	Zn	NX N	7	20	۲,	24	20	NX N	11	ZN	C,K	۲	20	Ň	U۲	20	NX	N۷	20
	361	-	N	m	*	S	ھ	~	æ	ď	10	11	1.2	E T	14	5 T	9 (2	18	19	20	21	55	ñ	÷2	52	2 P	57

card set. In this example, the <u>translational</u> degrees of freedom (UX, UY, and UZ) were coupled at the wall stud/floor and wall <u>stud/ceiling</u> connect points. This is, however, only a This card set was used to specify the sets of "coupled" degrees of freedom. As described previously in the text, each section of the model was developed separately. These units

(floor, ceiling, interior walls, etc.) were then combined with the specification of this partial listing. The total number of coupled sets for this example was 591.

ANSYS INPUT DATA, COUPLED DEGREES OF FREEDOM DEFINITIONS

FIGURE A.9.

1
NUMBER
STEP
LOAD

***** LDAD STEP OPTIONS (CARDS L AND M) *****

	VALUE	VARIA8.E	COLUMNS	
		NAME		Card Sets L and M were used to define
LOAD STEP KEY	1	KDIS	E+3	the type of load step (or loading condition
TEMPERATURE KEY	0	KTEXP	4 - 6	and boundary conditions that were used for
NUWBER OF ITERATIONS	1	NITTER	2-5	each load case. One set of L and M cards
STRESS PRINTOUT FREQUENCY	1	INIAGN	10-;5	was included for each load case submitted
TIVE AT END OF LOAD STEP	•0	TIME	13-24	
ITERATION FREG. OF PLOT DATA. DISPL. PRINTOUT FREQUENCY		KPLOT(1) NDPRNT	50-51 (CARD -1	WILL AN ANALYSIS.
COORDINATE ACCELERATIONS	-0*000	0000*0-	1.000	

loading condition)

***** SPECIFIED DISPLACEMENTS (CARD N) ****

									2												
VALUE																					
	•	•	ď	•	-	•	•	•	•	ċ	•	•	.	•	•	•	•	•	•	•	°
DIRECTION	лх	Λ	ZN	ΝX	70	20	ΝX	2	ZD	×	۲N	20	хn	UY	ZN	×	۲,	nz	Ň	70	ZN
NODE	•1	1	14	15	15	15	18	18	18	19	19	19	22	22	22	53	E,S	63	57	52	57
0N	-4	ð	Ē	*	J	ه.	~	66	σ	1.0	1.1	21	Eï	*	5	٩	-	18	61	20	10

Card Set N defined the displacement boundary conditions to be included in the analysis. For this unit, these boundary conditions were used to simulate the restraints on the unit at the hitch and at the axles. Zero displacements were defined to restrict the translation of these points (UX, UY, UZ) with respect to the global coordinate system. Rotational restraints were not provided at these nodal locations.

ANSYS INPUT DATA, LOAD STEP OPTIONS AND SPECIFIED DISPLACEMENTS FIGURE A.10.

"He He LET CAL THE AN

FIGURE A.11. ANSYS INPUT DATA, SPECIFIED FORCES

this data was input into the model under this card set, being simulated as forces acting externally Card Set 0 was used to specify force boundary conditions. Forces were specified only at nodal contained in the unit. (In subsequent computer runs, where equivalent static loads were included, The system of forces for this example was used to simulate loads due to the furnishings on the unit). points.

1

	6 6
*	90
****	ដ
* * ()	88 ≯
LISTIN	4 2
DATA	3 6
INANI	0E
ANGYG	÷2
***	18
***	12

8 2

			u >	• >	2	5 > 7	0 > n	u > *	x >	ל א מ	2 >	٥	<u>د م</u>	ע > ר
gure		<u>_</u> \	• 00	•		1	11				-	+		
		J	10.	•			11				٦	÷		
			10,				1				-	+		
			10.		.		11				٦	÷		
	Ľ	ı	1-1		•		11				٦	*		
			1 1	•	-		11				1	÷		

to the post-processing routine selected for this problem (see Figure A.3, variable name: Due shell elements (floor, wall and ceiling panels) were able to be plotted. (Each contour line connects points within the specified geometric profile which have equal values analysis. For this particular post-processing subroutine, only the results for the This listing contains a sample set of input data contained for the R Card Set. KYPOST), this card set was used to develop stress contours from the output of the for the quantity being plotted).

In addition to the stress plots, this subroutine was also capable of plotting the distorted geometry (or displacements) of the model for specified geometric profiles.

FIGURE A.12. ANSYS INPUT DATA, POST-PROCESSING ROUTINE

-

		**		1 5	55	* * * 0 0 0	+0-	22	t t 0.0				+ M	0 0 0 0 1 1 1
ITER	012	9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 8 9 1 1 8 9 1 1 8 9 1 1 8 9 1 1 1 1	35E	1.01.0 1.01.00000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	830E 070E	327E 345E	121E 619E			2,120	041E 691E	681E 613E 613E
UM.	1	587.	•104 •722 •132	397 369	•115 •112	147 905	680 601	• 608 • 606	572 572				- 1	5 4 4 5 4 4 5 4 4 5 4 4 5 4 5 4 5 4 5 4
1	1	1	. į			i -			:		· •	1	:	
11 2							M N 0 0 1 1		- 0 - 1					
ATIO	017	054E 358E	1919 1919 1919 1919 1919 1919 1919 191	868E	1910 1910 1910 1910 1910	3605 925 176 176 1	4 7 2 E	619 892 7	8 5 4 F	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	с 5 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	154E	293 262 562 562 562 562 562 562 562 562 562
ITER	e x	.138	• 100 • 100	171.	1 0 0 1 0 0 0 0 0 0		0.5 0.0 0.0 0.0	- 184 - 184		5 8 F		1975 1945 1945	6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	854 54 54 54 54 54 54 54 54 54 54 54 54 5
٦	1.		•••	. · ·				•	, ;					•••
и о		N N N	5 0 0 1 1 1	# P	555		**	58				10 1 1	55	
STE	01X	148E 697E	864E	9056	3144			2 - 0 - 1 2 - 0 - 1 2 - 0 - 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		13551	817E	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
LOAD		- = = = = = = = = = = = = = = = = = = =		191	າມເ ເ ເ		2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9					112	. 355 536	- F - F - F - F - F - F - F - F - F - F
			i					. :				1		
					•	!								• !
		1991 1981 1981	14 P C	7282	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7666. 0489	1505	9208		1529	1547	0483	0625	1 7 3 1 6 1 4 6 6 1 4 1 8
e	1	mm mmr		0.0	1. a. a 77 m m 1	10 m						- au		
TIME	1	1.			! :		1	. :	1	į i	1 :		: 1	1
*		100 100 100 100 100	- 0 0 - 0 0 - 0 0	E-02 E-01	6+01 6+01			100 100 100		- 0 - 1 - 0 - 1 - 0 - 1	E + 02	E+02		
***	UY -	8122 8205 8205	2682 2682 2682	9959 1537 1528	1021	9129	2 0 0 2 0 7 7 0 7 7 0 7	8513 8852	1153	3607	3410	11815 1911	5513 0430	- 10
TION		1 1 1		10	10				5		- 45	σ . •		10.1
souu		: :	:	÷		:.	1		:	: :	: :	:		•
ENT		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			- 10 - 10 - 10 - 10 - 10 - 10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E-03	20-3 	E-01	E-01 E-02	-07 -07		н 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ACEM	хЛ	2841 2841 2257 2257	2.8 S	1984 1947 1947 1978	C160	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1157	1545. 1545.	6901 9560	1055	1617 9986	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2855 2855 2855 2655 2655 2655 2655 2655
13P		0 0 ÷ M · · M • • •		- 15 - 15	2 4 5 4 5	000 099 ••		58 • •		11				
0. **	30	:	. : .	İ	i				:		! !		. ;	;
**	ž	- n n	. .	103	104	101	111	121	251	500	ສະຫາ. ທີ່ຫຼື	2 C C C		5 9 5 9 5 9

Note: Exponential Notation

located on Figure A.2.) UX and ROTX are, respectively, the displacement in the X direction and rotation (in radians) about the X axis. UY/ROTY and UZ/ROTZ are related to the respective axis This listing contains part of the displacement solution, providing translational and rotational displacements for each nodal point in the model. (The nodal points listed can be in a similar manner.

FIGURE A.13. OUTPUT DATA, DISPLACEMENT SOLUTION
**** ELEMENT STRESSES ***** TIME = 0.

LOAD STEP= 1 ITERATION= 1 CUM, ITER.= 1

LINE ELEMENT STRESSES ASSUME WEIGHT IS CONCENTRATED AT NODAL POINTS Reaction forces and element forces assume distributed weights

-SIGEFF= . E 9 -10. WEM8. SHELL \$1 NODES= 256 252 251 255 MATERIAL= 2 STRESS INT.= Area=1312.00000 xc= 16.00 Yc==82.00 zc= 20.50 T= 70. XY STR= -10 31. A= 40.1 •36• 27. MAX-MIN STR=

-158 164 SYT-ZT 70.0 **T80TY**≠ **3**53. -159. SYT-28 TTOPZ= 70.0 994° -154-57B-21 -232-578-ZB - + - E 70. TEMPE 118. 138. SZTOP Z MAT= 61. 118. S2807 -158 410. SYT0P SZ NODES • + ь Е SYBOT -175. 3-D TAPERED BEAM 117. 118. **DIRECT** END

10. MIN2 MIN2 DIR1, DIR2= - T 3 L. MAX2= TTOP2, TBOTY= 70.0 70.0 -2, BY2= 822= · 02 1 TEMPa = INIM m 22. MAT -1. MAXIE 53 NODES 106 111 821# -10, 8V1# 3-D BEAM

185 106. SIGEFFE 212 AEMB, SHELL 120 NODES≖ 266 262 261 265 MATERIAL¤ 2 STRESS INT.≖ ZC= 20.50 T= 70. XY STR= 106. A= 45.2 XC= 80,00 YC=-82,00 •1b= 122. AREA=1312,00000 HAX-MIN STR=

105 SYT=Z1 TBOTY= 70.0 -105. SYT-28 -208 TTOPZ= 70.0 263. - 852 SYB-ZT 263. ະ ກ SY8-Z8 ۰ • TEMP= - b 4 142. **32TOP** 6 MATE 1 . م **е** 6-**52BOT** -37. -105. ιn **9YTOP** 3+D TAPERED BEAM 121 NODES 263. 193. **9780T** 79. DIRECT 78. END

•96--22-[R2# =22. DIRL, DIRZE -1. MAX2E 70.0 TTOPZ, T80TY= 70.0 Z2= -15, 8Y2= 822e .04 -33. 3-D BEAM 122 NODES 117 122 MAT 3 TEMPE B21s -4. BY1s 5. MAX1s -11. MIN1s -

quested for every element in the system. The sample listing above contains two examples of each type of element input into the model: the 3-D beam, the membrane shell, and the 3-D tapered beam. These results refer back to the elements defined on Figure This listing contains sample output stress data. As specified in the input A.4 and shown in Figure A.1. A complete explanation of terms for this data is con-(Card Set L, M, Figure A.9), a complete listing of stress information was recained in the ANSYS User's Manual.

NOTE: Although it is not listed, the output also includes a list of the forces and moments acting on each node for each member in the model.

FIGURE A.14. ANSYS OUTPUT DATA, ELEMENT STRESSES

A.19

2
÷.
•
ŝ
5
Ö
-
S
1
Ψ
S
è
A
ŝ
F
5
۵.
ö
-
ò
ฉั
Ø
а С
T B
S
μ
¥.
Ĩ.
ŝ
*
*

106 ç 5,0000 NNELS = H NLIST 1 -5.0000 129 н 808 QUANTITIES STORED PER ELEMENT 0,0000 1,0000 1 IEMAX = 80 NNODES # -0*0000 0,0000 KTITLE = -0 0000 0,0000 IEMIN = **TIME =** 10,0000 KLINE = -0 -0,0000 view = 2051 ILIST = אאנש = ח עובש -PLnt KEYS = -0+0-0 1 1-0-0+0-0-0 איי איי 2 -MAX. NO. OF ELEMENTS ALLOWED = ITERATION = YSIZE # -0°0000 . KPOV II 10.000 REGION PLOTTED = -LOAD STEP = KZONE = 1 XSIZE =

ANSYS ANSYS MIN STRESS(MIDDLE) MAX STRESS(MIDDLE) -30,000 30.000 20.000 000"5+-10,000 60,000 -60,000 11-348E21 0. 50.000 -75,000 -15,000 +0,000 ŝ o × Q × MIN STRESS(MIDDLE) MAX STRESS(MIDDLE) CUMULATIVE PLOT NUMBER SANDPOINTE-TI CUMULATIVE PLOT NUMBER SandPointe-T1 51954.8 -96.9120 0+14 44 -19.6822 **ISOSTRESS LINES** ISOSTRESS LINES HIN H H HIN II MAX # ΧΦΜ

This output information describes, in summary, the output data displayed in detail on the data was developed for the floor of the unit. The more important details included with this stress contour plots which were defined in Card Set R, Figure A.12. This particular set of information are the confirmation of the region plotted, the direction from which the region is viewed, the stress boundaries for the region, and the values for the contour lines.

FIGURE A.15. ANSYS OUTPUT DATA, SURFACE STRESS PLOTS

APPENDIX B

INTERPRETATION OF NODE FORCE OUTPUT FROM ANSYS FINITE ELEMENT COMPUTER PROGRAM

INTERPRETATION OF NODE FORCE OUTPUT FROM ANSYS FINITE ELEMENT COMPUTER PROGRAM

This appendix is included to provide an example and an explanation of the application of the nodal forces calculated by the ANSYS finite element program. A longitudinal I-beam in the chassis of T-1 is selected to demonstrate how these data can be used to examine the total stresses on a single member of the finite element model.

The model used to simulate the structure represents each structural member as a combination of elements connected at nodes. The I-beam of interest is represented by the elements and nodes below.

55	12	24	200	272		300	_34	8 3	76		439	495	562	63	28 ⁶²⁹	9 68	8
2	6	10		ī4 1	.8		22	26		30		34	38	42	49	46	52
Rear																	Front

A partial listing of a typical run of the ANSYS program is presented in Figure B.1. (See also Figure A.14). This section of output, entitled "Element Stresses," details the stress information as calculated by the finite element program for each element of the structure. The nodal forces listed are the forces in each of the three directions and the moments about each of the three axes transmitted to the node by the element. In order to investigate the elemental forces and moments, the signs of the nodal forces and moments are reversed. Tabulated here are elemental values for a pair of adjacent elements that make up the longitudinal I-beam.

Element	Node	F _x (lbs)	F _y (lbs)	F _z (1bs)*	M _x (in-lbs)	M _y (in-1bs)	M _z (in-lbs)
376	26	2356.21	30.0196	1658.17	184.140	-96425.1	928.002
	30	-2356.21	-30.0196	-1610.18	-184.140	8162.1	993.251
439	30	-7152.63	37.3235	1543.84	227.651	9989.48	1203.79
	34	7152.63	-37.3235	-1495.84	-227.651	-1072.59	1184.85

TABLE B.1. COMPUTER CALCULATED STRESSES FOR ELEMENTS 376 and 439 (Compiled from Figure B.1)

*Errors due to roundoff.

***** ELEMENT STRESSES ***** TIME = 0. LOAD STEP= 1 ITERATION= 1 CUM. ITER.= 1 LINE ELEMENT STRESSES ASSUME HEIGHT IS CONCENTRATED AT NODAL POINTS REACTION FURCES AND ELEMENT FORCES ASSUME DISTRIBUTED WEIGHTS

3-0 TAPERED REAM	376 NODES 26 30	MATE 1 TEMPE 70	. TTOPZ= 70.0 TBUTY= 70.0
END DIRECT	SYBOT SYTOP S	SZRUT SZTOP SYB	-ZB SYB-ZT SYT-ZB SYT-ZT
1 -889,	1001911797	2935, 1157, 7	972, 12065138439751.
2 -889.	-3454. 1681.	130130791	2695649. 3871509.
FORCES ON NODE	50 +.5320516+04300	11966+02 -,1658176+04	+ -,18414UE+u3 \/,964251E+05 -,928AU2E+03
FORCES UN NOVE	30 .235621E+04 .300	196E+02 .161018E+04	.184140E+03 .816210E+04943251E+03
			He waterships block to be
3-0 TAPERED HEAM	439 NODES 30 34	MAT# 1 TEMP# 70	. TTUPZ= 70.0 TBUTY= 70.0
END DIRECT	SYOOT SYTUP S	ZROT SZTOP SYS	-ZB NYB-ZI SYT-ZB SYT-ZI
1 2649.	POSO" -PSS.	45. 5353. 3	366. 86753277. 2032.
2 2699.	-6514. 11913. 9	53L2. 87. +3	9029127. 14525. 9300.
FORCES ON NODE	30 .7152636+04373	2256+021543846+04	227651E+#3 +.998448E+04120374E+04
FORCES ON NUDE	34 +,715263E+04 ,373	P0+3+82P#1. 50+3755	.227651E+03 .107259E+06118485E+04

FIGURE B.1. ANSYS OUTPUT DATA, ELEMENT STRESSES

Z

KEY:

--> FORCE

----- MOMENT

FIGURE B.2. FREE BODY DIAGRAMS OF ELEMENTS 376 AND 439

The freebody diagrams, Figure B.2, of these elements, 376 and 439, show the above stresses applied to the elements. Also included in the diagrams are the weight forces (48 lbs) of each element acting at their centroids in the negative (-)z directions. Both elements are 64-in. long.

A. STATIC MEMBERS

To prove that the forces tabulated are all those exerted on the element, the sums of the forces in each direction and the sum of the moments about each axis are taken for each element and for the entire I-beam. If these quantities are zero, the member is static, thereby, proving the point.

1. Stresses on a Single Element

First consider element 376. The sums of its forces and moments approach 0 as follows. Moments are taken about node 30 and include the effect of the weight.

$$\Sigma F_{x} = 2356.21 - 2356.21 = 0$$

$$\Sigma F_{y} = 30.0196 - 30.0196 = 0$$

$$\Sigma F_{z} = 1658.17 - 1610.18 - 48.0 = -0.01$$

$$\Sigma M_{x} = 184.140 - 184.140 = 0$$

$$\Sigma M_{y} = \Sigma M_{yi} + \Sigma L_{i}F_{zi} + \ell(wt)$$

$$= [-96425.1 - 8162.1] + [64 (1658.17) + 32 (-48)] = -0.32$$

$$\Sigma M_{z} = \Sigma M_{zi} + \Sigma L_{i}F_{yi}$$

$$= [928.002 + 993.251] + [-64 (30.0196)] = -0.0014$$

Some round-off error is present and accounts for the - 0.0014 and - 0.32 values.

2. Stresses on a Pair of Adjacent Elements

Programming the same activity with the adjacent elements 376 and 439 produces the same results. Here moments are taken about node 34 Again some round-off error is apparent.

$$\Sigma F_{x} = 2356.21 - 2356.21 - 7152.63 + 7152.63 = 0$$

$$\Sigma F_{y} = 30.0196 - 30.0196 + 37.3235 - 37.3235 = 0$$

$$\Sigma F_{z} = 1658.17 - 1610.18 + 1543.84 - 1495.84 - 2 (48) = -0.01$$

$$\Sigma M_{x} = 184.140 - 184.140 + 227.651 - 227.651 = 0$$

$$\Sigma M_{y} = \Sigma M_{yi} + \Sigma L_{i}F_{zi} + \Sigma L_{i} (wt)$$

$$= [-96425.1 - 8162.1 + 9989.48 - 107259.] + [128 (1658.17) + 64 (-1610.18 + 1543.84)] + [96 (-48) + 32 (-48)] = -0.72$$

$$\Sigma M_{z} = \Sigma M_{zi} + \Sigma L_{i}F_{yi}$$

$$= [928.002 + 993.251 + 1203.79 + 1184.85] - [128 (30.0196) + 64 (-30.0196 + 37.3235)] = -0.065$$

3. Stresses on Entire I-Beam

Similarly, the above quantities can be calculated for all the elements which make up the I-beam. Table B.2 lists and sums the elemental forces and moments as calculated by a typical ANSYS finite element program. The total force in the z direction is equal to the opposing weight force of the beam. The sums of the total moments about the y- and z- axes take into account moment inducing eccentric forces in the Z and Y directions, respectively. Due to round-off errors magnified by the number of terms and length of the beam neither moment sum (29.997 or -0.0214) vanishes completely.

B. SHEAR AND MOMENT DIAGRAMS

These data produced by the ANSYS Finite Element Computer Program can also be used to calculate stresses throughout the beam or in any particular element. To demonstrate this, again consider element 376 of the longitudinal I-beam and its stresses in Table B.1. The stresses on the element in the X-Z plane are diagrammed in the freebody diagram in Figure B.3a. From these values the shear and moment diagrams in Figure B.3b are derived.

B-5

1111111

a.) X-Z Plane Freebody Diagram, Element 376

b.) Shear and Moment Diagrams

FIGURE B.3. FREEBODY, SHEAR, AND MOMENT DIAGRAMS OF ELEMENT 376

1

TABLE B.2. SUMMATION OF NODAL FORCES AND MOMENTS

			-		~		-		•	-	-			-	-		~~~				-	-		_	Т	
LIFyi	-32769199	4047 /447	4076.4168	5341.7664	3759.0208	-7381.956	5327.36	-1848.096	862.4449	1173.928	-503.112	120.4734	1203 765	-1:92.40	3551.54	-2286.1696	3693.0432	- 225.44424	311.32776	12250.945	-15260.876	-421717.47	431932.08	6389.0712	-7425.1368	6702 1018
LIFzi	76991.668	-2051014	171116-06	-664705.44	475051.68	1141003.2	-897912.0	-308635.2	140717.76	103266.80	-4 3681 20	39796.05	64407.20	-61753.60	155567.36	-81517.072	123617.92	45730.776	-7-287-096	144774.03	-192697.68	1093940.1	- 1121993.8	400591.60	-477936.4	221.294
Mzi	-291.164	-573.966	-633.862	-860.270	-722.472	-737.569	-816.529	446.482	-539.171	238.224	432.591	928.002	993.251	1203.79	1184.85	730.839	676.035	61.3202	24.0632	-1261.86	-1748.08	4083.03	6131.57	- 591.441	-444.623	6702.0804
Myt	1432.03	16311.6	32853.5	-32171.2	230657.0	-230716.0	5111.33	9102.79	0.950731	-156413.0	97787.7	-96425.1	-8162.10	99A9.4B	-107259.0	108711.0	-157339.0	158416.0	-139459.0	140639.0	-103851.0	87584.0	-61068.8	66079.7	-254.967	-194 297
M _X t	-59.2	-112.8	112.8	-158.0	158.0	-264.7	264.7	-94-7	64.7	117.0	-117.0	184.1	-184.1	227.7	-227.7	135.1	-135.1	10.0	-10.0	-284.3	284.3	0.0001	-7330.0	-111.9	111.9	•
Fzt	229.627	-744.207	792.204	-3077.34	3125.34	7506.60	-7432.60	-2571.96	2619.96	1844.05	-1820.05	1658.17	-1610.18	1543.64	-1495.24	733.818	-735.821	-272.207	320.203	-624.026	666.774	-3 785 . 26	3790.51	-1353.35	1389, 35	516
Fyi	-9.52593 6 57593	-18.8723	18.8723	-24 7304	24.7304	-48,5655	46.5655	-15.4008	15.4008	20.9630	-20.9530	9610°0E	-30.0196	37.3225	-37.3225	21.9824	-21.9824	1. 34193	-1.34193	-52 8055	52.8058	1459.23	-1459.23	-21.5847	21.5847	0
F _{X1}	-367.5	1604.6	-1604.6	12235.1	-12235.1	13967.5	-13967.5	9297.3	-9297.3	9493.2	-9493.2	2356.2	-2376.2	-71526.0	71526.0	-14261.7	14261.7	-15984.8	15994.8	-13305.5	13305.5	-10083.4	10083.4	-3205.4	3206.4	0
r, r	086 75E	250	216	216	152	152	120	120	26	ŝ	24	54	07-	67-	-104	-104	-168	-168	-232	-232	-259	-2.65	-296	-296	-3:5	,
Blecent Veight	48	57		87		24		87		2		48		87		87		87		42.75		5.75		36	2	5%6
Node	2 7	9.0	10	10	14	14	18	81	32		26	26	8	8	ž	34	35	35	5	3	67	67			2	
Elecent	55	124		200	_	272		320		07 11		376		627		565		562		629		619		454		

* L_- Length From Node To 1-Bend C.C.

TAZLE 3.2.

 $\Sigma_{M} = \Sigma_{M} + \Sigma_{L1} P_{e1} = 26.997 / (Round-Off Error)$ About C.G. $\Sigma_{M} = \Sigma_{M} + \Sigma_{L1} P_{M} = -0214 /$ About C.G.

APPENDIX C

INTERPRETATION OF STRESS PLOTS

INTERPRETATION OF STRESS PLOTS

One of the output options with the ANSYS finite element analysis program is the plotting of shell and plate stresses. These are the maximum and minimum in-plane stresses calculated by ANSYS for each element of the model. Given information specifying a particular shell or surface of the model, the routine plots the surface and its isostress lines which are contour lines connecting points within the geometric profile having equal stress values. Stress plots are similar to topographic maps; they indicate lines of constant stress rather than constant elevation.

Along with other information in the element summaries produced by ANSYS, the calculated maximum and minimum stresses are tabulated. Similarly, both maximum and mimimum stresses can be plotted as they are in this volume. A maximum stress plot presents lines connecting the maximum stresses of all the elements of the desired surface. These lines may be either tensile or compressive stresses since the maximum stress of an element completely in compression would be a compressive stress. Similarly, a minimum stress plot indicates lines of constant stresses which are the minimums of the elements shown and could be tensile as well as compressive. In both cases, dashed stress lines indicate the boundary of tensile and compressive stresses, that is, the line of zero stress. Although in this volume the signs of the stresses are not indicated, they can be determined by comparing the plots of maximum and minimum stresses. Lines parallel in both plots are of the same sign; perpendicular of opposite sign.

The stress contours, or lines, of the plots are drawn at equal intervals of stress such that each line indicates an increase or decrease of, for example, 100 psi over its neighbor. Where isostress lines are spaced widely, stresses change gradually, similar to how a rolling plain is indicated

C.2

on a topographic map. As stress lines become more crowded stress concentrations, akin to cliffs topographically, occur. The concentrations may be of compressive or tensile stresses. -danse ereal a delucio ereca erector e con a constante con a constante con a constante e constante e constante Com erectore provente all'Alla de constante constante con a constante constante constante constante e constante

...

EXPLODED ISOMETRICS

EXPLODED ISOMETRICS OF SELECTED MOBILE HOME STRUCTURE

Prepared by C. R. Ursell, II E. O. Wiles

ABSTRACT

Exploded isometric drawings of selected areas of the mobile home structures are presented in this volume. Essentially, the drawings are freebody diagrams of elements of the finite element model depicting loads imposed upon these elements by various static and dynamic load conditions and the resulting in-plane stresses. The elements diagramed from the various areas of the structure are those with the greatest stresses compressive as well as tensile - as computed by the finite element analysis.

TABLE OF CONTENTS

		Page
LIST	OF FIGURES	. iv
LIST	OF TABLES	.viii
DEFIN	NITIONS	. ix
I.	INTRODUCTION	. 1
II.	DISCUSSION	. 5
III	PERFORMANCE EVALUATION	.87

•

.

LIST OF FIGURES

FIGURE		PAGE
1	T. 1 Mobile Home Exploded Isometric	10
-		11
2	T-1 Roof Truss to Side Wall Framing	••±⊥
3	T-1 Roof Membrane/Side Wall Interface	12
4	T-1 Roof Truss to Ceiling Attachment	13
5	T-1 Side Wall/End Wall Interface	14
6	Freebody Diagrams - T-l Side Wall/End Wall Interface	.15
7	T-1 Door Frame Interface with Side Wall	.16
8	Freebody Diagrams – T–1 Door Frame Interface With Left Side Wall	.17
9	Freebody Diagrams - T-1 Door Frame Interface With Rear Right Side Wall	.18
10	Freebody Diagrams - T-l Door Frame Interface With Front Right Side Wall	.19
11	T-1 Window Glazing	.20
12	Freebody Diagrams - T-l Left Side Wall Adjacent to Window	.21
13	Freebody Diagrams - T-l Right Side Wall Adjacent to Window	.22
14	Freebody Diagrams - T-l Rear Wall Adjacent	^ 2
		.23
15	Freebody Diagrams - T-l Front Wall Adjacent to Window	.24
16	T-1 Exterior Siding at Forward Side	.25
17	T-1 Side Wall Paneling - Interior	.26
18	Freebody Diagrams - T-l Right Side Wall Paneling Interior	.27
19	Freebody Diagrams - T-1 Left Side Wall Paneling Interior	.28

LIST OF FIGURES (Cont'd)

FIGURE	PAGE
20	T-1 End Wall Paneling29
21	Freebody Diagrams - T-1 Front End Wall Paneling
22	Freebody Diagrams - T-1 Rear End Wall Paneling
23	T-1 Interior Partition to Ceiling and Side Wall
24	Freebody Diagrams - T-l Interior Partition to Ceiling and Side Wall
25	T-1 Floor Over Axle
26	Freebody Diagrams - T-1 Floor Over Axles
27	T-1 Hall Floor Over Outriggers
28	Freebody Diagrams - T-1 Hall Floor Over Outriggers
29	T-1 Floor Joint
30	Freebody Diagrams - T-l Floor Joint
31	Chassis and Running Gear40
32	T-1 Front Bath and Components41
33	T-1 Rear Bath and Related Components42
34	T-1 Central Heater to Vent43
35	T-l Finite Element Model45
36	T-2A (Wet Side) Double-Wide - Exploded Isometric48
37	T-2B Double-Wide - Exploded Isometric
38	T-2A/B Double-Wide - Roof to Side Wall Fastenings50
39	T-2A/B Double-Wide - Roof Truss Assembly51
40	T-2A/B Double-Wide - Roof Truss to Ceiling Attachment
41	T-2B Double-Wide - Exterior Siding at Forward Side

LIST OF FIGURES (Cont'd)

FIGURE	PAGE
42	T-2B Double-Wide - Window Glazing, Living Room54
43	Freebody Diagrams - T-2B Window Glazing, Living Room
44	T-2A/B Double-Wide - Right Side Wall Paneling
45	Freebody Diagrams - T-2A Right Side Wall Paneling
46	Freebody Diagrams - T-2B Right Side Wall Paneling
47	T-2A/B Double-Wide - Left Side Wall Paneling
48	Freebody Diagrams - T-2A Left Side Wall Paneling
49	Freebody Diagrams - T-2B Left Side Wall Paneling61
50	T-2A/B Double-Wide - Front End Wall Paneling62
51	Freebody Diagrams – T–2A Front End Wall Paneling
52	Freebody Diagrams - T-2B Front End Wall Paneling
53	T-2A/B Double-Wide - Rear End Wall Paneling65
54	Freebody Diagrams - T-2A Rear End Wall Paneling
55	Freebody Diagrams - T-2B Rear End Wall Paneling
56	T-2A/B Double-Wide Interior Partition to Ceiling and Side Wall68
57	Freebody Diagrams - T-2A Interior Partition to Ceiling and Side Wall
58	Freebody Diagrams - T-2B Interior Partition to Ceiling and Side Wall70
5 9	T-2A/B Double-Wide - Floor Over Axle

LIST OF FIGURES (Cont'd)

FIGURE	PAGI
60	Freebody Diagrams - T-2A Floor Over Axle72
61	Freebody Diagrams - T-2B Floor Over Axle73
62	T-2A/B Double-Wide - Floor Joint74
63	Freebody Diagrams - T-2A Floor Joint75
64	Freebody Diagrams - T-2B Floor Joint
65	T-2A Double-Wide - Chassis and Running Gear
66	T-2A Double-Wide (Wet Side) - Front Bath Component
67	T-2A Double-Wide - Rear Bath and Component
68	T-2A Double-Wide (Wet Side) - Central Heater Vent
69	T-2A Double-Wide - Finite Element Model82
70	T-2B Double-Wide - Finite Element Model8

LIST OF TABLES

TABLE	PAGE
1	Description of Load Cases and Load Conditions2
2	T-1 Element Directory44
3	T-2A Element Directory81
4	T-2B Element Directory84

DEFINITIONS

The following pages contain definitions of words or terms used in this document.

ANSYS - A large-scale general purpose computer program developed by Swanson Analysis Systems, Incorporated, Elizabeth, Pennsylvania. Analysis capabilities of the program include: (1) static and dynamic, (2) plastic, creep and swelling, (3) small and large deflection, (4) steady state and transient heat transfer, and (5) steady state fluid flow types of problems. The matrix displacement method of analysis based on finite element idealization of the structure is employed in the program. The library of finite element types in the program numbers more than 40 for static and dynamic analyses and 10 for heat transfer analyses. This variety of elements gives the program user the capability of analyzing frame structures, piping systems, two-dimensional plane and axisymmetric solids, flat plates, three-dimensional solids, axisymmetric and threedimensional shells, and nonlinear problems. In this study, the program is used for static analysis of the mobile home structure, idealized as an assemblage of bar, beam, and membrane elements.

ELEMENT - A component part of a structure for which the relationships between forces and displacements at a finite number of points (or nodes) on the element are known. In this study, elements used are bars, prismatic beams, tapered beams, and membranes.

NODAL POINT - A point in space where two or more elements are connected in the idealization of the structure.

DEGREE OF FREEDOM - The direction of force or displacement at a node. For example, the three-dimensional elastic beam element used in the study

ix

has two nodes, one at each end. The element has six degrees of freedom at each node: translations in the nodal x, y, and z directions and rotations about the nodal x, y, and z axes.

BOUNDARY CONDITIONS - Specified external loads and/or displacements applied at the nodes of the idealized structure.

RESTRAINT - A displacement boundary condition specified as zero in ANSYS. For example, if the node at the hitch is assumed stationary, displacements in the x, y, and z directions are all specified as zero.

MODULUS OF ELASTICITY - The slope of the stress-strain diagram of a material in the elastic range.

MASS DENSITY - The mass of a body per unit volume. When multiplied by the acceleration of gravity, the mass density becomes the specific weight in pounds per unit volume.

GRAVITY LOAD - Load applied to the structure by the weight of a component part.

EQUIVALENT STATIC LOAD - The load obtained by multiplying the weight of a structural component by its root-mean-square acceleration, as determined from the dynamic analysis (32 percent probability of not being exceeded or. multiply by a factor of 3 to obtain 99.9 percent probability).

MAXIMUM/MINIMUM IN-PLANE STRESSES - The maximum and minimum principal stresses acting in the plane of a membrane element. (Note that a membrane element is not capable of resisting a force component applied perpendicular to the plane of the element).

STRESS CONTOUR PLOT - A plot of a membrane element showing contours (or lines) of constant maximum or minimum stress levels.

EXPONENTIAL - Standard form of presentation of a number in E format, showing the number of places the indicated decimal must be moved to the right (plus exponent) or left (negative exponent). For examples, 1.4 E

х

+ 03 - 1400., and 1.4 = -02 = 0.014.

1.1

CARD SET - A group of input cards used in ANSYS for common input data (e.g., card set D defines the element types and card set E defines the nodes to which the elements are connected). The total conglomorate of all the various card sets forms the specified input data required to conduct a run of the program.

ISOTROPIC - Characteristic of a material that has identical properties in all directions.

19 C

I. INTRODUCTION

The dynamic and finite element static analyses have been demonstrated as an effective approach to analyze the structural behavior of the mobile home. The main purpose of this part of Task I was to investigate the effects of transportation on a unit through the use of exploded isometric drawings of selected areas of the mobile home structure. The dynamic analysis determined the accelerations generated during the transportation mode. The finite element static analysis generated the resulting stresses and displacements based on structure weight and the equivalent static loads developed in the dynamic analysis.

In this study, the aforementioned isometrics for mobile homes T-1, T-2A and B were made indicating the type of structure and method of assembly." These isometrics are used to display transportation and site installation stresses and forces not only on separate components or structural systems of a mobile home, but also on the integrated structure of the unit, where possible. Tables preceding the isometrics present the maximum and minimum in-plane stresses (i.e., greatest tensile and compressive stresses) of individual components of interest. These values were calculated in the finite element analysis for each load case developed. A summary of load case descriptions is shown in Table 1. In addition to the stresses, the finite element analysis can generate, upon request, the deflection and corner loads for each element, as well as the deflection for the overall unit. (Task I, Volume III.) The analysis, however, cannot generate cumulative damage of individual or isolated joints because:

. The basic conditions or parameters associated with each joint are not known at the start of each test.

The stresses and forces indicated in the isometrics are those present in the test units and are not to be interpreted as typical for all mobile homes.

1

TABLE 1

DESCRIPTION OF LOAD CASES AND LOAD CONDITIONS

	LOAD CASE 1	Gravity Load - Weight of Mobile Home Unit With Furnishings Included
CONDITION I	LOAD CASE 2	Furnishings Added With Dynamic Loading Induced by Well-Paved Road at 45 mph (Test Run No. 1)
	LOAD CASE 3	Furnishings Added With Dynamic Loading Induced by Well-Paved Road at 45 mph (Test Run No. 5)
CONDITION	LOAD CASE 4	Setup/Takedown (Jackup) Loading with Furnishings Included
II	LOAD CASE 5	Worst Case Condition - Furnishings Plus Dynamic Loading Induced by Paved, Secondary Road

- . As each joint degrades it is supported by the adjacent joints to which the unabsorbed load is transferred. Therefore, the stability or integrity of each joint is indeterminate by this method.
- Individual joint analysis for cumulative damage would be the source of a completely separate study requiring development of degradation curves that involve load, frequency, displacement and time from typical laboratory tests. Once such "jointcurves" were available, the loads or stresses and frequencies generated by the finite element analysis would be applied to the curves for the degree of degradation or the remaining useful life of each particular joint. Such a family of curves would have to assume a certain standard of integrity for each joint, although we know the integrity of joints varies considerably because of the construction/assembly methodology used for mobile home production.

In this program, it is important to note that the entire mobile home has been analyzed as an integrated structural unit via the dynamic and finite element methods. To develop the loads and stresses in each unit, the finite element analysis method divided each mobile home into hundreds of small elements to form a mesh. There exists a trade-off with regard to the mesh size: the finer the mesh, the more detailed and accurate the analysis, but the more points there are to analyze and the more costly the program to run.

The computer printout of the finite element program furnishes data over the entire unit. Results for particular components of the unit such as windows, doors, door openings, corner joints, wall attachments, etc. - are accessible from the data. If you want to investigate the effects of loads at any point in the structure, choose the element that represents this point from the mesh and follow through the computer printout (as indicated in Volume III) to determine the stresses and deflection for that particular loading condition. The stresses for the exploded isometrics were handled in this manner. For concentrated weight items - such

3

as the central heater, refrigerator or toilet - the equivalent static load was obtained by applying the acceleration in the area of the item developed from the dynamic analysis to the c.g. of the component. A designer can use these equivalent static loads to provide adequate attachments for each component. In addition to the latter loads, the frequency of vibrations of the component generated by road and speed conditions should be considered by a designer since this kind of stress has proven to be more damaging than that of the static loads. A frequency of between 5 and 10 Hz has been recorded as the average for the mobile homes tested. This frequency seems low, but when augmented by accelerations of 0.3 to 1.0 g's, these repetitive loadings can be damaging. An example is a toilet with only two hold-down screws that are inadequately anchored and improperly located. The screws are inserted into a plastic ring which is screwed into a particle board floor. The c.g. of the heavy unit is not located above the screws but toward the tank creating an eccentric loading condition. Because of vibrations, the soft wax seal cold flows and develops leaks. Two hold-down screws are inadequate to prevent this situation, which could result even on site as well as during transportation.

4

II. DISCUSSION

The exploded isometrics present selected areas of the mobile home structure and heavy-weight components listed as follows:

Structure

- Roof: (1) At the connection of the roof trusses to sidewall framing;
 - (2) At the roof membrane/sidewall interface;
 - (3) At the top and bottom chords of the roof trusses; and
 - (4) On top of the furnace vent outlet.
- Ceiling: At attachment to roof trusses.
- Exterior Walls: (1) At sidewall and endwall joint;
 - (2) At sidewall interface with window and doors;
 - (3) At window glazing; and
 - (4) On exterior siding panels.
- Interior Walls and Electrical:
- (1) On sidewall and endwall paneling;
- (2) On partition walls;
- (3) Juncture of sidewalls and ceiling; and
- (4) On selected snap-in type wall receptacles.
- Floor: (1) Over axle area;
 - (2) Along the hall or corridor;
 - (3) At joist splices and large notches; and
 - (4) At sliding doors, doors, and window cutouts.
- Frame (Chassis) and Running Gear:
- (1) On the large, longitudinal I-beam;
 - (2) On the cross-members;
 - (3) On the outriggers above the axles;
 - (4) On axles, wheels, tires, brakes and spring suspension; and
 - (5) On drawbar and coupling mechanism.
- Plumbing: (1) On the sink, tub and toilet; and (2) On the water heater.
- Heating & Cooling: (1) On the connection of the furnace vent at the furnace;
 - (2) At the supply duct connection with the furnace; and
 - (3) At the air conditioning unit (if internal A-frame mounted).

These items are detailed in the following sketches. A table is presented with those sketches of areas of the unit structure that have been modeled as elements in the finite element analysis; specifically, areas of the exterior and interior walls and the floor. The stresses, σ_{max} , σ_{min} , and τ_{max} , in the latter isometrics, are the prinicipal in-plane stresses. The calculations that support the drawings and the tabulated data are contained in the dynamic and finite element analysis in Task I, Volumes II and III.*

No tables accompany the sketches of areas of the mobile home and heavyweight components that have not been modeled in the analysis. Note that the celotex ceiling was not considered a load carrying item of the structure because data obtained in testing the module indicated that the installation, using staples and interlock attachments, offers little resistance as a panel, particularly in the torsion mode.

*The finite element computer printouts as well as the computer card program for T-1, T-2A and T-2B are available at SwRI.

EXPLODED ISOMETRIC DRAWINGS

7

The freebody diagrams on the following pages are of the form below. This figure is intended as a guide with which to interpret the later diagrams. Units are indicated here for forces and stresses. In-plane membrane stresses are parallel to the mobile homes axes in most cases. From these, the maximum and minimum stresses, σ_{max} and σ_{min} , are rotated at some angle within the plane. RMS g accelerations are given for the dynamic Load Case 5 only -- not the static Load Case 4. These accelerations are in the vertical direction. Lateral accelerations are 3/4 of the vertical accelerations.

T-1

\$

- dout of the best hard that the

14 x 64 SINGLE-WIDE MOBILE HOME UNIT

9

FIGURE 1. T-1 MOBILE HOME EXPLODED ISOMETRIC

FIGURE 2. T-1 - ROOF TRUSS TO SIDEWALL FRAMING

The celotex was not considered as a structural component in the development of the finite element analytical model.

FIGURE 4. T-1 - ROOF TRUSS TO CEILING ATTACHMENT

For interior panel elements along the interface:

Loading Condition	Load Case ****	Max (PSI)	Elem.	Element * Location	Min (PSI)	Elem.	Element Location
	1	** 449	764	Lower Left Front	*** - 358	802	Lower R ight Front
Cond.	2	502	764	-	-408	802	-
I	3	505	764	-	-409	802	-
Cond.	4	328	737	Forward Left Side	-337	737	Forward Left Side
II	5	1002	764	-	-845	802	-

* Element locations are detailed in Table 2 and Figure 35.

** Positive stress value signifies tension on the element

*** Negative stress value signifies compression on the element

******** See Table 1 for details

FIGURE .5. T-1 - SIDEWALL/ENDWALL INTERFACE

LEFT SIDEWALL:

Leading Condition	**** Case	07 <u>1</u> 38 (PSI)	Elez.	Element Location*	Min ^G (PSI)	Elen.	Element Location*	Nox 7 (751)	Elen.	Element Location*
	1	** 111	229	Rear Left Side	*** -49	228	Rear Left Side	72	229	Rear Left Side
Coad.	_ 2	132	229	Rear Left Side	-46	228	Rear Leit Side	79	229	Rear Left Side
1	3	133	229	Rear Left Side	-45	228	Rear Loft Side	78	229	Rear Left Side
Cond.	4	61	175	Rear Left Side	-83	229	Rear Left Side	63	175	Rear Laft Side
TT	s	299	229	Rear Left Side	-50	228	Roar Left Side	148	729	Near Left Side

_

Loading Condition	Load Case	(751)	Elen.	Element Location*	G _{Min} (PSI)	Elen.	Element Location *	T (PSI)	Elem.	Element Location *
1. 1	1	333	267	Conter Right Side	-211	192	Rear Right Side	219	192	Rear Right Side
Cond.	2	371	267	Center Right Side	-232	192	Rear Right Side	140	192	Rear Right Side
I	3	374	267	Center Right Side	-234	192	Rear Right Side	242	192	Ruar Right Side
Coad.	4	134	156	Rear Right Side	-139	192	Rear Right Side	112	192	Rear Right Side
II	5	726	267	Center Right Side	-430	156	Rear Right Side	430	267	Rear Right Side

RIGHT SIDEWALL, REAR:

RIGHT SIDEWALL, FRONT:

Louding Condition	Load Case	Хах (PSI)	īlem,	Element Location*	Sin (751)	Elen.	Elerent Location *	Har (PSI)	Elez.	Element Location #
	1 -	159	524	Forward Right Side	-277	524	Forvard Right Side	215	524	Forward Right Side
Cond.	2	227	524	Forward Right Side	-355	524	Forward Right Side	291	\$24	Forward Sight Side
I	3	231	524	Forward Right Side	-360	524	Forward Right Side	296	524	Forward Right Side
Cond.	4	64	524	Forward Right Side	-208	524	Forward Right Side	136	524	Forward Right Side
п	5	614	524	Forward Right Side	-854	524	Forward Right Side	734	524	Forward Right Side

* Element locations are detailed in Table 2 and Figure 35.

** Positive stress value signifies tension on the element

*** Negative stress value signifies compression on the element
**** See Table 1 for details

FIGURE 7. T-1 - DOOR FRAME INTERFACE WITH SIDEWALL

х

XXX) - NODE

Stresses in elements adjacent to the windows are:

Loading	Load	Max O		Element	MinG	51 mm	Elevent	Hax T	rles.	Elepent Location *
Condition	Case	(FSI)	Elcm.	Location*	10517	Elen.	Bestieren			
		***		Rear	***	370	Center	250	314	Center Loft Side
		272	285	Leit Side	-202		Leit side			Contar
Cond.	2	287	285		-290	338		258	314	Left Side
т	3	284	285		-285	338	IT	254	314	Center Left Side
Cond.	4	162	285	11	-223	481	Center Left Side	148	314	Center Left Side
11	5	465	285	n	-483	569	Forward Left Side	376	314	Center Left Side
	1	233	190	Rear Right Side	-245	657	Forward Right Side	188	154	Rear Right Side
Cond.	2	260	435	Forward Right Side	-255	657	"	240	192	Rear Right Side
i	3	269	435	н	-255	657	n	244	435	Forward Right Side
Cond.	4	161	684	Forward Right Side	-208	657	"	154	684	Rear Right Side
11	5	722	435		-658	466	Center Right Side	626	466	Center Right Side
	1	38	18	Right Rear Center	-38	18	Right Rear Center	38	18	Righu Rear Conter
Coud.	2	47	17,18	11	-49	18		48	18	Right Rear Center
1	3	46	17,18	şı.	-47	18		46	18	Right Rear Conter
Cond.	4	37	13	Upper Rear Side	-63	10	Lover Rear Side	45	10	Lower Rear Side
11	5	104	17	Lower Right Rear	-107	18	Right Pear Center	105	10	l@ight Rear Center
	1	82	796	Right Front Side	-123	794	Center Tront	63	794	Center Front
CORd.	2	104	796	eì	-152	794		90	794	Center Front
I	3	103	796	н	-151	794	0	90	794	Conter Front
Cond.	4	58	786	Left Front Side	-44	796	Right Front Side	31	796	Right Front Side
11	5	283	796	Right Front Side	-298	794	Center Front	187	794	Center Front

Element locations are detailed in Table 2 and Figure 35.
 Positive stress value signifies tension on the element
 Negative stress value signifies compression on the element
 See Table 1 for details

1. Store

FIGURE 15. FREEBODY DIAGRAMS T-1 FRONT WALL ADJACENT TO WINDOW

LOAD CASE 5

RIGHT SIDE WALL:

Loading Condition	Load Case ****	(PSI)	Elen.	Element Location*	(PSI)	Elen.	Element Location
			**		***		
	1	333	267	Center Right Side	-283	754	Front Right Side
Cond.	2	371	267	-	-355	524	Forward Right Side
	3	364	267	-	-360	524	-
Cond.	4	164	756	Forward Right Side	-203	524	-
11	s	726	267	-	-354	524	-

LEFT	SIDE	WALL:
------	------	-------

Lozding Condition	Load Case ****	Max (PSI)	Elen.	Element Location*	Min (PSI)	Elen.	Element Location
	1	285	737	Forward Left Side	-294	737	I
Cond.	2	323	737	-	-334	737	
I	3	325	737	-	-335	737	-
Cond.	4	328	737	-	-377	737	-
II	5	659	737	-	-710	737	-

* Element locations are detailed in Table 2 and Figure 35.
 ** Positive stress value signifies tension on the element
 ***. Negative stress value signifies compression on the element
 *** See Table 1 for details

FIGURE 17. T-1 - SIDEWALL PANELING - INTERIOR

FIGURE 18. FREEBODY DIAGRAMS T-1 RIGHT SIDE WALL PANELING INTERIOR

ELEMENT 737

x

XXX -NODE

FIGURE 19. FREEBODY DIAGRAMS T-1 LEFT SIDE WALL PANELING INTERIOR

.

FRONT	WALL:
TINCHT	and the second

Loading Condition	**** Case	イ _{Max} (PSI)	Elem.	Element Location*	(PSI)	Elem.	Element Location*
	1	** 449	764	Lower Left Front	*** -367	778	Front Botton
Cond.	.2	502	764	Lower Left Front	-409	778 \$ 802	Front Bottom
I	3	505	764	f Lower Left Front	-40'3	778	Front Bottom
Cond.	4	296	802	Lower Right Front	-295	802	Front Bottom
п	5	1002	764	Lower Left Front	-845	802	Front Bottom

REAR	WALL:
a came and	

Loading Condition	**** Case	V Max (PSI)	Elen.	Element Location*	Min (PSI)	V Load Case	Element Location *
	1	38	18	Right Rear Center	-38	18	Right Rear Center
Cond.	2	47	17 & 18	Right Rear Center	-49	18	Right Rear Center
I	3	46	17 & 18	Right Rear Center	-47	18	Right Rear Center
Cond.	4	37	13	Upper Rear Side	-63	10	Lower Rear Side
II	5	104	17	Lower Right R ear	-107	18	Right Rear Center

* Element locations are detailed in Table 2 and Figure 35.

** Positive stress value signifies tension on the element
*** Negative stress value signifies compression on the element
**** See Table 1 for details

FIGURE 21. FREEBODY DIAGRAM

T-1 FRONT END WALL PANELING

FIGURE 22. FREEBODY DIAGRAMS T-1 REAR END WALL PANELING

In the finite element model, the different sections of the unit (floor, sidewalls, ceiling, etc.) were "pinned" at the nodal points at the floor and ceiling lines to simulate the unit's stiffness. The shear stresses, therefore, for this model will be zero along the partition/sidewall and partition/ceiling interfaces. Values for the individual wall panels do exist, however.

Loading Condition	Load Case ***	Max (PSI) U	Elen.	Element Location*	Min (PSI) G	Elem.	Eleacnt Location [*]	Max (PSI) T	Elca.	Element Location *
	1	** 294	224	Interior Enll C	*** -324	224	Interior Kall E	309	224	Interior Sall E
Cond.	2	314	224	Interior Wall E	-361	224	Interior Wall E	337	224	Interior Wall E
I	3	318	224	Interior Wall E	-263	224	Interior Vall E	343	224	Interior Vall S
Cond.	4	117	103	Interior Wall 5	-130	224	Interior Kall E	115	224	Interior Mall I
II	5	578	224	Interior Wall 3	-751	224	Interior Wall E	665	224	Interior Nall E

* Element locations are detailed in Table 2 and Figure 35.

****** Positive stress value signifies tension on the element

. Negative stress value signifies compression on the element * See Table 1 for details

FIGURE 23. T-1 - INTERIOR PARTITION TO CEILING AND SIDEWALL

FIGURE 24. FREEBODY DIAGRAMS T-1 INTERIOR PARTITION TO CEILING AND SIDE WALL

t SPRING HANGERS pristicks Bares Floor エーロミムト NXU

I V Max (PSI	() Elem.	Element * Location	Q _{Min} (Psi)	Elem.	Element Location
2 * 2	** 245	Right Side	*** -39	245	
57	245	ſ	-38	245	ł
59	245	I	-38	245	I
33	281	Left Side	-15	281.	1
170	250	Left of Ctr.	-181	250	1

Element locations are detailed in Table 2 and Figure 35. *

**

Positive stress value signifies tension on the element Negative stress value signifies compression on the element See Table 1 for details ****

FIGURE 25. T-1 - FLOOR OVER AXLE

ELEMENT 281 LOAD CASE 4 $\sigma_{max} = 33$ $\sigma_{min} = -15$

x

Z

FIGURE 26. FREEBODY DIAGRAMS T-1 FLOOR OVER AXLES

15 Behind Axles -39 164 Behind Axle	Element ^W Min Element em. Location* (PSI) Elem. Location
21534 21532	215 Behind Axles -39 21534 215 -32
27 215	* 26 ** 215 27 215
Cond. 1	****

Element locations are detailed in Table 2 and Figure 35. *

FIGURE 27. T-1 - HALL FLOOR OVER OUTRIGGERS

^{**}

Positive stress value signifies tension on the element Negative stress value signifies compression on the element See Table 1 for details ***

^{****}

FIGURE 28. FREEBODY DIAGRAMS T-1 HALL FLOOR OVER OUTRIGGERS

Loading Condition	**** Load Case	o _{Max} (PSI)	Elem.	Element* Location	O _{Min} (PSI)	Elem.	Element Location
Cond.	1	117**	357	Forward of Axles	- 86***	158	Behind Axles
	2	121	357	-	-107	158	
I	3	119	357	-	-111	158	
Cond.	4	55	357	-	- 84	158	-
II	5	180	357	-	-2 82	158	-

NOTE: σ_{\max} and σ_{\min} are the in-plane principal stresses.

* Element locations are detailed in Table 2 and Figure 35.
.** Positive stress value signifies tension on the element
*** Negative stress value signifies compression on the element
*** See Table 1 for details

FIGURE 29. T-1 - FLOOR JOINT

ELEMENT 357

= 2.11 g_{rms}

T-1 FLOOR BEHIND AXLES

 $\frac{\text{LOAD CASE 4}}{\sigma_{\min}} = -84$

ELEMENT 158

Y.

g_{rms}= 1.63

XXX) -NODE

FIGURE 31. CHASSIS AND RUNNING GEAR

FIGURE 32. T-1 - FRONT BATH AND COMPONENTS

FIGURE 33. T-1 - REAR BATH AND RELATED COMPONENTS

g_{rms}= 1.63 to 1.71 g's

FIGURE 34. T-1 - CENTRAL HEATER TO VENT

TABLE 2

T-1 ELEMENT DIRECTORY

FIENENT	NODA	. CONNE	CT POINTS*		
NO.	Į× *	1**	K××	1.**	
10	555	559	560	\$56	
13	557	561	562	558	
17	559	563	564	560	
18	560	564	565	561	
96	114	120	115	115	
97	115	120	121	116	
5.					
103	607	609	610	608	
136	120	125	126	121	
152	272	268	267	271	
155	271	267	266	270	
159	123	128	129	129	
138	125	121	132	126	
164	125	265	366	363	
1/5	302	202	468	473	
180	4/4	409	900	274	
186	2//	2/2	2/1	279	
190	276	274	2/3	2/5	
192	273	270	269	275	
215	131	137	138	132	
224	625	681	682	626	
228	364	367	369	365	
229	365	369	366	366	
235	479	473	478	478	
241	280	277	276	279	
245	134	140	135	135	
250	136	141	142	137	
267	285	280	279	279	
281	142	147	148	143	
285	370	375	376	373	
205					
31/	375	379	380	376	
229	381	384	382	382	
357	158	163	164	164	
337	1.50		***		
125	202	20.8	297	301	
435	302	202	301	305	
460	300	102	200	309	
481	397	402	390	390	
	216	212	212	215	
524	310	212	110	104	
546	405	409	410	404	
589	409	412	410	410	
4.47			201	222	
657	324	322	321	323	
684	330	326	325	329	
				0.07	
733	226	231	232	227	
737	419	421	422	422	
754	337	334	333	336	
756	336	333	335	335	
764	575	579	580	576	
778	579	585	586	580	
786	581	583	584	582	
794	587	595	591	588	
796	591	595	596	592	
	60.2	507	59.8	504	

*See Figure 35 for nodal point locations. **Computer reference symbols

FIGURE 35. T-1 - FINITE ELEMENT MODEL

FIGURE 35 (Cont'd)

T-2 24 x 56 DOUBLE WIDE MOBILE HOME UNIT

FIGURE 38. T-2A/B DOUBLE-WIDE - ROOF TO SIDEWALL FASTENINGS

finite element analysis.

50

FIGURE 41 . T-2B DOUBLE-WIDE - EXTERIOR SIDING AT FORMARD SIDE

Stress in elements adjacent to the windows are:

Load Case	σ max (PSI)	Elen.	Element Location*	σmin (PSI)	Elem.	Element Location	max T (PSI)	Elem.	Element Location
1	** 251	391	Center Right Side	*** -238	470	Center Right Side	234	469	Center Right Side
2	281	391	Center Right Side	-266	470	Center Right Side	261	469	Center Right Side
4	19	527	Center Right Side	-25	527	Center Right Side	22	527	Center Right Side
5	38	389	Center Right Side	-31	390	Center Right Side	34	390	Center Right Side

- ** Positive stress value signifies tension on the element.
- *** Negative stress value signifies compression on the element **** See Table 1 for details.

FIGURE 42. T-2B DOUBLE-WIDE - WINDOW GLAZING - LIVING ROOM

^{*} Element locations for T-2A are detailed in Table 3 and Figure 69; for T-2B, Table 4 and Figure 70.

.

RIGHT	SIDEWALL:	
-------	-----------	--

	toad Case	C max (PSI)	Elen.	Element Location*	ơ min (PSI)	Elem.	Element Location
	1	** 194	853	Front Right Side	*** -85	852	Front Right Side
- 24	2	205	853	Front Right Side	-92	852	Front Right Side
1-28	4	77	48	Rear Right Side	-78	48	Rear Right Side
	5	103	327	Center Right Side	-119	327	Center Right Side
	1	251	391	Center Right Side	-238	470	Center Right Side
	2	281	391	Center Right Side	-238	729	Center Right Side
т-2в	4	123	88	Rear Right Side	-135	87	Rear Right Side
	5	115	362	Center Right Side	-125	362	Center Right Side

* Element locations for T-2A are detailed in Table 3 and Figure 69; for T-2B, Table 4 and Figure 70.

- ** Positive stress value signifies tension on the element
- *** Negative stress value signifies compression on the element

**** See Table 1 for details.

FIGURE 44. T-2A/B DOUBLE-WIDE - RIGHT SIDE WALL PANELING

(XXX)- NODE

LOAD CASE 5 FIGURE 45. FREEBODY DIAGRAMS T-2A RIGHT SIDE WALL PANELING dickels of the state of the

	Load Case	J max (PSL)	Elem.	Element Location*	σ cin (PSI)	Elen.	Element Location *
	1	144	410	Center Left Side	-153	834	Pront Left Side
	2	152	410	Center Left Side	-158	834	Front Left Side
T-2A	4	68	307 ·	Center Left Side	-184	410	Front Left Side
	5	446	410	Center Left Side	-169	834-	Front Left Side
	1	62	103	Rear Left Side	-37	64	Rear Left Side
	2	76	103	Rear Left Side	-46	64	Rear Left Side
T-28	4	8	103	Rear Left Side	-5	103	Rear Laft Side
	5	102	103	Rear Left Side	-110	103	Rear Left Side

LEFT SIDEWALL

- * Element locations for T-2A are detailed in Table 3 and Figure 69; for T-2B, Table 4 and Figure 70.
- ** Positive stress value signifies tension on the element
- *** Negative stress value signifies compression on the element **** See Table 1 for details

FIGURE 47. T-2A/B DOUBLE-WIDE - LEFT SIDE WALL PANELING

XXX - NODE

LOAD CASE 5 FIGURE 49. FREEBODY DIAGRAMS T-2B LEFT SIDE WALL PANELING

0

FLOOR LINE

	**** Load Case	σ max (PSI)	Elem.	Element Location*	σ min (PSI)	Elem.	Element Location
	1	** 105	890	Lower Front	*** -168	889	Lower Front
	2	110	890	Lower Front	-177	889	Lower Front
T-2A	4	12	889+ 903	Lower Front	-18	902	Center Front
	5	40	908	Right Front	-29	889	Lower Front
	1	89	866	Lower Front	-124	871	Center Front
~ *	2	92	866	Lover Front	-127	871	Center Front
1-28	4	26	871	Center Front	-27	873	Upper Front
	5	65	866	Lower Front	-67	866	Lower Front

FRONT ENDWALL:

* Element locations for T-2A are detailed in Table 3 and Figure 69; for T-2B, Table 4 and Figure 70.

** Positive stress value signifies tension on the element
*** Negative stress value signifies compression on the element
**** See Table 1 for details

FIGURE 50. T-2A/B DOUBLE-WIDE - FRONT END WALL PANELING

.

REAR	ENDWALL.	

	**** Load Case	σ min (PSI)	Elem.	Element Location*	0 min (PSI)	Elen.	Element Location
	1	19	2	Lover Rear	-19	2	Lover Rear
- 24	2	21	2	Lower Rear	-21	2	Lower Rear
1-14	4	48	8	Left Rear	-48	6	Center Rear
	5	197	2	Lower Rear	-194	2.	Lower Rear
	1	19	6	Lover Rear	-20	6	Lower Rear
	2	17	9	Lower Reat	-18	9	Upper Rear
T-2B	4	58	9	Lover Rear	-59	9	Upper Rear
	5	6	6	Right Kear	-6.	6	Right Rear

* Element locations for T-2A are detailed in Table 3 and Figure 69; for T-2B, Table 4 and Figure 70.

- ** Positive stress value signifies tension on the element
- *** Negative stress value signifies compression on the element
 **** See Table 1 for details

FIGURE 53. T-2A/B DOUBLE-WIDE - END WALL PANELING

LOAD CASE 4

XXX- NODE

FIGURE 54. FREEBODY DIAGRAMS T-2A REAR END WALL PANELING

Having "pinned" all components of each unit at the wall/floor and wall/ceiling interfaces, the shear stresses along these surfaces will be zero. However, values for the individual wall panels do exist.

2	Load Case	σ max (PSI)	Elem.	Element Location*	σ min (PSI)	Elem.	Element Location	max T (PSI)	Elem.	Element Location
	1	•• 75	791	Interior Mall I	-63	191	Interior Wall B	66	791	Interior Wall I
T_24	2	78	791	Interior Wall I	-75	191+ 293	Interior Wall B	68	791	Interior Wall I
1-24	4	146	349	Interior Wall J	-217	349	Interior Wall J	181	349	Interior Wall
	5	766	349	Interior Wall J	-1331	349	Interior Wall J	1043	349	Interior Wall
	1	63	659	Interior Wall F	-75	181	Interior Wall B	64	181	Interior Wall B
т-2в	2	69	659	Interlor Wall F	-74	187	Interior Wall B	60	187	Interior Wall B
	4	57	667	Interior Wall K	~57	667	Interior Wall K	57	667	Interior Wall K
	5	202	667	Interior Wall K	-201	667	Interior Wall X	201	667	Interior Wall X

- * Element locations for T-2A are detailed in Table 3 and Figure 69; for T-2B, Table 4 and Figure 70.
- ****** Positive stress value signifies tension on the element
- *** Negative stress value signifies compression on the element **** See Table 1 for details

FIGURE 56. T-2A/B DOUBLE-WIDE - INTERIOR PARTITION TO CEILING AND SIDE WALL

FIGURE 58. FREEBODY DIAGRAMS T-2B INTERIOR PARTITION TO CEILING AND SIDE WALL

	****	U DAX	;	Element	a min		ßlement	
	Load Case	(ISI)	KI CB.	Location	(ISA)	Elen.	T,ocat for	
	1	** 45	359	Center Floor	θ£-	189	Rear Floor	
i	2	45	359	Center Floor	-40	189	Rear Floor	
1 7-1	4	169	348	Center Floor	C1/-	238	Rear Floor	
	S	368	359	Center Ploor	-543	238	Rear Floor	
	1	84	297	Center Floor	-34	121	Rear Floor	the second se
	2	84	297	Center Floor	-35	1/1	Rear Floor	
97-1	4	130	297	Center Floor	-158	213	Rear Floor	
-	5	346	297	Center Floor	-39	252	Rear Floor	

- Element locations for T-2A are detailed in Table 3 and Figure 69 for T-2B, Table 4 and Figure 70. * **
 - Positive stress values signifies tension on the element ***

Negative stress value signifies compression on the element See Table 1 for details ****

Figure 59. T-2A/B DOUBLE WIDE - FLOOR OVER AXLE

FIGURE 60. FREEBODY DIAGRAMS T-2A FLOOR OVER AXLE

94

1834

208

FIGURE 61. FREEBODY DIAGRAMS T-2B FLOOR OVER AXLE

LOAD CASE 5

	**** Load Case	O max (PSI)	Elem.	Element Location*	σ min (PSI)	Elem.	Element Location
	1	** 45	359	Genter Floor	-40	188	Rear Floor
T-2A	2	48	359	Center Floor	-46	188	Rea: Ploor
	4	169	348	Center Floor	-298	238	Rear Floor
	5	388	359	Center Floor	-543	238	Rear Floor
	1	84	297	Center Floor	-47	803	Front Floor
T-28	2	84	297	Center Floor	-50	803	Front Floor
	4	130	297	Center Floor	-158	218	Rear Floor
	5	346	297	Center Floor	-140	801	Front Floor

 * Element locations for T-2A are detailed in Table 3 and Figure 69; for T-2B, Table 4 and Figure 70.
 ** Positive stress value signifies tension on the element

** Positive stress value signifies tension on the element *** Negative stress value signifies compression on the element

*** Negative stress value signifies compression on the element **** See Table 1 for details

FIGURE 62. T-2A/B DOUBLE WIDE - FLOOR JOINT

XXX- NODE

LOAD CASE 5

FIGURE 66. T-2A DOUBLE-WIDE (WET SIDE) - FRONT BATH COMPONENTS

FIGURE 67. T-2A DOUBLE-WIDE - REAR BATH AND COMPONENTS

FIGURE 68. T-2A (WET SIDE) DOUBLE-WIDE - CENTRAL HEATER VENT
TABLE 3

ELEMENT	NODAL CONNECT POINTS*			
NO.	I **	J **	K **	L **
2	1703	1701	1702	1704
188	1129	112/	1125	1120
190	1125	1134	1122	1130
109	1134	1139	1140	1135
191	1809	1811	1812	1810
293	1817	1819	1820	1818
359	1163	1168	1169	1164
410	1450	1456	1457	1457
791	1843	1845	1846	1844
834	1501	1504	1505	1502
852	1349	1251	1252	1250
853	1047	1051	1352	1350
000	1321	1323	1354	1352
883	1751	1753	1754	1754
890	1751	1754	1755	1752

T-2A ELEMENT DIRECTORY

*See Figure 69 for nodal point locations. **Computer reference symbols

FIGURE 69. T-2A DOUBLE-WIDE - FINITE ELEMENT MODEL

Numbers on the model indicate nodal point locations.

Note:

RIGHT SIDE

(Cont'd)

FIGURE 69

TABLE 4

ELEMENT	NODAL CONNECT POINTS*				
NO.	I.	J	К	L	
6	703	701	702	704	
9	709	707	708	710	
64	402	404	405	403	
103	406	408	409	407	
171	131	136	137	132	
181	811	813	814	812	
187	805	807	808	806	
107	005	007			
297	160	166	167	167	
391	339	342	343	340	
469	346	350	351	347	
470	350	354	355	351	
659	836	838	839	839	
729	380	383	381	381	
803	2 50	255	256	251	
866	751	753	754	752	
871	753	757	758	755	

T-2B ELEMENT DIRECTORY

*See Figure 70 for nodal point locations. **Computer reference symbols

FIGURE 70. T-2B DOUBLE-WIDE - FINITE ELEMENT MODEL

Numbers on the model indicate nodal point locations.

Note:

FIGURE 70. (Cont'd)

III. PERFORMANCE EVALUATION

At this point, the methodologies of the dynamic and finite element analyses have been revised and improved for the third time. Each program is now in a usable configuration. Task III will verify these analysis methodologies through the comparison of predicted data with that of the actual road tests.

Evaluation of the finite element analysis indicates areas of high stress, such as:

- Large openings like sliding glass doors and double windows;
- Front and rear doors;
- Maximum open spans (in the longitudinal direction);
- Joints that can be described as "soft" or "unstable" like the sidewall to roof joint with soft celotex in between or the sidewall to floor joint with asphalt or vinyl flooring in between;
- Over the axles, especially when large cutouts or doors are added in the sidewalls.

Of the above, the joints are believed to be the primary problem in the degradation of a mobile home. If one joint suffers a reduction in integrity or rigidity, then all or part of its load-carrying capability is transferred to the adjacent joints which, in turn, may be overloaded. This overloading of adjacent joints causes increased degradation within the joint and activates a sort of chain reaction of degradation along an entire length of joints, like the joints between the sidewalls and the roof trusses. For this reason, SwRI found torsion to be more critical in the degradation of a unit than the vertical bending mode. The application of adhesives significantly improved the integrity and rigidity of many of the joints in the mobile home system; but the remaining joints need to be similarly improved.

Furthermore, SwRI preliminary tests revealed that the galvanized metal roof cover of a mobile home offers no structural resistance to normal deflec-

tion of the unit structure during transportation. This lack of structural resistance to deflection is the result of the metal's tendency to wrinkle diagonally in either direction prior to becoming a tension member. Because the roof membranes are fastened with staples only around the folded down edges, any torsional deflections in the box structure introduce roof wrinkles in one direction, loading in tension at the edge attachments and shear at the lateral joints in the membrane. The repeated flexing and reversal of loading causes loosening of seals around vents, edge drop rails, lateral joints and edge attachments, inevitably causing water leaks in the ceiling and/or walls.

The use of plywood sheathing on roof trusses and under the galvanized metal membrane of mobile homes provides a significant increase in torsional rigidity in that such sheathing completes all sides of the torque box. The plywood then absorbs the loads the single metal membrane cannot, reducing the damage caused by the flexing metal roof.

For the most part, steel chassis strength is analyzed with respect to vertical loading. This is evidenced by the fact that "pre-cambering" of the longitudinal I-beams offsets vertical loading only. There are no calculations for the rigidity of the chassis in the torsional mode. In fact, many of the chassis have only lateral spacer angles between the I-beams particularly if the unit employs lateral floor joists. There are no tests for torsion on the chassis or box structure.

However, torsion tests conducted on each mobile home did reveal the significance of nonsymmetry in the cross-section of the units. Torsion in the cross-section was noted to be directly proportionate to the degree of torsional resistance in the counterclockwise direction versus the clockwise direction. In the single-wide, where all but one shear wall are attached to one side and the corridor is placed along the opposite side, the difference in torsional

resistance in the two directions was found to be significant. In the doublewide, the difference is further amplified by the lack of wall structure along the mating line. Even as a double-wide sits unsupported on the running gear, it indicates as much as 7 or 8 degrees asymmetrical loading in the direction of the exterior wall.

In tasks to follow, the concept, methodology, application, programs and results will be chronicled in the development and application of Task I's dynamic and finite element analyses.

*U.S. GOVERNMENT FRINTING OFFICE : 1980 0-625-542/1948

U.S. Department of Housing and Urban Development

451 Seventh Street, S.W. Washington, D.C. 20410

Official Business Penalty for Private Use, \$300

> Postage and Fees Paid U.S. Department of Housing and Urban Development HUD-401

FIRST CLASS MAIL

May 1980 HUD-PDR-545-1