AN EVALUATION OF THE COMMUNITY DEVELOPMENT

BLOCK GRANT FORMULA

AND DECAN DEVELOPMENT

MAR 24 1877

MASHINETEN, D.C. 20417

U. S. Department of Housing and Urban Development

AN EVALUATION OF THE COMMUNITY DEVELOPMENT

BLOCK GRANT FORMULA

U. S. Department of Housing and Urban Development

Prepared by: Harold Bunce Office of Policy Development and Evaluation Office of the Assistant Secretary for Policy Development and Research December, 1976

1 1: 0

PREFACE

I would like to thank Fred Eggers who has offered numerous comments and has provided much guidance during this study. In addition, he was very helpful during the final drafting of the report. I am grateful to Jim Broughman, who is certainly an expert on the community development formula, for several suggestions on earlier drafts. I would also like to thank John Gardner and Paul Burke for their comments on earlier drafts of the report.

Harold Bunce

CONTENTS

PREFACE

EXECUTIVE SUMMARY

Chapter 1 INTRODUCTION

Objectives of PD&R Study Methodology Limitations of Study Organization of Paper

Chapter 2 The PRESENT FUNDING MECHANISM

Full Funding Under the Present Formula SMSA Share Under Full Formula Funding Entitlement Cities Layering Effect Urban Counties SMSA Discretionary Balance SMSA Recipient Shares Under Full Formula Funding Non-SMSA Funds CDBG Funding During the Transitional Period (FY75-FY80) CDBG Funding Issues Criticisms of the Formula Approach Hold Harmless and "Extent of Program Experience" Summary and Conclusions

Chapter 3 A FRAMEWORK FOR FORMULA EVALUATION

Principles of Design of Grant Structures in Light of Basic Objectives Evaluation of the General Revenue Sharing Formula: Review Service Requirements (Needs) Index Needs Index Base on Demand Behavior Factor Analysis Statistical Methods Simple Correlation Coefficient Comparison of Correlation and Regression Analysis Multiple Regression Analysis Cities Weighted According to Population Size

Chapter 4 COMMUNITY DEVELOPMENT NEED

Input Variables for Factor Analysis of CD Need Need Indicators Need Indicator Correlations Regional Distribution of Need Variables Factor Analysis of Community Development Needs Varimax Rotated Factor Matrix Per Capita Need Scores Weighting the Factor Scores Total Need Score

Chapter 5 HOLD HARMLESS, THE PRESENT CDBG FORMULA, AND COMMUNITY DEVELOPMENT NEED

Hold Harmless Data
Relative Shares by Type of Recipient and by Population Size
Regional Analysis of Hold Harmless and The Present Formula Entitlement Cities
Gainer and Loser Comparisons: Entitlement Cities
The Responsiveness of Hold Harmless and The Present CDBG Formula To Community Development Need Correlation Analysis Regression Analysis
Summary and Conclusions

Chapter 6 EVALUATION OF ALTERNATIVE FORMULAS

Alternative Formulas Alternative Formulas and Community Development Need Correlation Analysis Correlations with a Total Needs Index Regression Analysis Regression Analysis Using a Total Needs Index Allocations to Central Cities Under Alternative Formulas Central City Allocations by Population Size and by Region Summary and Conclusion

Chapter 7 FISCAL CAPACITY, TAX EFFORT, AND A TOTAL EVALUATION INDEX

Fiscal Capacity Tax Effort Comprehensive Evaluation Index Summary and Conclusion

Chapter 8 POPULATION DECLINE AND COST OF LIVING

Characteristics of Declining and Growing Cities Cost Variations Summary and Conclusions

Chapter 9 ALLOCATIONS AMONG TYPES OF RECIPIENTS

Present Allocation Mechanism and Underlying Assumption Variation in Need by Size of City Central Cities Below 50,000 Population Dual Formula Approach Proposed Dual Formula System Allocation Between Urban and Rural Areas Summary and Conclusion

BIBLIOGRAPHY

Appendix	А	Variable definitions and Data Sources
Appendix	В	Review of Congressional Debate on CDBGs
Appendix	С	Formula Mathematics
Appendix	D	Abandonment Studies
Appendix	Ε	Correlations Among Selected Variables by Population Size
Appendix	F	Per Capita Need Scores for the 435 Entitlement Cities
Appendix	G	Phase-In Cities and Phase-Down Cities
Appendix	Н	Factor Analysis and Correlation Results Using Equally Weighted Cases
Appendix	Ι	Correlations Between Per Capita Amounts and Need Scores by Population Size
Appendix	J	Evaluation of Seven Additional Formulas: Alternative 8 to Alternative 14
Appendix	Κ	Comparison With Other Studies
		Institute for the Future Study
		Redistribution Effects of CDBGs in California
		Hardship Cities

LIST OF TABLES

Table 2.1 Variable and Formula Shares for Entitlement Cities, Urban Counties, and Balances of SMSAs Under the Present Formula

- Table 4.1 Correlations Among Need Variables; 435 Entitlement Cities
- Table 4.2 Correlations Among Selected Variables; 435 Entitlement Cities
- Table 4.3 Correlation Coefficients between (1) Percentage of Housing Units Built before 1939(PAGE1939), DENSITY, and (2) Selected Need Variables by Population Size
- Table 4.4 Regional Distribution of Need Variables
- Table 4.5 Varimax Rotated Factor Matrix
- Table 4.6 Factor Score Coefficients
- Table 5.1 Comparison of Hold Harmless Distribution with Present Formula Distribution by Type of Recipient, Fiscal Year 1976
- Table 5.2Comparison of Hold Harmless with Present Formula by
Population Size, Fiscal Year 1976, 515 Entitlement Cities
- Table 5.3 Hold Harmless Distribution by Region
- Table 5.4 Hold Harmless Distribution by Region and by Type of Recipient
- Table 5.5 Comparison of Hold Harmless Distribution with Present Formula Distribution by Region and City Type, Fiscal Year 1976, 515 Entitlement Cities
- Table 5.6 Average Percentages of Need Variables for Phase-In Cities and Phase-Down Cities, Fiscal Year 1976; 435 Entitlement Cities
- Table 5.7Relative Shares for Phase- In and Phase-Down Cities Under
the Categorical Programs and Under the CDBG Formula

Table 5.8 Range in Per Capita Amounts of Hold Harmless and the Present CDBG Formula by Region, Fiscal Year 1976; 515 Entitlement Cities

۷

- Table 5.9Correlation Coefficients Between (1) Per Capita Amounts and
(2) Per Capita Need Scores
- Table 5.10Correlation Coefficients Between (1) Per Capita Amounts
and (2) Need Variables
- Table 5.11Regression of Per Capita Amounts under Hold-Harmless
and the Present Formula on Per Capita Need Scores
- Table 6.1Coefficients of Correlation Between (1) Per Capita Amounts
Under Hold Harmless, the Present Formula, and Seven
Alternative Formulas, and (2) Per Capita Need Scores
- Table 6.2Coefficients of Correlation Between (1) Per Capita Amounts
under Hold Harmless, the Present Formula and Seven
Alternative Formulas and (2) Need Variables
- Table 6.3 Regression of Per Capita Amounts under Hold-Harmless, the Present Formula, and Four Alternative Formulas on Per Capita Need Scores
- Table 6.4Simple Regression of Per Capita Amounts under Hold-
Harmless, the Present Formula, and the Alternative
Formulas of Total Need (NEED)
- Table 6.5 Average Per Capita Amounts for Hold Harmless, the Present Formula, and Seven Alternative Formulas by NEED Score; 435 Entitlement Cities
- Table 6.6 Per Capita Amounts and Percentage Shares Allocated to 363 Central Cities under Hold Harmless, Present Formula, and Seven Alternatives
- Table 6.7Percentage of SMSA Appropriation Allocated to Central
Cities Under the Present Formula and Seven Alternative
Formulas by Population Size
- Table 6.8Per Capita Amounts for Central Cities Under Hold Harmless,
the Present Formula, and Alternative Formulas by Region
and by Population Size; 325 Central Cities

- Table 7.1 Coefficients of Correlation between Per Capita Income and Need Variables
- Table 7.2 Tax Effort by Region and by City Type, 435 Entitlement Cities
- Table 7.3 Correlation Coefficients between Tax Effort (TAXIINC) and Selected Variables by City Size, 430 Entitlement Cities
- Table 7.4Coefficients of Correlation between Tax Effort (TAXIINC)
and Per Capita Amounts Under the Present Formula and the
Seven Alternative Formulas by Population Size
- Table 7.5Coefficients of Correlation Between Tax Effort (TXEFFORT)
and Per Capita Amounts Under the Present Formula and the
Seven Alternative Formulas by Population Size
- Table 7.6 Correlation Coefficients Between (1) Per Capita Amounts Under Hold Harmless, the Present Formula, and Seven Alternative Formulas, and (2) a Comprehensive Evaluation Index
- Table 8.1 Entitlement Cities Ranked According to Per Capita Need Score
- Table 3.2 Need Indicators by Percent Change in Entitlement City Population, 1960-73
- Table 8.3Per Capita Need Scores by Percent Change in Entitlement
City Population, 1960-73
- Table 8.4Per Capita Formula Amounts by Percent Change in
Entitlement City Population 1960-73

Table 8.5 Coefficients of Correlation Between (1) Cost of Living Indexes and (2) Per Capita Formula Amounts and Need Variables, 38 Entitlement Cities

- Table 8.6 Coefficients of Correlation Between (1) Cost of Living Indexes and (2) Per Capita Formula Amount and Need Variables, 38 Entitlement Cities
- Table 9.1Varimax Rotated Factor Matrix from Factor Analysis of
303 Cities, Population Greater than 25,000
- Table 9.2 Average Per Capita Need Scores by City Size

- Table 9.3 Central Cities Below 50,000 Compared with Cities by Population Size in Terms of Need Variables and Per Capita Need Scores
- Table 9.4 Per Capita Amounts and Percentage Shares Under MAXPOR8, MAXPOR7, Present Formula, and Hold Hamrless by Type of Recipient and by Region; Shares Computed Relative to SMSA Totals
- Table 9.5 Percentage Shares for Formula Amounts and Selected Variables by Type of Recipient, Shares Computed Relative to U. S. Totals
- Table 9.6 Non-SMSA Share of Selected Variables, 1970 to 1976
- Table E.1 Correlations Among Selected Variables for 72 Entitlement Cities, Population less than 50,000
- Table E.2 Correlations Among Selected Variables for 140 Entitlement Cities, Population Between 50,000 and 75,000
- Table E.3 Correlations Among Selected Variables for 72 Entitlement Cities, Population Between 75,000 and 100,000
- Table E.4 Correlations Among Selected Variables for 94 Entitlement Cities, Population Between 100,000 and 250,000
- Table E.5Correlations Among Selected Variables for 31 EntitlementCities, Population Between 250,000 and 500,000
- Table E.6 Correlations Among Selected Variables for 21 Entitlement Cities, Population Between 500,000 and 1,250,000
- Table E.7 Correlations Among Selected Variables for 26 Entitlement Cities, Population greater than 500,000
- Table G.1 Need Varialbes, Tax Effort, and Per Capita Amounts for 35 New Phase-In Cities
- Table G.2 Need Variables, Tax Effort, and Per Capita Amounts for 192 Other Phase-in Cities
- Table G.3 Need Variables, Tax Effort, and Per Capita Amounts for 208 Phase-Down Cities
- Table H.1 Varimax Rotated Factor Matrix
- Table H.2 Coefficients of Correlation Between (1) Per Capita Amounts and (2) Per Capita Need Scores and Need Variables, 435 Entitlement Cities

- the Present Formula, and the Four Alternative Formulas on Per Capita Need Scores Table H.4 Simple Regression of Per Capita Amounts Under Hold Harmless, the Present Formula, and the Alternative Formulas on Total Need (NEED) Table H.5 Average Per Capita Amounts for Hold Hamrless, the Present Formula, and Seven Alternative Formulas by Need Score; 435 Entitlement Cities Table H.6 Per Capita Need Scores for 435 Entitlement Cities Table I.1 Coefficients of Correlation Between (1) Per Capita Amounts and (2) Per Capita Need Scores and Need Variables, 72 Entitlement Cities, Population less than 50,000 Table I.2 Coefficients of Correlation Between (1) Per Capita Amounts and (2) Per Capita Need Scores and Need Variables, 140 Entitlement Cities, Population Between 50,000 and 75,000 Table I.3 Coefficients of Correlation Between (1) Per Capita Amounts and (2) Per Capita Need Scores and Need Variables, 72 Entitlement Cities, Population Between 75,000 and 100,000 Table 1.4 Coefficients of Correlation Between (1) Per Capita Amounts and (2) Per Capita Need Socres and Need Variables, 94 Entitlement Cities, Population Between 100,000 and 250,000 Coefficients of Correlation Between (1) Per Capita Amounts Table I.5 and (2) Per Capita Need Scores and Need Variables, 31 Entitlement Cities, Population Between 250,000 and 500,000 Table I.6 Coefficients of Correlation Between (1) Per Capita Amounts and (2) Per Capita Need Scores and Need Variables, 21 Entitlement Cities, Population Between 500,000 and 1,250,000 Table I.7 Coefficients of Correlation Between (1) Per Capita Amounts
- and (2) Per Capita Need Scores and Need Variables, 26 Entitlement Cities, Population Greater than 500,000
- Table J.1 Co-fficients of Correlation Between (1) Per Capita Formula Amounts and (2) Per Capita Need Scores and Need Variables, 435 Entitlement Cities, ALT8 to ALT14
- Table J.2 Coefficients of Correlation Between (1) Tax Effort and (2) Per Capita Formula Amounts, ALT8 to ALT14
- Table J.3 Coefficients of Correlation Between (1) Per Capita Formula Amounts and (2) Per Capita Need Scores and Need Variables, 435 Equally Weighted Cases: ALT8 to ALT14

ix

Regression of Per Capita Amounts Under Hold Harmless,

Table H.3

- Table J.4Coefficients of Correlation Between (1) Per CapitaAmounts and (2) Per Capita Need Scores and NeedVariables, 72 Entitlement Cities, Populationless than 50,000, ALT8 to ALT14
- Table J.5Coefficients of Correlation Between (1) Per CapitaAmounts and (2) Per Capita Need Scores and NeedVariables, 140 Entitlement Cities, Population between50,000 and 75,000, ALT3 to ALT14
- Table J.6Coefficients of Correlation Between (1) Per
Capita Amounts and (2) Per Capita Need Scores and
Need Variables, 72 Entitlement Cities, Population
between 75,000 and 100,000, ALT8 to ALT14
- Table J.7Coefficients of Correlation Between (1) Per Capita
Amounts and (2) Per Capita Need Scores and
Need Variables, 94 Entitlement Cities, Population
Between 100,000 and 250,000. ALT8 to ALT14
- Table J.8Coefficients of Correlation Between (1) Per CapitaAmounts and (2) Per Capita Need Scores and NeedVariables, 31 Entitlement Cities, Population between250,000 and 500,000, ALT8 to ALT14
- Table J.9Coefficients of Correlation Between (1) Per CapitaAmounts and (2) Per Capita Need Scores and NeedVariables, 21 Entitlement Cities, Populationbetween 500,000 and 1,250,000, ALT8 to ALT14
- Table J.10 Coefficients of Correlation Between (1) Per Capita Amounts and (2) Per Capita Need Scores and Need Variables, 26 Entitlement Cities, Population Greater than 500,000, ALT8 to ALT14

1. Introduction

Title I of the Housing and Community Development Act of 1974 consolidated several categorical programs for community development into a single program of community development block grants (CDBGs). The title provides for a new system of allocating and distributing community development funds; an allocation formula based on population, amount of housing overcrowding, and extent of poverty (counted twice). Under the previous categorical system, funds were distributed to applicants on a competitive, case-by-case basis.

In order to provide for early Congressional reconsideration of the method for distributing assistance, Congress required that the Secretary of HUD submit a report, no later than March 31, 1977, which would contain the Secretary's recommendations for modifying, expanding, and applying provisions relating to the funding method, fund allocation, and basic grant entitlement determination. In making this report, the Secretary must conduct a study to determine how funds can be distributed in accordance with the maximum extent feasible by objective standards. This paper will present the methodology and results of the formula study conducted by the Office of Policy Development and Research at the request of the Secretary.

The main conclusions of this study are (1) the hold harmless distribution shows a weak relationship with community development need, (2) the existing formula is highly responsive to the poverty dimension but is not responsive to the non-poverty dimensions of CD need, and (3) a formula alternative that includes pre-1939 housing as formula factor should be considered as a replacement for the existing CDBG formula.

a. Objectives

The principal objectives of the study are the following:

- (1) To develop criteria that measure the variation in community development needs among entitlement cities.
- (2) To evaluate and compare the distributions of funds under the hold harmless continuation of the displaced categorical programs and the existing CDBG formula.
- (3) To design alternative formulas that increase the emphasis on those dimensions of community development need ignored by the existing CDBG formula.
- (4) To evaluate CDBG allocations under the alternative formulas, comparing them with the hold harmless continuation of the displaced categorical distribution, with the present formula, and with each other.

b. Methodology

Criteria are developed that measure the variation in community development (CD) needs among entitlement cities. To construct an index that positions each city with respect to CD needs, we have used the concept of a <u>need indicator</u>, a variable (e.g., poverty) which provides a rough indication of <u>relative</u> differences among cities. For example, if City A has a higher number of poor persons than city B, then A has the greater need for CDBG funds. Our criteria for selecting need indicators reflects the Congressional intent that CDBG funds be used to assist in the development of viable urban communities by providing decent housing, a suitable living environment, and expanding economic opportunities, principally for persons of low-and-moderate income.

Devising a relative needs index for each of the need variables selected is possible but would result in a very complicated analysis. Therefore, factor analysis is used to reduce the need indicators to five factors, each factor reflecting a different dimension of community development need. For each of these five dimensions of need, the factor analysis computes for each entitlement city a per capita needs score that can be used to measure the relative variation among cities in per capita need. The set of index scores and the need variables provide the basis for judging the current formula, the hold harmless mechanism, and several alternative formulas which seek to provide higher per capita allocations to those cities which have greater community development need. Correlation and regression techniques are used to measure the responsiveness and sensitivity of formulas to each needs index.

c. Limitations of the Study

This study focuses on the equitable distribution among <u>entitlement</u> cities of a <u>given</u> CDBG funding level. The analysis does not provide the information necessary to derive an optimal CDBG funding level. The study does not examine community development need in urban counties and balances of SMSA's. The study cannot determine the appropriate distribution of funds among recipient classes (entitlement cities, urban counties, SMSA balances).

The methods used in this distributional study cannot resolve issues such as (a) whether or not to include urban counties as entitlement recipients, (b) the population cutoff for entitlement cities, and (c) the SMSA/non-SMSA split. An open issue is the distribution of funds among classes of recipients. We know of no scientific method of establishing that the level of CD need in SMSA's is four times greater than outside SMSA's. Within SMSA's, it is not clear that the funds distribution among entitlement cities, urban counties, and SMSA balances is appropriate. However, our approach does provide information which is useful in addressing issues such as these. In addition, our methods cannot resolve transitional issues such as the optimal rates of phase-in of entitlement cities and phase-out of hold harmless cities. We do compare the present full formula distribution with a "pure" hold harmless distribution.

2. The Present Formula System

The primary purpose of Title I, to provide a suitable living environment to persons of low-and-moderate income, served as the guideline used in designing the needs formula. The formula assumes that a city's need for community development funds can be measured by a weighted combination of three factors (population, poverty, overcrowded housing) and that accurate data is available to operationalize this particular measure of city need. The needs formula provides the basis for computing (1) the total allocation for all entitlement cities and all urban counties; (2) the individual allocations for each entitlement city and urban county; (3) the share of each SMSA area of the SMSA balance; (4) the state area share of the non-SMSA portion. Once the latter two area shares are calculated the formula is not used to distribute funds (1) within SMSA areas to non-entitlement communities and (2) outside of SMSA's to individual units of government. These latter distributions (called discretionary funds) are made by HUD on the basis of applications from non-entitlement communities included within these two areas. Our estimates indicate that under full funding with the present formula, the total SMSA share (approximately 80% of total authorization) would be divided as follows: (1) 522 entitlement cities, 60%; (2) 73 urban counties, 12.5%; and (3) SMSA balance (discretionary), 27.5%. Added to the non-SMSA 20% (discretionary after HH phase down), this results in 42% of CDBG funds being issued on a discretionary basis (after HH phase down). This is a rather large share, given the goal of providing automatic funding on an objective needs basis.

The prospect of such a large discretionary share emerging with the phase down of hold harmless has raised two concerns. First, the administration of so large a discretionary fund would require a tremendous administrative work load, possibly accompanied by many of the same bureaucratic, red-tape problems that supposedly characterized the displaced categorical system.

The second concern over the 27.5 percent SMSA discretionary balance is based on the notion that the present formula is biased against "older, declining cities" and in favor of small communities located in the balance of SMSA's. Because this perception comes partly from reviewing which cities stand to lose funds over prior program levels, the concern is closely linked to the phase down of hold harmless.

Under the present law, the hold harmless provisions represent the primary method of achieving a smooth transition between the displaced categorical programs and the new block grant approach. Under the present law, beginning in 1978, hold harmless will be phased out by thirds and will completely disappear by 1980. One of the primary purposes of this study is to compare a "pure" hold harmless distribution with both the present formula and alternative formulas in terms of indexes of CD need, tax effort, and fiscal capacity. Close correlation between the hold harmless distribution and, for example, several of the dimensions of CD need would provide support for continuing some form of hold harmless.

3. Community Development Need

The need indicators include direct measures of urban blight and indirect surrogates. From case studies of housing abandonment and from the "social indicator" literature, we have selected variables that seem to be correlated with urban blight and neighborhood instability. Our list of community development need indicators follows: age of housing stock (pre-1939 housing), density, houses without adequate plumbing, overcrowded houses, lack of homeownership, unemployment, poor persons, households headed by a poor female, elderly persons, crime, poor persons under 18, nonwhite persons, and persons without a high school education. All variables were expressed in either percentage or per capita terms.

Factor analysis was used to reduce the need variables to five factors, each factor reflecting a different dimension of community development need. Each factor or dimension delineates a separate group of highly intercorrelated variables. The following table defines each dimension of CD need in terms of need indicators with high loadings.

	Dimension	Need Variables Defining Dimension
FACTOR 1	Poverty	Percent of poor persons, percent of female-headed households, percent non-white, percent of overcrowded houses, percent of houses without plumbing
FACTOR 2	Age of Housing Stock	Percent of houses built before 1939, percent of population over 65
FACTOR 3	Density	Percent of owner-occupied houses (negative), population per square mile
FACTOR 4	Crime and Unemployment	Crime rate, percent unemployed
FACTOR 5	Lack of Economic	Percent of population without a

For each of these five dimensions of need, we compute for each city a <u>per capita</u> score that can be used to measure the <u>relative</u> variation among cities in per capita need. For example, if city A has a higher percentage of houses built before 1939 than city B, then city A will receive the higher per capita need score on the second dimension. The scores are interpreted in per capita terms because the 13 need indicators used as input variables into the factor analysis were expressed in either percentage or per capita terms. In general, a city will receive a high score on a particular factor (dimension) if the city has a high percentage for each of those need variables that define the particular factor. For example, Birmingham receives a high score on the poverty dimension, Cambridge, on the age-of-housing-stock dimension, and New York City, on the density dimension. Each factor index has an average value of zero. To construct a <u>single</u> index of CD need, it is necessary to weigh each factor by its estimated importance. Given the difficulty of objectively determining the relative importance of each factor, we conduct most of the statistical analysis in terms of the five dimensions of CD need. However, because a total need score can neatly summarize the responsiveness of alternative formulas to CD need, and because we wanted to evaluate alternative formula using a total evaluation index that combines need with fiscal capacity and tax effort, we decided to assign weights to the factors and thereby compute a composite need score for each city. Our composite, per capita need score is computed by combining the factor index scores as follows:

NEED = .35 FACTOR 1 + .25 FACTOR 2 + .20 FACTOR 3 + .10 FACTOR 4 + .10 FACTOR 5. NEED has an average value of zero.

Within this needs framework, a formula is evaluated on the basis of the degree to which it distributes above average, per capita amounts to cities with above average, per capita need. The simple correlation coefficient between per capita amounts and per capita need scores indicates the degree to which a formula's allocation responds to need. A higher correlation indicates a closer association between a formula's allocation and need.

We supplement the correlation analysis with a multiple regression analysis, which estimates the change that occurs in per capita amounts with a change in a particular factor index score, holding the other four factor index scores constant. The regression analysis therefore allows us to compare formulas on the basis of their sensitivity to the different dimensions of CD need. We use regression analysis to determine the implicit emphasis that the formulas give to the various need dimensions.

4. <u>Hold Harmless, the Present CDBG Formula, and Community Development</u> Need

Small communities in urban counties, balances of SMSA's, and non-SMSA areas are favored under the present CDBG formula relative to the categorical programs. Central cities which received approximately 70 percent of categorical funds would receive only 42 percent under full-formula funding.

On a regional basis, cities in the South are favored under the present formula, primarily, because of the double weight given to the poverty factor. On a per capita basis, central cities in the South receive \$18.43, compared to \$15.98 in the Northeast, \$15.75 in the North Central region, and \$14.47 in the West. As a percentage of total funds going to the 515 entitlement cities, cities in the South, which received 27 percent of the categorical funds, would receive 31 percent under full formula funding; entitlement cities in the Northeast, which received 34 percent of the categorical funds going to the 515 entitlement cities, would receive only 26 percent under the formula. Compared to the hold harmless continuation of the categorical system, full funding under the present formula would reduce funding most in the larger cities, located primarily in the Northeast and North Central regions and characterized by an aged housing stock. The concern for our "older, deteriorating" cities is therefore closely linked with the phase down of hold harmless. For example, the average percentage of housing units built before 1939 for those entitlement cities that would lose funds is 53 percent, compared to only 39 percent for the gainers. In the Northeast and North Central regions, approximately 60 percent of the houses were built before 1939, compared to only 30 percent in the South and West.

The fact that phase-down cities, or losers under the present formula, are more needy than phase-in cities does not necessarily mean that the present system is inequitable, or less equitable than the categorical system. To reach any equity conclusion, one has to examine the distribution of funds over all cities, and, in the case of the categorical system, justify the wide range in per capita amounts. Under the categorical programs, the phase-down cities received, on a per capita basis, \$24.81 or 386 percent more than the phase-in cities. This 386 percentage difference is not justified on the basis of the percentages of need variables exhibited by these two groups of cities. Except for age of housing stock, the percentages for the phase-down cities are only slightly higher than those for the phase-in cities. In fact, the average poverty percentage (13.57) for the phase-in cities is approximately the same as that (14.13) for the phase-down cities and the overcrowded housing percentage is actually greater (8.83 vs. 7.22). To summarize, under the categorical system, the gap between the per capita amounts of phase-in and phase-down cities was too large.

Because eliminating the phase down provision is one alternative to the present system, we think it is important to compare the hold harmless distribution of funds with that of the present formula in terms of responsiveness to community development need. The simple correlation coefficient measures the degree to which above-average per capita amounts are allocated to cities with above-average per capita need scores. The results obtained by correlating per capita allocations under both hold harmless and the existing CDBG formula (PRESENT) with need scores are as follows:

	Hold Harmless	Present
FACTOR 1 (Poverty)	.14	.95
FACTOR 2 (Aged housing)	.36	.02
FACTOR 3 (Density)	05	.20
FACTOR 4 (Crime)	.11	.09
FACTOR 5 (Lack of economic opportunity)	01	.04
NEED (Composite score)	.29	.79

The clearest evidence of the problem with the hold harmless approach is shown by low correlation coefficients in the first column. The coefficients of correlation between hold harmless and five dimensions of CD need indicate that the categorical system was <u>not</u> closely related to need, as defined by our sets of factor scores. These low correlation coefficients tell us that, on an <u>individual</u> city basis, under the categorical programs, above average, per capita dollar amounts were <u>not</u> systematically allocated to cities with above average, per capita need. Similar results are obtained when hold harmless is correlated with each of the need variables.

The present formula exhibits the expected strong correlation (0.95) with the poverty dimension of CD need but very low correlations with the remaining four dimensions. In fact, hold harmless exhibited a stronger correlation (0.36 vs. 0.02) than the present formula with respect to the age-of-housing-stock dimension of CD need. If the goal is to make CDBGs more responsive to, for example, the age-of-housing and density dimensions of CD need, then it will be necessary to change the present formula.

Hold harmless shows a much lower correlation (0.29) with the total need index (NEED). This reflects its low correlation with each of the five separate dimensions of CD need. The present formula's correlation (0.79) with NEED is undoubtedly affected by its low correlations with non-poverty dimensions of need. As mentioned earlier, correlations with a total need index will vary depending on the weights given to the individual factors.

The multiple regression results for hold harmless and the present formula are given below:

Regression Coefficients	Hold Harmless	Present
FACTOR 1 (Poverty)	3.39	3.45
FACTOR 2 (Aged housing)	7.60	.00
FACTOR 3 (Density)	-1.12	.75
FACTOR 4 (Crime)	3.19	.30
FACTOR 5 (Lack of economic opportunity)	61	.19
<u>Coefficient of Multiple</u> Determination (R ²)	.19	.95

For each distribution system, the relative magnitudes of the regression coefficients describe its implicit needs logic. Hold harmless places most of its emphasis on the age of housing dimension, as its per capita allocation increases by \$7.60 for each one unit increase in the age-of-housing-stock index. The present formula increases by \$3.45 per capita with unit increases in the poverty scores, which is a much greater response than with the other dimensions of CD need. As indicated by the .00 regression coefficient, the present formula per capita does not change with unit increases in the age of housing index, for fixed levels of the other four need indexes.

The R^2 statistic tells us how closely the implicit logic of each system, as indicated by five regression coefficients or by the estimated regression, is being followed. For hold harmless, the R^2 statistic is .19, which means that only 19 percent of the variation in hold harmless per capita can be explained by our five indexes of CD need. The .19 is 76 percentage points less than the R^2 statistic for the present formula. In essence, the low R^2 statistic indicates a very weak relation between (1) the actual distribution of hold harmless per capita and (2) that distribution of per capita amounts predicted from a regression equation that supposedly describes the implicit logic or emphasis of the hold harmless system.

5. Evaluating Alternative Formulas

We presented alternatives to the present CDBG formula that included age of housing stock as a formula factor. Age of housing was added for two reasons. Pre-1939 housing is a factor associated with housing abandonment and substandard housing and is a proxy for both government repair costs of sanitation facilities and sewage lines and housing maintenance costs. In addition, age of housing not only defines one of the four dimensions of CD need ignored by the present formula, but is significantly correlated with four of the five need variables that have high factor loadings on the other three dimensions (density, crime, lack of economic opportunity).

The formula factors and weights for the present formula and seven alternatives are as follows:

	Population (POP)	Poverty (POORPER)	Overcrowded Housing (OCRWD)	Pre-1939 Housing (AGE 1939)
Present Formula	.25	.50	.25	
Alternative 1	.20	.40	.20	.20
Alternative 2	.25	.50		.25
Alternative 3		.40	.30	.30
Alternative 4		.60		.40
Alternative 5		.30	.20	.50
Alternative 6	.20	.30		.50
Alternative 7		.40		.60

For example, in fiscal year 1976, the following formula would have been used to compute the total amount of an entitlement city under Alternative 1: (.20(POP/149,695,598) + .40(POORPER/17,157,884) + .20(OCRWD/3,710,656) + .20(AGE1939/18,458,419)) \$2,077,600,000.

Numerous alternatives were examined in order to show the effect on the correlations of increasing the weight given to age of housing. The weight given to age of housing increases from Alternative 1 to Alternative 7. Appendix J defines seven other alternative formulas and evaluates each in terms of responsiveness to CD need. A fifth formula variable (without plumbing) is considered in Appendix J.

The correlations between allocations under three of the seven alternative formulas (ALT2, ALT3, ALT7) and need scores are presented below; as baselines for comparison, the correlations for hold harmless and the present formula are reproduced.

	Hold Harmless	Present	ALT2	ALT3	ALT7
FACTOR 1 (Poverty)	.14	.95	.71	.70	.37
FACTOR 2 (Aged housing)	.36	.02	.62	.50	.81
FACTOR 3 (Density)	05	.20	.27	.41	.37
FACTOR 4 (Crime)	.11	.09	.15	.18	.17
FACTOR 5 (Lack of economic opportunity)	01	.04	.08	.20	.18
NEED (Composite score)	.29	.79	.97	.98	.87

The correlation coefficients between the three alternative formulas and the poverty dimension declined from 0.71 under Alternative 2 to 0.37 under Alternative 7. Given the low correlation between percent poverty and percent pre-1939 housing (0.12), it is not surprising that the correlations between the poverty dimension and per capita allocations decline as we increase the formula weight of AGE1939 and decrease that of POORPER. The cost of adding AGE1939 to increase the formula's degree of responsiveness to non-poverty dimensions of CD need is simply a reduction in the correlation with the poverty dimension. Of course, the important question here is how low should the poverty correlation be reduced. The answer to this question depends on both the increase in correlation with each of the non-poverty dimensions achieved by adding a variable such as AGE1939 and the relative importance of each of these non-poverty dimensions of CD need. The highest correlation increases occurred with the aged-housing and density dimensions of CD need. The correlation coefficients between the age-of-housing dimension and the three alternatives range from 0.50 under Alternative 3 to 0.81 under Alternative 7, while those of the density dimension ranged from 0.27 under Alternative 2 to 0.41 under Alternative 3.

Each of the seven alternatives had a higher correlation with each of the non-poverty dimensions than had either the present formula or hold harmless. In fact, each alternative dominates hold harmless on all five dimensions of CD need. One equity advantage of hold harmless over the present formula -- a higher correlation with the aged-housing dimension -- therefore loses its importance when AGE1939 is added to the formulas. We think that formulas such as, for example, ALT2 and ALT3, not only continue to give priority to poverty areas but also adequately account for two dimensions of CD need -aged-housing and density -- totally ignored by the present formula. Alternative 3 showed a 0.98 correlation with the total need index, which is 0.19 greater than the 0.79 of the present formula.

The regression results for the present formula and two of the alternative formulas and shown below.

Regression Coefficients (\$)	Present	ALT2	ALT7
FACTOR 1 (Poverty)	3.45	2.78	2.28
FACTOR 2 (Aged housing)	.00	2,47	5.24
FACTOR 3 (Density)	.75	1.05	2.28
FACTOR 4 (Crime)	.30	.62	1.13
FACTOR 5 (Lack of economic opportunity)	.19	.34	1.22
Coefficient of Multiple Determination (R ²)	.95	.98	.97

Increasing the formula weight of pre-1939 housing tends to make the formula more sensitive to the nonpoverty dimensions of CD need, especially to the age of housing and density dimensions. In each case the regression coefficients for the nonpoverty dimensions are higher under the two alternative formulas than under the present formula. For example, pre capita aid under Alternative 7 (.4 POORPER, .6 AGE1939) increases by \$5.24 for each unit increase in the age of housing index, while per capita aid under the present formula does not change with changes in the age of housing index. Per capita aid under Alternative 7 increases by \$2.23 for each unit change in the density index, which is \$1.48 more than the increase under the present formula. On the other hand, the alternative formulas are less sensitive to the poverty dimension than is the present formula. Per capita aid under the present formula increases by \$3.45 for each unit change in the poverty index, which is \$1.17 higher than \$2.28 increase for Alternative 7. However, the poverty coefficient remains higher than the age of housing coefficient for Alternative 2.

As the R^2 statistics show, at least 95 percent of the variation in the two alternative formulas can be explained by the five need indexes. This goodness-of-fit measure tells us that there exists a very close relationship between the actual per capita amounts under each of the two alternative formulas and the per capita amounts predicted from a regression equation that describes the implicit needs logic of the alternative formula being considered. In other words, if one agrees with the needs emphasis of one of the alternatives as indicated by its regression coefficients, he or she can feel confident that the actual distribution under the selected alternative will closely reflect its needs emphasis. As explained above, we can not say this about the hold harmless system, because the actual hold harmless amounts are not that closely related to the regression equation that describe its needs logic.

Adding age of housing increases the **sha**re going to central cities, particularly those located in the Northeast Central regions. As a percentage of the SMSA appropriation, the increase in the central city share is from 52.8 percent under the present formula to 58.9 percent under Alternative 7. However, even if funds were allocated solely on the basis of pre-1939 housing, central cities would still receive, as a percentage of SMSA funds, 19.4 percentage points less than the 79.2 percent received under the categorical programs.

6. Total Evaluation Index

We tested hold harmless and the present and alternative formulas using an evaluation index which considered a city's need requirements, its tax effort, and its fiscal capacity. We constructed a linear evaluation index by weighing three component indexes as follows:

EVALUATION = .50 NEED + .25 (1/CAPACITY) + .25 TAX

The underlying assumption was that the objectives of the CDBG program are such that per capita aid should increase with need requirements and tax effort and decrease with fiscal capacity. We have given NEED a double weight (.50). We did not attempt to justify this weight assignment except to say that the purposes of the CDBG Act emphasize those phenomena (urban blight, poverty, etc) that the need variables supposedly reflect.

The capacity component (CAPACITY) is computed by dividing each city's per capita income by the weighted average of per capita incomes for the 435 entitlement cities included in our analysis. Including a measure of fiscal capacity in our formula evaluation recognizes the different abilities of governments to finance public services from their own revenue sources.

Tax is computed by dividing each city's per capita non-education taxes by the weighted average of per capita non-education taxes for entitlement cities. The assumption is that for given levels of need and capacity, those localities with the higher tax effort should receive a larger share of CD funds. The needs index (NEED) is the same as that defined above except that the scores have been transformed so that NEED is made up of positive numbers only, with a mean of one. By construction, each of these component indexes are comprised of positive numbers only and each has an average value of one.

The correlations between per capita allocations and the evaluation index are given below; for comparison purposes, correlations with component indexes are also presented:

	(1) Evaluation Index	(2) NEED	(3) TAX	(4) CAPACITY	
Hold Harmless	. 19	.28	.00	27	
Present	.65	.78	.19	51	
ALTI	.85	.96	.40	46	
ALT2	.83	.94	.37	46	
ALT3	.88	.96	.46	41	
ALT4	.84	.93	.41	41	
ALT5	.86	.90	.51	30	
ALT6	.80	.84	.48	26	
ALT7	.80	.85	.48	28	

The present formula which gives a double weight to poverty and excludes AGE1939 exhibited the highest negative correlation with per capita income, or CAPACITY. Increasing the weight of AGE1939 reduced the correlation with CAPACITY to -0.26 for Alternative 6; however, the -0.46 correlation for both Alternative 1 and Alternative 2 was not much lower, in an absolute sense, than the -0.51 for the present formula. The present formula did not do as well with regards to TAX, exhibiting only a 0.19 correlation. Including AGE1939 resulted in a large gain in terms of increased correlation with the tax index. A switch from the present formula to Alternate 5 would increase the correlation with TAX from 0.19 to 0.51.

The alternative formulas were more effective than both hold harmless and the present formula in distributing CDBG funds in accordance with a comprehensive evaluation index based on need, tax effort, and fiscal capacity. For example, ALT3 showed a 0.88 correlation with the linear evaluation index, which compared favorably with 0.65 correlation of the present formula and the 0.19 correlation of hold harmless. The coefficient for the present formula (0.65) was at least 0.15 less than that for each of the alternatives.

The reader should view these correlation results with some caution. There are several problems with the component indexes. For example, in our definition of fiscal capacity, we have neither adjusted income for regional price variations nor included the property tax base. The tax effort index included only non-education taxes and ignored tax exporting and state government taxes paid by city residents. Because of variations among states in financing local services, the tax effort measure used in this study may not accurately reflect the actual level of tax supported services at the local level. We have already mentioned the judgment involved in combining the factor scores in order to compute a total needs index. In constructing a comprehensive evaluation index, additional judgment was required to determine the relative importance of TAX, NEED, and CAPACITY. However, the concept of relating the funding level to fiscal capacity and tax effort is important and we believe the analysis presented provides valuable insights into the relative performance of different formulas.

- 7. <u>Miscellaneous Topics</u>
- a. Population Decline and CD Need

We compared growing and declining cities on the basis of need scores, need variables, and fiscal measures, and we evaluated alternative formulas with respect to an additional criterion, change in population. We look at percentage changes in population between 1960 and 1973 for entitlement cities, focusing on those cities that have experienced the largest changes in population (greater than +10%, less than -10%). These comparisons indicate that, on the average, there is consistency between our ranking according to CD need and a ranking according to population decline.

Of the 109 cities with a decrease in population since 1960 greater than 5 percent, 78 or 72 percent, were located in the Northeast or North Central region. Of the 246 cities with an increase in population since 1960 greater than 5 percent, 166, or 67 percent, were located in the South or West. We found that characteristics other than regional location distinguish growing cities from declining cities. Compared with growing cities, our results showed declining cities as (1) having an older housing stock, (2) having higher concentrations of low income persons, (3) having higher levels of per capita expenditures and taxes, and (4) receiving higher per capita CDBG allocations, especially under the alternative formulas. The main difference between rapid decliners and fast growing cities occurred on the age of housing dimension, which showed a 1.023 average score for declining cities and a -.442 score for growing cities. The average score on the total CD need index was .583 for the rapid decliners, compared with -.20 for the group of fast growing cities.

Aid to the declining cities is much greater under the alternative formulas than under the present formula. Cities that have experienced a population loss greater than 10 percent would receive \$22.74 per capita under Alternative 4 (.4 AGE1939, .6 POORPER), or 35.8 percent more than they would receive under full funding of the present formula. On the other hand, the average per capita amount allocated to the fast growing cities would decrease from \$14.97 under PRESENT to \$13.15 under Alternative 4, a decrease of 12.2 percent.

b. Cost of Living Index

The present formula does not take into account city variations in the cost of living and therefore treats in an inequitable manner those cities with higher input costs. In addition, the 1970 Census did not consider cost of living differences in its definition of poverty income levels. This means that present poverty counts understate actual poverty in cities with above average costs. Each of the formula distributions was evaluated in terms of correlation with an "intermediate income cost of living" index (IYCPI), published by BLS for 38 SMSA's. The following coefficients were obtained:

×.	ICYPI		ICYPI
Hold Harmless	.2490	ALT4	.4776
Present	1238	ALT5	.6061
ALTI	.3626	ALT6	.6164
ALT2	. 4047	ALT7	.6066
ALT3	.4513		

For this group of 38 cities, the present formula does not distribute above average, per capita amounts to cities with above average living costs.

c. Community Development Need by Population Size

Several have expressed concern about the decrease in the share going to large cities (and the increase in the share going to small communities) under the present formula relative to the categorical distribution. For example, the entitlement cities account for 74 percent of hold harmless funds, but only 47 percent of present formula funds. Even if funds were allocated on the basis of Alternative 7 (.6 AGE1939, .4 POORPER), entitlement cities would still receive 21 percent less than that received under the displaced categorical programs.

If one believes that the large city share should be higher than its formula share, one must argue that the four variables (AGE1939, OCRWD, POORPER, POP) we are using as formula factors are not picking up the difference in terms of CD need between large and small cities, or that the need variables in small cities should be given less weight than those in large cities. Once we depart from assuming that the formula variables accurately reflect need, we are left with no objective method to determine the shares of large and small cities. Our approach does provide evidence that large cities are more needy than small communities. A factor analysis was conducted on 802 cities with population above 25,000 to determine how per capita need varies with city size. There does seem to be, for each dimension of CD need, a trend from low to high per capita need as population increases. The 237 cities in the lowest population group (25-35,000) received below average need scores on each dimension. Except for an average need score on the age-of-housing-stock dimension, the second population group (35-50,000) also received below average need scores.

d. Distribution Among Types of Recipients Under Two-Formula Systems

A two-formula system would increase the share of entitlement cities to an amount greater than their weighted share of formula factors. One two-formula system would allow each entitlement city to receive the maximum of its present formula amount or an amount computed by Alternative 7 (MAXPOR7). The share of the SMSA balances is computed as a residual by subtracting that amount going to entitlement recipients from the total SMSA appropriation.

In two-formula systems such as MAXPOR7, a question arises concerning whether or not urban counties and non-SMSA areas should share along with SMSA balances the costs of redirecting funds to our larger cities. Under MAXPOR7, 28.2 percent of SMSA funds is left over for urban counties and SMSA balances. To continue to allocate to urban counties their present formula share of 12.8 percent causes some inequity between urban counties and SMSA balances, because this 12.8 percent share to urban counties, which account for 16.8 percent of the SMSA population, is only 2.6 percent less than the residually determined 15.4 (28.2-12.8) percent share allocated to SMSA balances, which account for 30.5 percent of the SMSA population. In this case, assuming for the moment that the optimal "Remainder of SMSA" share is 28.2 percent, one procedure would be to divide the 28.2 percent between urban counties and SMSA balances on the basis of a needs formula. Of course, this problem arises only if we have agreed to increase the share of entitlement cities to an amount greater than their share of formula factors.

An additional problem involves SMSA balances as compared with the non-SMSA area. The switch from the present formula to MAXPOR7 would reduce, as a percentage of U.S. funds, the share to SMSA balances from 23 percent to 13 percent while leaving unchanged the 20 percent allocated to non-SMSA communities. Inequities may result among the non-entitlement city recipients (urban counties, SMSA balances, non-SMSA recipients) from those two-formula approaches that determine the share of SMSA balances as a residual.

CHAPTER 1 INTRODUCTION

Title I of the Housing and Community Development Act of 1974 consolidated several categorical programs for community development into a single program of community development block grants (CDBGs). The primary objective of the title is "the development of viable urban communities by providing decent housing and a suitable living environment and expanding economic opportunities, principally for persons of low and moderate income." This objective is to be achieved primarily through elimination of slums and blight and detrimental living conditions, expansion of housing, and increased public services. The title provides for a new system of allocating and distributing community development funds; an allocation formula will be used that is based on population, amount of housing overcrowding, and extent of poverty (counted twice). Under the previous categorical system, funds were distributed to applicants on a competitive, case-by-case basis.

In order to provide for early Congressional reconsideration of the method for distributing assistance, Congress required that the Secretary of the Department of Housing and Urban Development submit a report, no later than March 31, 1977, which would contain the Secretary's recommendations for modifying, expanding, and applying provisions relating to the funding method, fund allocation, and basic grant entitlement determination. In making this report, the Secretary must conduct a study to determine how funds can be distributed in accordance with community development needs, objectives, and capacities, measured to the maximum extent feasible by objective standards. This paper will present the methodology and results of a formula study conducted by the Office of the Assistant Secretary for Policy Development and Research at the request of the Secretary. The study began in August 1975.

Objectives of the Study

The principal objectives of the study were:

- to develop criteria that measure the variation in community development needs among entitlement cities;
- (2) to evaluate and compare the distributions of funds under the hold harmless continuation of the displaced categorical programs and the existing CDBG formula;
- (3) to design alternative formulas that increase the emphasis on those dimensions of community development need ignored by the existing CDBG formula; and

(4) to evaluate CDBG allocations under the alternative formulas, comparing them with the hold harmless continuation of the displaced categorical programs, with the present formula, and with each other.

Methodology

The basic purpose of this study was to develop and test alternative formulas for distributing program funds according to community development need. The first step was to develop criteria for measuring variation in community development (CD) needs among entitlement cities. An index was constructed that positions each city with respect to CD needs. The index is based on the concept of a need indicator, a variable (e.g., poverty) which provides an indication of relative differences among cities. For example, if city A has a higher number of poor persons that city B, then city A is judged to have greater need for CDBG funds. Our selection of need indicators reflects the Congressional intent that CDBG funds be used to assist in the development of viable urban communities by providing decent housing, a suitable living environment, and expanding economic opportunities, principally for persons of low and moderate income.

Devising an index of relative need for each of the need variables selected is possible but would result in a very complicated analysis. Therefore, factor analysis was used to reduce the need indicators to five factors, each factor reflecting a different dimension of community development need. For each of these five dimensions of need, the factor analysis computes for each city a per capita needs score that can be used to measure the variation among cities in per capita need, that is, can serve as a relative needs index. The scores are interpreted in per capita terms because the need indicators, which were used as input variables into the factor analysis, were expressed in either percentage or per capita terms. In general, a city will receive a high score on a factor (dimension) if the city has a high percentage for each of those need variables that define the factor. The set of index scores and the need variables provide the basis for judging the current formula, the hold harmless mechanism, and several alternative formulas which seek to provide higher per capita allocations to those cities which have greater community development need. For each dimension of CD need, responsiveness to the needs index is measured by the simple correlation coefficient between a particular formula's per capita allocation of funds and the index scores of the entitlement cities.

To obtain a composite index of CD need, it is necessary to assign arbitrary weights to each of the dimensions of need. Although we compute correlations with respect to a total needs index, we place most of the emphasis in this study on the correlations with the separate dimensions of CD need. From the analysis of the separate dimensions, the reader should be able to approximate correlation results for any composite needs index that he or she may choose. A similar problem arises concerning the importance of fiscal capacity and fiscal effort in an evaluation of the CDBG formula. Should fiscal capacity and fiscal effort be included in this evaluation, and, if so, what is the relative importance of fiscal capacity, fiscal effort, and CD need? Can we combine indexes of capacity, tax effort, and CD need to form a total evaluation index? Again, our approach is to first test each formula with respect to both fiscal capacity and tax effort; after doing this, we combine indexes of fiscal capacity and effort with a total needs index to derive a comprehensive evaluation index. The basic assumption of this evaluation index is that the objectives of the CDBG program are such that per capita aid should increase with need requirements and tax effort and decrease with fiscal capacity.

We did attempt to use our needs index methodology to address questions other than that of distributing a fixed amount of funds to a fixed number of recipients. For example, we expanded the factor analysis to include all cities with a population greater than 25,000 so that we could determine how per capita need varies with city size. Detection of a large positive shift in per capita need at a particular city size could be used to support that city size as the appropriate population cut-off for forumla entitlements.

In addition to the evaluation in terms of need, tax effort, and fiscal capacity, the formula distributions were also evaluated in terms of their correlations with cost of living indexes, percentage change in population (1960-1973), and the central city hardship ratios developed by Richard Nathan. We classify entitlement cities according to population change since 1960 and examine growth and declining cities using the need indexes developed in this study.

Throughout this study, we have attempted to be faithful to the Congressional request to determine how CDBG funds can be distributed in accordance with CD needs, measured to the maximum extent feasible by objective standards. A correlation and regression approach, which measures the extent to which above average per capita amounts are distributed to cities with above average per capita need, is employed to evaluate and compare formulas. Judgment is necessary in the selection of need indicators. We have used the legislation and the urban literature as guides in choosing indicators of community development need. In our approach need cannot be measured absolutely, but only relatively.

An open issue is the distribution of funds among classes of recipients. We know of no scientific method of establishing that the level of CD need in SMSA's is four times greater than outside SMSA's. Within SMSA's, it is not clear that the funds distribution among entitlement cities, urban counties, and SMSA balances is appropriate. Data for formula purposes may not exist to accurately measure the differential need in entitlement cities that arises from widespread externalities caused by a highly concentrated population. It also is not clear that need is a linear function of need indicators, as assumed in the present formula and in this study. We have investigated some of these issues and have provided data on the effect of formula alternatives on the distribution among classes of recipients. The issues of gainers and losers is an important interest of anyone who considers formula changes. Therefore, we have provided many tables on distributional effects by region and by city size. The purpose here is to see how formula changes recommended on the basis of the correlation and regression results translate into practice, that is, are there any abnormalities. However, we believe that the correlation and regression techniques are preferable methods for comparing formulas as contrasted with a case-by-case review of the various distributions.

Limitations of the Study

- This study focuses on the equitable distribution among <u>entitlement</u> cities of a <u>given</u> CDBG funding level. The analysis does not provide the information necessary to derive an optimal CDBG funding level.
- (2) The study did not examine community development need in urban counties and balances of SMSA's.
- (3) The methods used in this distributional study cannot resolve issues such as (a) whether or not to include urban counties as entitlement recipients, (b) the population cutoff for entitlement cities, and (c) the SMSA/non-SMSA split. Again, our method treats the problem of distributing a fixed amount of funds among a predetermined number of recipients. However, our approach does provide information which is useful in addressing issues such as these.
- (4) In addition, our methods cannot resolve transitional issues such as the optimal rates of phase-in of entitlement cities and phase-out of hold harmless cities. We do compare the present full formula distribution with a "pure" hold harmless distribution.
- (5) The study cannot determine the appropriate distribution of funds among recipient classes (entitlement cities, urban counties, SMSA balances, and non-SMSA balances). In Chapters 5 through 8 the study adopts the assumption implicit in the CDBG program that, within metropolitan areas, formula factors measure the same level of need regardless of location. In Chapter 9 the study examines an alternative assumption.

Organization of the Paper

Chapter 2 explains how shares for entitlement cities, urban counties, and SMSA balances are determined under full formula funding and during the transition period (FY 75-FY 80).

Chapter 3 reviews recent studies that have attempted to develop relative measures of public expenditure needs and outlines methods used by researchers to compare alternative distribution formulas with respect to certain evaluation indexes. The correlation and regression techniques used in the study are explained in this chapter.

Chapter 4 presents our list of community development need indicators and explains the factor analysis from which the per capita need scores are derived.

Chapter 5 uses the need scores and need variables to evaluate and compare the hold harmless and present formula distributions.

Chapter 6 presents and evaluates seven alternatives to the present formula that include age of housing stock as a formula factor. Need variables, scores on the five dimensions of CD need, and a comprehensive needs index are used to evaluate and compare the alternative formulas. The shares and per capita means of the alternatives are analyzed to determine the extent that various types of recipients gain and lose as compared with the present formula and the displaced categorical programs.

Chapter 7 evaluates the formulas in terms of their correlations with fiscal capacity, tax effort, and a total evaluation index. The evaluation index measures a city's need for CD funds by considering its tax effort, its fiscal capacity, and its score on the total needs index.

Chapter 8 evaluates the formula alternatives in terms of their correlation with cost of living indexes and in terms of the percentage change in population since 1960.

Chapter 9 discusses the issue of distribution among classes of recipients and examines dual formula approaches which direct a larger percentage of funds to entitlement cities at the expense of SMSA balances.

Numerous appendices are included at the end of the study and are referenced and explained in relevant sections of the text. In Appendix K, we compare our methods and results with those of other researchers, and, where possible, evaluate each formula allocation using their techniques. Included are studies by (1) the Institute for the Future, (2) Richard DeLeon and Richard LeGates on the equity of CDBGs in California, and (3) Richard Nathan on central city hardship.

CHAPTER 2

THE PRESENT FUNDING MECHANISM

The community development block grant program and its formula grant device resulted from efforts to improve a grant-in-aid structure that had been dominated by project grants. The categorical grant system, designed to meet specified needs and to stimulate local activity, required that a local government unit or its designated agency initiate an application requesting funds for a specific project under a certain category. In many cases, these categorical programs required that the recipient units provide matching funds out of their own revenue sources. Criticism was directed at this categorical aid system because of the complexity of the application and review procedure and because of the narrowly defined expenditure categories. State and local officials were especially critical of what they considered bureaucratic red tape and administrative waste associated with the application and review procedures. In addition, they claimed that the matching requirements and the narrowly defined expenditure categories distorted their budget priorities. The categorical system also encouraged the practice of "grantsmanship", which worked to the disadvantage of the poorer government units.

Title I of the 1974 Act responded to these problems by consolidating the categorical programs into a single grant, thereby increasing the flexibility of local officials to respond to local urban needs. Local officials are now free to apply fund receipts to any CD expenditure area. After a transition period, grants will be awarded to metropolitan cities, urban counties, and balances of SMSA's according to a needs formula, which is both easier to understand and supposedly more equitable than the previous project method.

In this chapter, we first explain how formula shares for entitlement cities, urban counties, and SMSA balances are determined, assuming full formula funding. Next, we briefly explain the concept of hold harmless and its importance in the transition to full formula funding. In the third section, we summarize (1) some of the arguments against using a formula to distribute CDBGs and (2) frequently stated advantages and disadvantages of hold harmless and "extent of program experience" as methods of distributing community development funds.

Full Funding Under the Present Formula

The primary purpose of Title I, to provide a suitable living environment to persons of low and moderate income, served as the guideline used in designing the needs formula. The formula assumes that a city's need for community development funds can be measured by a weighted combination of three factors (population, poverty, overcrowded housing) and that accurate data is available to operationalize this particular measure of city need. A second implicit assumption is that input prices and productivity are the same in all cities, of if not, at least offset each other so that prices are the same in all cities. Whether or not these are reasonable assumptions will be discussed in Chapters 5 through 8.

In the formula allocation process described below, the needs formula provides the basis for computing (1) the total allocation for all entitlement cities and all urban counties; (2) the individual allocations for each entitlement city and urban county; (3) the share of each SMSA area of the SMSA balance; (4) the state area share of the non-SMSA portion. Once the latter two area shares are calculated the formula is not used to distribute funds (1) within SMSA areas to nonentitlement communities and (2) outside of SMSA's to individual units of government. These latter distributions (called discretionary funds) are made by HUD on the basis of applications from non-entitlement communities included within these two areas.

SMSA Share Under Full Formula Funding

After deducting 2 percent of the CDBG appropriation for a special Secretary's fund, HUD allocates 80 percent of the remaining funds to SMSA's and 20 percent to non-SMSA's. Under the current law, after a transition period (1975-1980) during which phase-in, hold harmless, and phase-out provisions apply, SMSA funds will be distributed to (1) entitlement cities, (2) urban counties, and (3) balances of SMSA's on the basis of a three-factor formula.

Entitlement Cities. "Metropolitan city" or "entitlement city" means the central city of an SMSA, or any other city with a population of **5**0,000 or more. In FY 76, there were 522 entitlement cities (515 in U. S.), of which 367 were central cities of SMSA's. The computation of each entitlement city's automatic formula amount involves a two-step process. First, out of the total SMSA allocation, the act provides that HUD allocate to all entitlement cities an amount which bears the same ratio to the allocation for all SMSA's as the average of the ratios between all such cities and all SMSA's using factors of population, extent of poverty (counted twice), and extent of housing overcrowding. Out of the allocation for all entitlement cities, HUD determines a basic grant for each entitlement city, computed by the same formula, using data existing in each metropolitan city as compared to that in all cities. The following two equations are used to determine the basic allocation to the jth entitlement city:
(First step)

$$G_{C} = \left(\frac{1}{4} \frac{POP_{C}}{POPSMSA} + \frac{1}{2} \frac{POV_{C}}{POVSMSA} + \frac{1}{2} \frac{OCRWD_{C}}{OCRWDSMSA} \right) \times G_{SMSA}$$
(Second step)

$$G_{j} = \left(\frac{1}{4} \frac{POP_{j}}{POP_{C}} + \frac{1}{2} \frac{POV_{j}}{POV_{C}} + \frac{1}{4} \frac{OCRWD_{j}}{OCRWD_{c}} \right) \times G_{C}$$

where

GSMSA * CDBG allocation to SMSA's = .784 (.80 x .98) times
 total CDBG allocation = G_C + (Allocation to Urban
 Counties) + (Allocation to SMSA balances=SMSA "dis cretionary" amount)
 522

 G_c = CDBG allocation to all 522 entitlement cities= $\sum_{j=1}^{2} G_j$

- POP = population
- POV = number of persons whose incomes are below the poverty level defined by the Office of Management and Budget
- OCRWD = number of housing units with 1.01 or more persons per room based on data compiled by the Bureau of Census
- "c" = indicates that subscripted variable is defined for all entitlement cities
- "SMSA" = indicates the subscripted variable is defined for total SMSA area in U.S.
- "j" = indicates jth entitlement city

$$POP_{c} = \sum_{j=1}^{522} POP_{j}$$

$$j=1$$

$$FOV_{c} = \sum_{j=1}^{522} POV_{j}$$

$$J=1$$

$$OCRWD_{c} = \sum_{j=1}^{522} OCRWD_{j}$$

$$j=1$$

Layering Effect. The above distribution process exhibits a "layering effect" in that the allocation to the jth city is calculated relative to a total city amount rather than to the total metropolitan amount. The total city allocation is calculated by formula in the first step and from this city total, the allocation to each city is derived in a second step. It seems that the more natural procedure would be to compute each entitlement city's allocation in the first step so that its grant share would equal its share of the formula factors, relative to all metropolitan areas. In fact, the share of each recipient unit (entitlement city or urban county) or area (remainder of SMSA area) could be calculated in the first step, using the factor totals for all SMSA areas in the formula denominator, and the relevant city, county, or remainder of SMSA area data in the numerator. Appendix C illustrates how this "layering effect" results in a distribution of funds different from that obtained by computing all shares in the first step.

<u>Urban Counties</u>. The basic formula amount for each urban county is computed in a similar two step process. For CDBG purposes, an urban county (UC) means:

> any county within a metropolitan area which (A) is authorized under State law to undertake essential community development and housing assistance activities in its unincorporated areas, if any, which are not units of general local government; and (B) has a combined population of two hundred thousand or more (excluding the population of metropolitan cities therein) in such unincorporated areas and in its included units of general local government (i) in which it has authority to undertake essential community development and housing assistance activities and which do not elect to have their population excluded or (ii) with which it has entered into cooperation agreements to undertake or to assist in the undertaking of essential community development and housing assistance activities. 1/

In FY 76, 73 urban counties were receiving funds. The basic grant for the jth urban county is computed as follows. (First step)

 $G(c+uc) = \left(\frac{1}{4} \frac{POP(c+uc)}{POP_{SMSA}} + \frac{1}{2} \frac{POV(c+uc)}{POV_{SMSA}} + \frac{1}{4} \frac{OCRWD_{c+uc}}{OCRWD_{SMSA}} \right) G_{SMSA}$

(Second step)

 $G_{j} = \left(\frac{1}{4} \frac{POP_{j}}{POP(c+uc)} + \frac{1}{2} \frac{POV_{j}}{POV(c+uc)} + \frac{1}{4} \frac{OCRWD_{j}}{OCRWD(c+uc)} \right) G(c+uc)$

1/ 93rd Congress, Title I of Housing and Community Development Act of 1974, August, 1974, p. 3. where variables previously undefined are

- G(c+uc) = CDBG allocation to 522 entitlement cities (G_c) and 73 urban counties $(G_{uc}): G_c + G_{uc}$
- G_{uc} = CDBG allocation to urban counties= $\sum_{j=1}^{G} G_{j}$

"j" = indicates jth urban county

"c+uc" = indicates that subscripted variable is defined for all entitlement cities and urban counties.

SMSA Discretionary Balance. The balance of the total SMSA allocation remaining after allocation of funds to entitlement cities and urban counties is distributed to states and units of general local government (other than entitlement cities and urban counties) for use in SMSA's, with each SMSA allocated an amount computed by the three factor formula, using data defined for in each SMSA as compared to that in all SMSA's. In computing these amounts, the formula-factor quantities of entitlement cities and urban counties are excluded. Within each SMSA, the SMSA balance is distributed by HUD on the basis of applications from the non-entitlement communities.

SMSA Recipient Shares Under Full Formula Funding. Table 2.1 shows variable and formula shares for the three types of SMSA recipients. Our estimates indicate that under full funding with the present formula, the total SMSA share (approximately 80% of total authorization) would be divided as follows: (1) 522 entitlement cities, 60%; (2) 73 urban counties, 12.5%; and (3) balance (discretionary), 27.5%. Added to the non-SMSA 20% (discretionary after hold harmless phase down), this results in 42% of CDBG funds being issued on a discretionary basis (after hold harmless phase down). This is a rather large share, given the goal of providing automatic funding on an objective needs basis.

The prospect of such a large discretionary share emerging with the phase down of hold harmless has raised two concerns. First, the administration of so large a discretionary fund would impose a tremendous administrative work load, possibly accompanied by many of the same bureaucratic, red-tape problems that characterized the displaced categorical system. In this case, one solution would be to expand the entitlement coverage within SMSA's in order to keep the discretionary balance at some manageable level.

A second concern over the 27.5 percent SMSA discretionary balance is based on the notion that the present formula is biased against "older, declining cities" and in favor of small communities located in the balance of SMSA's. Because this perception comes partly from reviewing which cities stand to lose funds over prior

73

(1)	E Total <u>Quantity</u> ^a	ntitlement City (522)	Urban County (73)	SMSA Balance (SMSA Discretionary) (270)	Total SMSA
	Population 7	9,392,095	24,936,840	45,366,763	149,695,698
	Poor Persons 1	0,957,252	1,709,566	4,491,066	17,157,884
	Overcrowded Houses	2 ,191,499	495,898	1,023,259	3,710,656
(2)	Percentage Share of SMSA Total				
	Population	53.04%	16,66%	30.31%	100.%
	Poor Persons	63,86	9.96	26,17	100.
	Overcrowded Houses	59.06	13.36	27.58	100.
(3)	Formula Share of SMSA Funds	59,95%	12.49%	27.56%	100.%
(4)	Formula Share of b Total CDBG Funds = (.8 SMSA Share(3)) 47.96%	9.99%	22.05%	80.%
(5)	Poverty Percentage= (Poor/POP)x100.	13,80%	6,85%	9,90%	11,46%

Table 2.1: Variable and Formula Shares for Entitlement Cities, Urban Counties, and Balances of SMSA's Under the Present Formula

a. These are quantities HUD used in fiscal year 1976 computations.

b. Total CDBG funds remaining after Secretary's 2 percent.

program levels, the concern is closely linked to the phase down of hold harmless. In this case, one solution would be to change the present formula in order to redirect funds from SMSA balances to central cities. In Chapter 6, we examine the effect of formula alternatives on the SMSA discretionary share.

A more extreme solution would be to restrict the SMSA discretionary share to a percentage, below that computed using formula variables. We are presently following such a procedure to determine the non-SMSA allocation; the 20 percent share is less than that based on the non-SMSA share of formula factors (35 percent). This fixed-percentage solution requires evidence that goes beyond the premise that large cities are more needy than small communities located in balances of SMSA's because well designed formulas will direct funds to more needy recipients at the expense of less needy recipients. То justify restricting the SMSA balance below its formula computed share requires evidence either (1) that present techniques and data do not measure the higher levels of CD need in large cities adequately or (2) that, given the total appropriation constraint, the amount of funds going to the "older declining cities" under a full formula system is less than some "minimum requirement." In Chapter 9, we examine and provide possible justifications for an alternative that restricts the SMSA balance to a percentage share below that computed using formula variables.

<u>Non-SMSA Funds</u>. The CDBG program allocates 20 percent of total funds to communities in non-metropolitan areas. The total non-SMSA amount going to each state area is computed by the above formula using data existing in the non-SMSA areas of each state as compared to that in the non-SMSA areas of all states. Each state area amount is distributed by HUD on a discretionary basis to state governments for use in non-SMSA areas and to non-SMSA units of general local governments within the state.

CDBG Funding During the Transition Period (FY75-FY80)

Under the present law, the hold harmless provisions represent the primary method of achieving a smooth transition between the displaced categorical programs and the new block grant approach. Basically, the <u>hold harmless amount</u> is the sum of (1) the average of each amount received under the displaced categorical programs (except model cities and NDP) during fiscal years 1968-1972, and (2) the average annual grants received prior to July 1, 1972 under the model cities program and NDP. Recipients of model cities grants will receive a full model cities "hold harmless" amount long enough to give each the equivalent of five action years under the program and additionally will receive a declining percentage (80, 60, and 40 percent) of the full amount for a three-year period following the recipient's fifth action year. During the first three years (FY75, FY76, FY77), those entitlement cities and urban counties which had been receiving a higher level of funding under the displaced categorical programs will continue to receive this higher level (be held-harmless). For these cities, during the three year period FY78, FY79, and FY80, the excess of hold harmless over formula will be phased out by thirds. If an entitlement city's or urban county's basic grant amount exceeds its hold harmles amount, its full basic amount will be phased in over three fiscal years (FY975, FY76, FY77) so that the first year amount equals the greater of one-third full basic grant or hold harmless amount; the second year amount equals the greatest of two thirds full basic grant amount, hold harmless, or the first year amount; and the third year (FY77) equals the full basic grant amount. According to the present law, all entitlement cities and urban counties will be receiving their formula amounts in FY80.

Those SMSA communities (less than 50,000 and not central cities) which have no formula entitlement but had been participating in either urban renewal, model cities, code enforcement, or NDP will also "be held-harmless" during the initial three year period. However, under the present law, they will be phased out completely by 1980 and at that time must apply for assistance out of the discretionary amounts for their SMSA areas. Funds released by the phase out of hold harmless will be available for discretionary funding in SMSA areas.

The balance of the total SMSA allocation remaining after allocation of formula grants and hold harmless requirements within SMSA's will be distributed to states and units of local government (other than entitlement cities and urban counties) for use within SMSA's. Each SMSA balance is computed by the same formula as above, using each SMSA as compared to that in all SMSA's. In data defined for computing each SMSA balance, the quantities (population, poverty, and overcrowded housing) for entitlement cities, urban counties, and any cities receiving hold harmless amounts are excluded. HOD will distribute these discretionary funds to cities not eligible for formula on a project-application basis, similar to the method used in the displaced categorical system. During the transition period, the non-SMSA portion (20%) is to be allocated first, to meet the hold harmless requirements of non-SMSA cities, and second, for grants to states for use in non-SMSA areas and to non-SMSA units of general local governments. As in the SMSA case, funds released from hold harmless are available for discretionary funding in non-SMSA areas.

CDBG Funding Issues

During the legislative hearings on CDBGs, many controversies arose concerning various aspects of the fund allocation process. A review of those areas where a lack of agreement existed within Congress can provide hints as to the more critical areas that should be investigated in a reevaluation of the formula. In Appendix B we provide a review of the Congressional consideration of CDBGs as a background for the following discussion of the two most important CDBG allocation issue: formula funding and hold harmless.

Criticisms of the Formula Approach

During the legislative debate, a number of arguments were made against the use of an objective formula to distribute CDBG funds. Many felt that because of the inadequacies of available data, it would be impossible for any objective formula to reflect the full dimensions of need. Factors such as neighborhood blight, condition of public facilities, abandonment rates, present level of public services, and condition of the housing stock are essential elements in the consideration of community needs but are very difficult to measure. $\frac{2}{2}$ – Questions were raised concerning the crude indicators of community development need used in many of the proposed formulas. The need indicators or formula factors selected most often were total population, poverty, overcrowded housing, lack of plumbing facilities, and age of housing stock; these factors nearly exhaust available national data relevant to community development. $\frac{3}{2}$ The fourth factor, lack of plumbing facilities, was considered as a measure of "the extent of housing deficiencies"; however, housing units can have adequate plumbing facilities and still be in a substandard condition because of defects such as sagging floors, deteriorated foundations, and missing materials such as shingles, bricks, or floorboards over a large portion of the structure. In addition, both age of housing and lack of plumbing emphasize past needs and therefore tend to penalize those cities undergoing rapid change relative to the older, urban centers.

- 2/ U. S. House of Representatives, Subcommittee on Housing. <u>Hous-ing and Urban Development Legislation-1971</u>, Parts 1-3. 92nd Congress, 1971, p. 984, 990.
- 3/ U. S. Senate, Subcommittee on Housing and Urban Affairs. <u>1971</u> <u>Housing and Urban Development Legislation, Parts 1-2.</u> 92nd Congress, 1971, p. 84.

Many felt that in view of the limited amount of community development funds available each year, it was imperative that funds be directed towards those older cities with the most urgent needs. Giving formula-calculated funds to each city would spread the given authorization so thinly that effective action could not be taken in those urban areas with special problems. The conclusion followed that funds should be distributed by a flexible, discretionary procedure rather than by a fixed formula.

A third argument against the use of an objective needs formula stressed the lack of prior interest displayed by many cities. Support was given to formulas that allocated on the basis of previous participation in the categorical programs. It was argued that a more equitable distribution and a more efficient use of CD funds would result if CDBGs were allocated to those active communities that had previously recognized their CD responsibilities. $\frac{4}{}$ Of course, it is possible that those communities that did not participate in the old categorical programs had the need but had neither the matching funds nor the staff required to administer the categorical programs.

Hold Harmless and "Extent of Program Experience"

All proposals that included an objective needs formula also recognized the need for hold harmless as a transition mechanism to help those communities that had been receiving high levels of categorical grants to cut back gradually to their basic entitlement. The 1974 Act even provides special transition funds for issue by HUD to those cities that suffer severe cutbacks.

Under the present law, beginning in 1978, hold harmless will be phased out by thirds and will completely disappear by 1980. In other words, by 1980, each entitlement community will receive only its basic, formula-calculated grant and each non-entitlement community will compete with other such communities in its area for the discretionary funds allocated by formula it its area (SMSA or state) but distributed within the area by HUD.

As demonstrated by the testimony taken in both the House and the Senate, a number of arguments can be made for not phasing out hold harmless. In fact, the initial Sparkman bill in the Senate (S. 2333 in 1971) based its allocation process on past performance and both the House (H.R. 10036) and Senate (S. 1744) bills in 1973 contained the term "extent of program experience" as a formula factor in addition to the transitional hold harmless clause (see Appendix B).

4/ U. S. House of Representatives, op. cit., p. 1184.

One justification for using past performance as a criterion for allocating CD funds emphasized the importance of directing funds to those communities that had shown "prior public concern" and had accepted the responsibility for solving their CD problems by providing matching funds in order to participate in the categorical programs. In light of the small total authorization, it was felt that it would be more efficient to distribute the funds to those cities with ongoing development instead of thinly distributing the limited amount by an automatic needs formula to a larger group of recipients.

A second justification for not phasing out hold harmless is based on the difficulty of developing a satisfactory needs formula. This argument emphasized the infrequent reporting of Census Bureau data and the lack of any data pertaining to the characteristics of a neighborhood.

A third argument for not phasing out hold harmless (HH) looks at the specific communities that will lose funds as a result of the phase out. For example, if one feels that the "older, declining" cities in the Northeast and Midcentral regions are more deserving of CD aid relative to the newer cities, then he will tend to support those allocation formulas that recognize past performance. For example, the weighted average percentage of housing units built before 1939 for those entitlement cities that would lose funds from a switch from HH to present formula funding is 53%, compared to a much lower average of 39% for gainers. This illustration of the link between the phase down of HH and older cities assumes that the age of housing stock contributes significantly to the classification of "older" cities. In a similar manner, if there does exist a bias in our aid structure against "intermediate-sized" cities (10,000-50,000 population) and if these cities were active in the categorical programs, then eliminating the phase-out provision would tend to offset the bias against these cities that results from the cutoff of 50,000 and from other characteristics of our aid system.

Of course, there are criticisms to those formulas that are either based on hold harmless in perpetuity or include "extent of past performance" as a permanent formula factor in addition to the transitional hold harmless clause. For example, as former Secretary Lynn explained, "from the standpoint of equity, the most objectionable feature of a hold harmless provision beyond the transition period is that it denies other communities their rightful share of Federal community development funds determined by objective criteria of need." $\frac{5}{2}$

5/ U. S. House of Representatives, Subcommittee on Housing. Housing and Community Development Legislation-1973, Parts 1-3. 93rd Congress, 1973, p. 11, This position argues against continuing the fruits of "past grantsmanship" forever. Including past performance as a formula factor could penalize those cities that in the past engaged in self-help to solve their CD problems.

In Chapters 5, 6, and 7, we compare a "pure" hold harmless distribution with both the present formula and alternative formulas in terms of indexes of CD need, tax effort, and fiscal capacity. Close correlations between the hold harmless distribution and, for example, several of the dimensions of CD need would provide support for continuing some form of hold harmless.

Summary and Conclusions

In Chapter 2, we have explained how shares for entitlement cities, urban counties, and SMSA balances are determined under full formula funding and during the transition period (FY75-FY80). A number of advantages and disadvantages of both formula and hold harmless funding were outlined. This discussion has indicated several critical areas that must be considered in any evaluation of the present CDBG funding system, including the (1) size of the SMSA balance, (2) indicators of community development need, (3) phase down of hold harmless, and (4) relation of hold harmless to "older, declining" cities. Other formula issues that will also be analyzed include (1) SMSA/non-SMSA split, (2) tax effort, (3) fiscal capacity, and (4) cost of living.

CHAPTER 3

A FRAMEWORK FOR FORMULA EVALUATION

1/

The purpose of this study is to develop and test alternative CDBG formulas which attempt to provide the most funds to those cities with the greatest needs. To accomplish this goal of distributing funds according to jurisdictional need, criteria must be developed that measure the relative variation in community development needs. After emphasizing the importance of a program's objectives in any evaluation of its formula, we review recent studies of the general revenue sharing formula that attempted to develop relative measures of public expenditure needs.2/ This review will also outline some of the methods used by researchers to examine alternative formulas with respect to certain evaluation indexes.

While recognizing the subjective nature of the public need concept, the investigators of the general revenue sharing formula attempted to provide crude, but reasonable estimates of the relative variation in public need across communities. Factor analysis was used by two of the investigators to develop a needs index based on both the physical characteristics of the communities and the distribution of population subgroups.<u>3</u>/ This factor analysis approach seems particularly relevant for our investigation and will be explained below in the context of constructing a community development needs index. In the next chapter, we use this factor analysis technique to delineate separate groups of intercorrelated variables and to compute indexes that measure the variation in community development needs across entitlement cities.

Principles of Design of Grant Structures in Light of Basic Objectives

In this section we review some of the principles of design for grant structures in light of the basic objectives that might be served. We consider how the allocation formula and the evaluation of such a formula differ depending on the objective, or combination of objectives, being served.

1/ Those readers not interested in methods of measuring public needs may proceed to the fourth section of the chapter, "Statistical Methods," for a discussion of the correlation and regression techniques used in this study.

2/ See Barro (1975), Ross (1975), and Schmid (1975).

3/ Ross (1975) and Schmid (1975).

Selma Mushkin recognizes four broad functions, or objectives, of the grant-in-aid system.4/ One of the functions may be to promote "programs of national concern" while leaving program development and administration at the local level. For example, activities considered to be part of the birthright of citizens (e.g., education, decent housing) would fall into this category. The Federal Government may set certain minimum standards in specific areas and tightly control the use of the grant or it may only require that funds be expended in broad areas (i.e., community development) of "national concern." In either case, matching funds may be required in order to stimulate local interest. To satisfy the first objective, the allocation formula must include measures of local need (e.g., dilapidated housing) and of the extent to which "target populations" (e.g., poor people) are located within the locality.

A second function of a grant-in-aid system is to correct distortions in public expenditure decisions that result from benefit spillovers. Benefits that flow to citizens in other jurisdictions are ignored by the local decision-maker; therefore, in order to achieve economic efficiency from a national point of view, it is necessary to encourage the local decision-maker to increase his production of the undersupplied public good. This efficiency argument calls for an openended, categorical grant with the cost shares of the grantor and grantee determined by the extent of benefit spillover.

A third function is to obtain greater equalization among localities; Mushkin defines five different equalization concepts. Currently, the general revenue sharing program achieves some equalization by including a capacity measure (income) in its allocation formula. During the legislative debate over CDBGs, arguments were made for including fiscal capacity measures in the CDBG formula. Mushkin's fifth concept, "equalization of effort to achieve national program standards," defines equalization in terms of the fraction of a locality's revenue base that must be devoted to implement the program standards and, although difficult to operationalize, should possibly be given some consideration in evaluating the CDBG formula. One proxy measure of effort that might be acceptable is per capita local taxes divided by per capita income.

A fourth function of a grant-in-aid system is to promote a more desirable balance between the public and private sectors. Many feel that local public goods are constrained below optimal levels by factors such as interjurisdictional tax competition.

The criteria used to design and evaluate a grant formula depend on

4/ See Mushkin (1969).

the purpose of the grant. The CDBG formula reflects the stated purpose (see Chapter 1) of the CDBG program by including measures of city need (population, over-crowded housing) and a measure of the target population (extent of poverty), which will also be referred to as a needs variable. As it stands, the CDBG formula seems to be serving Mushkin's first function, promoting a program of national concern; however, in order to test its ability to serve other objectives, measures of fiscal capacity and fiscal effort, for example, will also be considered in the formula evaluation.

Evaluation of the General Revenue Sharing Formula: Review

To evaluate the existing general revenue sharing formula and to aid in designing a new formula, evaluators would construct an evaluation index which measured a community's per capita need for general revenue sharing funds by considering its service requirements (needs), tax effort, cost of living, and fiscal capacity. For example, one general form which was employed was:

Service Requirements x Tax Effort x Cost of Living Fiscal Capacity

Each component of the above evaluation index was also expressed in index form; for example, the service requirements index would assign a score to each community, with higher scores reflecting a higher relative level of service needs. After component scores were assigned for each community a total score would be computed according to the above formula, with higher scores representing a greater need for revenue sharing funds. The assumption here is that the objectives of the general revenue sharing program are such that per capita aid should increase with service requirements, tax effort, and cost of living, and decrease with fiscal capacity.

Alternative formulas were evaluated by comparing, for example, the allocations under the current formula with those under a proposed formula, using correlation and regression techniques. Any improvement from changes in the definitions of formula factors or changes in eligibility constraints could also be measured by comparing the new distribution of funds with the initial allocation in terms of responsiveness to the evaluation index.

Service Requirements (Needs) Index

Since the purpose of this study is to test alternative formulas in terms of responsiveness to community development need, we are especially interested in the different methods used to construct the service requirements or needs index. Our approach will be to first evaluate the present formula, hold harmless, and alternative formulas in terms of responsiveness to a set of community development need scores rather than in terms of a total evaluation index such as the one listed above. In Chapter 4, we develop a set of community development need indexes, and, in Chapters 5 and 6, we test each formula mechanism in terms of responsiveness to these need indexes. We do not test alternative formulas that include as formula factors, tax effort, fiscal capacity, and cost of living. However, in Chapters 7 and 8, we do test each formula mechanism in terms of its correlation with tax effort, cost of living, fiscal capacity, and a total evaluation index such as the one given above.

The "need indicator" concept. A refined measure of public service need would require (1) the ability to establish minimum standards for each major public service category (e.g., education, health, etc.), and (2) an estimation of the variations in the costs of providing public services across communities.5/ However, because of the difficulties of measuring public outputs and of constructing a local government price index, it is practically impossible to estimate the level of expenditures required to provide minimum standards of service for each community. One approach would be to estimate expenditure requirements by determining which population groups benefit from public expenditures and weighting these subgroups by the amount of dollar costs of benefits received and then summing the weighted population.6/ Unable to realize this ideal, researchers have turned to proxy measures of public service needs, called "need indicators". A need indicator is a variable (e.g., poverty) which provides a rough indication of relative differences among cities; for example, if city A has a higher number of poor persons than city B, then city A has the greater need for public services, but how much greater cannot be answered. We now review three methods to develop an index of public needs that are based on this concept of a "need indicator".

Need Index Based on Demand Behavior

Two approaches that have been used to develop relative need indexes and that are based on actual levels of demand rather than imposing an outside standard are (1) the direct imputation method and (2) the regression method.<u>7</u>/ The direct imputation method, used by Musgrave and Polinsky in a study of state and local expenditure need, defined needs as "the cost of supplying average performance levels for the existing mix of state-local programs," that is, the expenditure required to

5/ Ross, John P. Alternative Formula for General Revenue Sharing: Population Based Measures of Need, June, 1975, p. 5.

6/ Ibid., p. 15.

7/ Barro, Stephen M. <u>Equalization and Equity in General Revenue Sharing</u>: An Analysis of Alternative Distribution Formulas: Part I: Alternative Interstate Distribution Formulas, Rand, June, 1975. See Appendix A for a more detailed discussion of the topics covered in this section. provide national average levels of services to each group of service recipients.8/ A "need for services" index is computed for each unit by assigning subgroups of the population (service recipients) to the different expenditure functions. For example, education (welfare) expenditures are attributed to the school-age (poverty) population. To construct a needs index for a particular unit, one multiplies the U.S. average expenditure for a function per service recipient by the fraction of that unit's population receiving the service, sums over all functions, and divides the sum by a similar sum computed for the whole United States.

The problem with this approach is that the many of the expenditure categories are difficult to assign. It would be particularly difficult to determine which population subgroups to attribute spending for police and fire protection, housing and urban development, and water and sewers. For example, should police spending be attributed to the population as a whole or should a greater weight be given to poor people? In addition, characteristics (e.g., overcrowded housing, density) other than the size of recipient groups should be taken into account when determining the needs for certain functions (e.g., community development).

The regression method of constructing a relative need index first regresses per capita expenditures by function (education, highway, welfare, etc.) on fiscal capacity, aid, and certain demographic and non-demographic variables (e.g., school-aged population, density) that supposedly reflect the community's need for the particular service.9/ The weights of the need-related variables are therefore determined empirically from the actual expenditure behavior of all the recipient units.

A community's need for each function is determined by estimating how much the community would have spent if it had the U.S. average amounts of fiscal capacity and aid rather than its actual amounts. In contrast to the direct imputation method, this regression procedure recognizes that expenditures are also influenced by fiscal capacity and grants-inaid and that it is necessary to separate the revenue effects from the effects of the need-related factors. A relative need index is computed by summing these estimated per capita functional expenditures and dividing this sum by the actual per capita expenditures in the U.S.

8/ Musgrave Richard A. and A. Mitchell Polinsky, "Revenue Sharing: A Critical View," in FRB of Boston, <u>Financing State and Local</u> Governments, Boston, 1970, pp. 17-45.

9/ Auten (1974) was the first to use the regression method in constructing a relative need index.

The two main problems with the regression approach have to do with the specifications of the expenditure equations and the correlation that usually exists between the need-related variables and the capacity variables (e.g., a community with a high poverty population is most likely a low income community). As discussed by Barro, the main specification problems are (1) price variables have not been taken into account which can lead to biased estimates of the coefficients of the included variables if the price level is correlated with the capacity and need variables; (2) the influence of aid may not be correctly specified in a single equation model; and (3) the best need variables may not have been included in the expenditure equation.10/

In the next section, we turn to a conceptually different approach, factor analysis, which is not based on actual demand behavior, but on a mathematical technique that attempts to combine a number of need indicators into a set of factors, each factor representing a different dimension of need for the service category being considered. For developing an index of community development needs, we think factor analysis is the best of the methods available. As far as the imputation approach is concerned, it would be extremely difficult to assign community development expenditures to subgroups in the population. There are problems with using the regression approach to develop an index of community development need. First, it would be extremely difficult to construct and estimate a model of city finances that adequately accounts for the simultaneous relationships that exist among city revenues, city aid, CD expenditures, and non-CD expenditures. This problem would be further complicated if expenditure categories were divided into capital and current expenditures. Even if such a model could be developed and estimating equations specified, the necessary city finance data are not readily available on an annual basis, except for a small number of the larger cities. An additional problem with estimating city expenditure functions is the question of how to treat interstate variations in expenditure responsibilities between state and local governments.

Factor Analysis

A third method of constructing a relative needs index uses factor analysis to organize a given set of need indicators for the public service category being considered.<u>11</u>/ Factor analysis reduces the need indicators to a set of factors, each factor defined by a different group of variables that tend to "move together"; on each factor or

10/ Barro, op. cit., pp. 148-149.

11/ Schmid, G., Lipinski, H. and Palmer, M. An Alternative Approach to General Revenue Sharing: A Needs-Based Allocation Formula, Institute For the Future, June, 1975, p. 32. dimension, the factor analysis assigns to each city a factor index score.12/ If desired, these dimension scores can be converted into a single score for each city.

As an example, we will consider community development needs. The first step is to make a list of indicators of community development need. These need indicators may be chosen so as to reflect the types of need written into the community development legislation. For example, if the legislation specified that attention should be given to the problems of the elderly (poor), one or more measures of the aged (poor) population would be included as need indicators. One possible list of indicators of community development need would be: age of housing stock, density, houses without adequate plumbing, number of poor persons, and crowded housing. Because analysis using many need indicators would be cumbersone and difficult to interpret, it is desirable to simplify the analysis. Factor analysis is an appropriate technique to achieve this objective if one assumes (a) that the origin of urban problems is common across cities and (b) that the causes of these common problems are not themselves observable and are mutually independent. We believe these assumptions are appropriate or, in other words, that our need indicators are symptoms of unobservable urban maladies. Factor analysis is a statistical technique for estimating the unobservable underlying causes on the basis of the observable effects. The product of factor analysis is a set of coefficients which can be used to estimate the unobserved cause by (1) multiplying each observed effect (needs indicator) by its coefficient and (2) summing the products.

The most critical part of any factor analysis that is being used for policy purposes is that each included factor must reflect a dimension of need and must make intuitive sense. For example, if one is dealing with the community development category of public service needs, it is possible that factor analysis would yield the following three factors (dimensions): a housing dimension, a poverty dimension, and a neighborhood dimension. Within each of these dimensions, each need indicator would have a factor loading that determines its importance within the factor (dimension) being considered. The indicators with high "factor loadings" in the above factors may be, for example, inadequate plumbing (housing dimension), number of poor persons (poverty dimensions), and age of housing stock (neighborhood dimension). In this case, a city with a large percentage of poor persons would show a high factor score on the second factor, poverty. Since each need variable input into the factor analysis is expressed in either percentage or per capita terms, each index score is interpreted as a per capita need score for the particular dimension being discussed.

12/ Ross, op. cit., p. 20.

To calculate a single index that ranks the cities in terms of total community development needs, it is necessary in the above example to have some method of combining the three sets of factor index scores. Summation with each dimension receiving equal weight is only one method; greater weights can be given to those dimensions that more closely reflect the findings, purpose, and goals of the legislation. In the above example, a city which, with respect to the national average, has a large percentage of houses with inadequate plumbing, a large percentage of poor persons, and an aged housing stock will show a high index score on each of the three dimensions of CD need and, therefore, a high per capita score for total CD need, regardless of the summation method chosen.

Although a large number of indicators may be available to be used as input for the factor analysis, it is not desirable to include all of these indicators in the actual formula. The requirement that the resultant formula be simple and easy to understand limits the number of indicators that can be used as formula factors. However, the factor analysis can be used to provide an initial set of formula factors. Those indicators with the highest factor score coefficients (Step 3) within each factor could service as an initial set of formula variables because each would represent a separate dimension of community development need and the process of computing factor score coefficients clarifies the factors by accounting for inter-correlations among the need indicators. In any event the formula factors should be chosen on the basis of their logical roles as need variables and of their ability to reflect separate dimensions of community development need.

Statistical Methods

In this study we use correlation and regression analysis to compare the per capita dollar distributions under hold harmless, the present formula, and several alternative formulas in terms of (1) each of five indexes of community development need derived in Chapter 4, (2) a total CD needs index, derived by combining the five separate indexes of need, (3) several need variables, expressed in either percentage or per capita terms, (4) fiscal capacity, (5) tax effort, and (6) a total evaluation index, derived by combining indexes of CD need, fiscal capacity, and tax effort. In this section, we discuss how correlation and regression techniques will be used to compare formulas in terms of the indexes of CD need.

The need indexes referenced throughout this section are derived in Chapter 4. There we explain the use of factor analysis to compute for each city a per capita score that can be used to measure the relative variation among cities in per capita community development need. A score is computed for each of five factors, or dimensions of CD need: poverty, age of housing, density, crime and unemployment, and lack of economic opportunity. For example, for each city, the factor analysis transforms the city's percentages on several variables related to poverty into a single, composite score that positions the city relative to other entitlement cities with respect to poverty. For each dimension, the average score is zero; positive scores indicate above average per capita need for the factor being considered and negative scores indicate below average per capita need.

Within this needs framework, a formula is evaluated on the basis of the degree to which it distributes above average, per capita amounts to cities with above average, per capita need. Correlation and regression techniques will be used to measure the responsiveness and sensitivity of formulas to each need index. During the following discussion, it is important to remember that need scores measure relative, not absolute need.

Simple Correlation Coefficient

In correlation analysis the strength of association between two variables is indicated by the simple correlation coefficient. The coefficient is a measure of linear relationship, being a measure of the goodness of fit of a least-squares straight line.13/ In other words, the closer the relationship between two variables is to a straight line, the higher the degree of correlation. In this study we are interested in the degree of relationship between a particular formula's per capita allocation of funds and the need scores on each of five dimensions of CD need. If a formula's per capita allocations are perfectly positively correlated with the factor index scores, a direct relationship exists such that a higher per capita amount is always associated with a higher need score. The perfect positive correlation will have a coefficient of plus one. If they are perfectly negatively correlated, the coefficient is minus one and an inverse relationship exists such that a

 $\frac{13}{1972}$, For a more detailed discussion of correlation analysis, see Blalock (1972), Chapter 17, and Roscoe (1967), Chapter 12.

higher per capita amount is always associated with a lower need score. If there is no tendency for a higher per capita amount to be associated with either a higher or lower need score, the coefficient is zero.14,15/ All of our correlations are between plus and minus one.

For a dimension of need, an allocation with a positive correlation is judged more desirable than one with either a negative or zero correlation. This follows because we want above average per capita amounts to go to those cities with above average per capita need scores.

Comparison of Correlation and Regression Analysis

The least squares regression of per capita amounts (Y) on a needs index (X) has the form: Y=a+bX. Associated with this least-squares regression is a quantity r^2 which is that proportion of the variance of Y (squared deviation around the mean) which is predicted or determined by the straight line, a + bX. The correlation coefficient r is simply the square root of r^2 . The correlation coefficient indicates the degree to which per capita amounts are explained by the index scores but tell us nothing about the nature of the relationship between the two variables. The slope (b) of the regression line tells us the rate at which per capita amounts change with changes in need scores but tells us nothing about the goodness of fit of the regression line.16/

Formulas can have the same correlation coefficient while having different regression slopes. To see this, consider the three per capita dollar distributions in the following hypothetical example:

		Need Score	Formula I	Formula II	Formula III
City A,	high need	+1.	\$10.10	\$15.00	\$20.00
City B,	medium need	0.	10.00	10.00	10.00
City C,	low need	-1.	9.90	5.00	0.00

14/ Roscoe, John T. Fundamental Research Statistics, 1969, p. 72.

15/ The simple correlation coefficient between per capita allocations and need scores can be defined as the covariance between per capita allocations and need scores divided by the product of their standard deviations: $r = S_{XY}/S_XS_Y$ where r = simple correlation coefficient between X and Y, X= need score for a particular dimension, also called a factor index score, Y= per capita allocation for CDBG formula, $S_{XY} =$ covariance between X and Y, and S_X (Y)= standard deviation of X (Y).

16/ The relationship between the simple correlation coefficient r and the regression slope b is indicated mathematically as follows: b=r(SY/SX).

If we assume that each city has the same population, the total appropriation under the three formulas will be the same; therefore, these are viable alternative formulas. The regression equations for these formulas are as follows:

Formula	Ι.	١	(=	10.	+	.1	Х	
Formula	II	- N	(=	10.	+	5	Х	
Formula	III		=	10.	+	10	Х	

where, Y equals the per capita amounts and X equals the need scores. The simple correlation coefficient between X and Y is a perfect + 1.0 for each of the three formulas. However, the formulas certainly are not in agreement. The response of per capita dollars to the need index changes from \$.10 under Formula I to \$10. under Formula III. In Formula I, the range in per capita amounts from the lowest to the highest is \$.20, while in Formula III the range is \$20.00.17/

In this study the alternative formulas are compared using both correlation and regression techniques because of the different information they provide. The choice between alternative formulas may require normative judgments about the relative importance of sensitivity to need (the regression slope) and degree of responsiveness to need (the correlation coefficient).

Multiple Regression Analysis

In this study we supplement the simple correlation analysis with a multiple regression analysis, which estimates the change that occurs in per capita amounts with a change in a particular factor index score, holding the other four factor index scores constant. The regression analysis therefore allows us to compare formulas on the basis of their sensitivity to the different dimensions of CD need. The general form of the equation estimated is as follows:

> Per Capita \$= a + b FACTOR 1 + c FACTOR 2 + d FACTOR 3 + e FACTOR 4 + f FACTOR 5

FACTOR 1 to FACTOR 5 represent the per capita scores on the five dimensions of CD need. On each dimension, the average score is zero; an above (below) average level of per capita need is indicated by a score greater (less) then zero. Since the average on each of the independent variables is zero, the intercept term <u>a</u> will equal the average per capita formula amount. The regression coefficient <u>b</u> measures the change in per capita dollars for a one unit change in FACTOR 1, at fixed levels of FACTOR 2 to FACTOR 5.

17/ This example was provided by Paul Burke, Department of Housing and Urban Development.

For each factor, a positive coefficient is preferred to either a zero or negative coefficient. However, in comparing two formulas both with positive coefficients for a particular factor, we can not say that the formula with the higher regression coefficient is the more desirable. This inability to judge between positive regression slopes results primarily from our using relative measures of need, instead of absolute measures. It is even more difficult to judge between formulas when all five regression slopes are considered. Then, one has to make a judgment of the relative importance of the five factors. In this case, it is possible for a formula which has negative regression slopes for certain factors to be judged more desirable than an alternative formula which has all positive slopes, simply because the evaluator assigns a high (low) weight to those factors with the positive (negative) regression coefficients. This problem is identical to that of assigning weights to factors in order to combine the five factors into a comprehensive needs index.

The above discussion has emphasized two problems with using regression coefficients to compare and evaluate formulas. First, limiting the comparison both to a single need dimension and to formulas with positive regression slopes for this dimension, we can not argue that the highest positive regression slope is the most desirable. Second, it is even more difficult to compare formulas on the basis of all five coefficients in the regression equation. Normative judgments are required as to the relative importance of the five factors.

In this study we used multiple regression to determine the implicit emphasis that hold harmless, the present formula, and the alternative formulas give to the various need indexes. In addition to the multiple regression coefficients, we also report in the regression tables (a) the multiple coefficient of determination, (b) the standard error of estimate, and (c) the standard deviation of the per capita amounts. The multiple coefficient of determination is the proportion of variation in per capita dollars that is explained by the multiple regression equation, or by the five need indexes. 18/ A high coefficient

18/ Specifically, the multiple coefficient of determination, R² equals the variation explained by the multiple regression equation divided by the total variation of the per capita amounts. The total variation in per capita amounts equals the sum of the squared deviations around the mean. The R² statistic will range from zero to one; a value of one would mean that the actual per capita amounts could be perfectly predicted by the regression equation, or, in our case, by the five need indexes. One minus the R² value measures the degree to which factors other than our five need indexes explain the variation in per capita amounts. Because it is a relative measure of goodness of fit, the R² statistic does not vary with the total CDBG allocation to the 435 entitlement

of determination therefore indicates a close relationship between the actual formula allocation and need. The standard error of the estimate measures the "average" disparity between actual per capita amounts and per capita amounts predicted by the multiple regression equation. 19/ It is therefore an absolute indication of how well the regression equation, or estimated per capita amounts, describes the relationship between the actual per capita amounts and the five need indexes. If the standard error of the estimate equaled zero the actual and predicted per capita amounts would be identical, which would indicate an exact relationship between formula allocations and the implicit relation between formula allocations and the five need indexes. The standard deviation measures the variability, or spread, of the per capita amounts about the average per capita amount. 20

(Footnote 18 continued from previous page) cities; therefore, it is appropriate to use it for comparing formulas that allocate different amounts to entitlement cities.

19/ The standard error of the estimate is an average of the sum of the squared residuals. A residual is computed for each city by subtracting its per capita dollar amount predicted by the multiple regression equation from its actual per capita amount under the formula being considered. Approximately 68 percent of the actual per capita amounts will lie within one standard error of the per capita amounts predicted by the multiple regression equation, and 95 percent, within two standard errors. For purposes of comparing formulas, one disadvantage of the standard error of estimate is that it changes with changes in the total CDBG amount allocated to the 435 cities.

20/ The standard deviation is the square root of the average squared deviations about the mean. The standard deviation is an absolute measure and therefore is a function of the total allocation to the 435 entitlement cities. One rule of thumb for normal distributions that can provide an approximation to the spread of the per capita amounts states that 68 percent of all per capita amounts will fall within one standard deviation to either side of the average per capita amount, and 97 percent, within two standard deviations.

Cities Weighted According to Population Size

In order to accurately reflect the community development needs of people as a whole, we used a weighting system in both the factor analysis and the correlation and regression analysis that determines the importance of a particular city on the basis of the percentage of total entitlement city population accounted for by the city size grouping within which this city was located. The weighting system works by "blowing up" the number of cases as follows. First, the 435 entitlement cities included in our data file are divided into 8 population size groups and the percentage of entitlement city population accounted for by each population group is calculated. For example, the 94 entitlement cities in the population group, 100,000 to 250,000, accounted for 18 percent of total population in the 435 entitlement cities. Second, the weights given to each case were set so that the total number of cases would increase from 435 to 2021 and so that the number of cases in each population group divided by 2021 would equal the percentage of population accounted for by the group within which the case is located. For example, each of the 94 entitlement cities in the population group mentioned above was given a weight of 4 so that the total number of cases in this group would equal 18 percent of the 2021 cases ((94x4)/2021=.18).

Although not exact, this procedure is clearly preferred to that of giving the per capita and percentage quantities of each city an equal weight, as would occur if correlation analysis was applied to the 435 cases. A twenty percent deviation between a per capita need score and a per capita formula amount is much more important in the case of New York City than in the case of Birmingham, simply because of the larger number of people in New York City. Therefore, in the following chapters correlations and regressions involving per capita dollar amounts are calculated using this weighting procedure, unless stated otherwise. However, in Appendix H, we do present the factor and correlation and regression results that were obtained when we conducted the analysis on 435 unweighted cases. In other words, in Appendix H, we give each case or city an equal weight of one. We briefly discuss the results obtained and point out any major differences from the weighted results presented in the text.

CHAPTER 4

COMMUNITY DEVELOPMENT NEED

To simplify our evaluation of the present formula and its alternatives, we use factor analysis to reduce several need indicators to five dimensions of community development need. Need variables selected for input into this factor analysis are variables that reflect the Congressional definition of CD need and socioeconomic variables that are frequently found to be associated with urban blight, detrimental living conditions, and housing abandonment. For each of the five dimensions of CD need, the factor analysis computes for each city a factor score that can be used to measure variation among cities in per capita need. A city will receive an above average score on a factor if the city has above average need for each of those need variables that define the dimension being considered. For example if city A has a high percentage of houses built before 1939, then city A will receive a high per capita need score on the age-of-housing-stock dimension. In the final section of this chapter, we assign weights to the five dimensions of CD need so that we can compute a single needs score for each of the 435 entitlement cities.

Appendix A contains definitions and abrreviations for all variables used in this study and a list of all data sources. The primary data source was the <u>County and City Data Book 1972</u>. Because of data problems, the factor analysis included only 435 of the 515 entitlement cities located in the U.S.; however, these 435 cities accounted for approximately 95 percent of the total entitlement city population in FY76. A footnote indicating the number of entitlement cities considered will be included in those tables that have computations based on a group of cities different from the 435 entitlement cities listed in Appendix F.

Input Variables for Factor Analysis of CD Need

The first step is to make a list of indicators of CD need. The criteria for selecting indicators to be used as input for the factor analysis of CD need should reflect the Congressional intent that CDBGs be used to assist in the development of viable urban communities by providing decent housing and a suitable living environment and expanding economic opportunities, principally for persons of low-and-moderate income. Ideally, we would like measures of slum and blight and detrimental living conditions, neighborhood instability, and the level of public services provided to low-income persons. What we have are Census Bureau data on substandard housing that not only fail to recognize many deficiencies defined in housing codes such as interior rooms. inadequate size of rooms, certain fire hazards, light and air requirements, but also ignore environmental deficiencies that are today accepted as contributing to lack of livability of a given neighborhood. We do not have data that measure the relative extent of garbage-littered streets arising from poor sanitation services, cracked and broken sidewalks, unpaved or broken streets, missing or ineffective street lights, inadequate sewage and drainage facilities, noisy and heavy

traffic, and the danger of assault, mugging, and robbery. In essence, a person's housing situation depends as much on the location of the house relative to other houses, to community services, to job opportunities, and to environmental amenities as on how sound the house is to begin with.1/

The approach we use to identify the existence of these environmental or neighborhood conditions is to try to find socioeconomic variables that are correlated with detrimental living conditions. Environmental conditions are measured by indirect surrogates rather than by direct measures of urban blight. From case studies of housing abandonment and from the "social indicator" literature, we have selected variables that seem to be correlated with urban blight and neighborhood instability. For example, a recent study on housing abandonment listed the following as characteristics of a neighborhood experiencing abandonment.2/

> A concentration of low-income nonupwardlymobile families; large families and a high percentage of young people; an old housing stock and a high percentage of substandard buildings; a preponderance of rental properties and multiunit buildings which are suffering from long periods of deferred maintenance; a declining rate of homeownership; strongly antisocial tenant attitudes; minimal public services; a high or increasing vacancy rate; and, despite the high vacancy rate, overcrowding within occupied units.

Appendix D lists characteristics of deteriorating neighborhoods found in several case studies of housing abandonment and urban blight. These studies support the hypothesis that urban blight and substandard housing are related to the socioeconomic characteristics of the population.3/

1/ Marcuse, Peter. "Social Indicators and Housing Policy," <u>Urban</u> Affairs Quarterly, December, 1974, p. 199 and p. 209.

2/ U.S. Department of housing and Urban Development. <u>Abandoned</u> Housing Research: A Compendium. Washington, D.C., 1973, p. 8.

3/ For example, see the studies by Arthur D. Little Inc. (1973), York County Planning Commission (1973), National Urban League (1971), Sternlieb (1973), Bryce (1973), and Linton, Mields, and Coston, Inc. (1971). <u>Need Indicators</u>. The variables listed below were selected for use in the factor analysis. Each variable is either a direct indicator of community development need or a socioeconomic variable found to be associated with urban blight and substandard housing. All variables will be expressed in either <u>percentage or per capita terms</u>. This important point is emphasized by starting each variable abrreviation with the letter P, e.g. P65AGED for the percentage of the total population that is over 65.

In essence, we included almost every data element available from the 1970 Census which relates directly or as a proxy to community development need, the only exception being closely related variables whose inclusion would be repetitive such as percentage of the housing stock built before 1949. Our efforts to encompass fully the concept of community development need is limited to the extent to which the 1970 Census collected and reported data related to community development need. Other data sources were investigated but were not chosen because of lack of currency, non-uniform definition across cities, or limited availability with respect to the 522 entitlement cities.

The variables, their abbreviations, and rationales for their selection are as follows:4/

(1) Persons aged 65 and over: P65AGED

A subpopulation that has special needs for transportation, housing, recreation, and health care.

(2) Crime rate: PCRIME

A factor associated with urban blight and limited economic opportunities.

(3) Nonwhite population: PNW

In practically all studies reviewed, abandonment and urban blight were found to be concentrated in low-income, nonwhite, inner-city neighborhoods. The non-white population is associated with high crime rates, overcrowded housing, a high degree of infant mortality, welfare dependency, substandard housing, and high rates of unemployment. In the Annual Housing Survey, nonwhites reported a higher incidence of deteriorating housing. It is possible that more sensitive indicators of urban blight and neighborhood instability could be obtained by also using

4/ See Ross, <u>op. cit.</u>, pp. 22-23 and Schmid, <u>op. cit</u>., pp. 35-49 for a similar discussion.

as inputs into the factor analysis the nonwhite percentages for the variables listed below. It should be emphasized that statistical association does not imply casuality for this or any of the other surrogates.

(4) Persons over 25 years of age with less than a high school education: PWOHSED

A subpopulation that is characterized by a high crime rate, unemployment, and social problems. Also, a group that is prone to live in declining neighborhoods and is heavily dependent on public support.

(5) Female-headed families below poverty level: PFEMALHP

An indicator of the need for day care centers and a factor associated with neighborhood instability and substandard housing.

(6) Poor persons under 18: PYUTHPOV

See (5) and (7).

(7) Persons below poverty level: PPOORPER

A subpopulation that relies on city governments for basic necessities such as housing, health care, recreational areas, and other public services. Also, a socioeconomic factor associated with substandard housing, urban blight, neighborhood instability, and housing abandonment.

(8) Housing units lacking one or more plumbing facilities: PWOPLUMB

A measure of the physical state of housing units.

(9) Occupied housing units with more than 1.01 persons per room (overcrowding): POCRWD

An indicator of (1) disposal and santitation problems, (2) a high demand for recreational facilities, (3) density of the population, and (4) excess demand for housing.

(10) Unemployed persons: PUNEMP75

An indicator of the economic stability and opportunity in a community.

(11) Housing units built before 1939: PAGE1939

An indicator of substandard housing and a proxy for government repair and maintenance costs of older sanitation facilities and sewage lines. The age of the housing stock is a factor associated with housing abandonment.

(12) Persons per square mile: DENSITY

A measure of population density, a factor associated with urban blight and high crime rates. The more dense the population the more intense will be the use of waste and sanitation facilities and the more difficult the disposal problem. As a general rule, the importance of externality effects increases with population density. For example, density is associated with environmental stress factors such as street noise and heavy street traffic. City expenditure studies indicate that density has a significant, positive effect on per capita expenditures.

(13) Owner-occupied houses: POWNOCCH

An inverse indicator of CD need. Rental properties characterize those inner city neighborhoods experiencing the greatest amount of substandard housing and housing abandonment. In fact, studies indicate that single-family home-ownership may be the strongest barrier to housing abandonment and neighborhood decline.

The main problem with using the above variables is that we must rely primarily on 1970 Census Bureau data, which are continually becoming more out-of-date. However, there are reasons why use of 1970 data may not overly distort the analysis. First, most of the variables are expressed in either percentage or per capita terms, thereby possibly reducing the distortive effects caused by recent absolute or total changes. Second, the needs index to be constructed is a relative index, which means that use of 1970 data would lead to inaccurate results only if recent population movements have caused significant changes in the relative positions of cities. Finally, the conditions (urban blight, abandoned housing) that the factor analysis attempts to identify can be significantly altered only by large changes in (1) public funds for urban renewal, rehabilitation, and new low-income housing construction, (2) the level of employment and income in ghetto areas, and (3) the composition of the inner-city population. We think that changes of the magnitude required are unlikely to have occurred in the period since 1970. Based on the arguments given in this paragraph, we assume that the ranking of cities using 1970 Census Bureau data gives us a reasonable approximation to conditions as they exist today.

Relative vs Absolute Need. The relative nature of the needs indicators should be clearly understood. The following example should be helpful. For each of the 435 cities we know the percentage of the population that is poor. We also know that a poverty population is related to community development need and that the greater the percentage of poor persons the greater the need. However, we do not know the exact relationship between a poverty population and community development need. Is there a minimum threshold? For example, if the poverty population is below 10% of the total population is any community development need generated? We do not know the answer to this or many similar questions. Therefore, we define need in terms of the average. All the need variables are normalized, that is, expressed as standard deviations around the mean for that variable. As a result our approach assumes that any poverty population represents a need and the severity of that need is measured by the closeness or farness of the percentage of poor persons in a city around the average for the 435 cities.

Need Indicator Correlations. Tables 4.1 and 4.2 show how the thirteen need variables are correlated both among themselves (Table 4.1) and with ten other socioeconomic variables (Table 4.2) for the 435 entitlement cities analyzed below in the factor analysis. As expected, the percentage of population in poverty (PPOORPER) is highly correlated with percentage nonwhite (PNW, 0.73), percent of houses overcrowded (POCRWD, 0.59), percent of houses without plumbing (PWOPLUMB, 0.67), per capita income (PCINC72,-0.62), and median family income (MEDINC, -0.84). One rather surprising result in Table 4.1 is the low correlations between the percentage of housing units built before 1939 (PAGE1939) and the poverty (PPOORPER, 0.12; PFEMALHP, 0.17) and housingcondition (PWOPLUMB, 0.33; POCRWD,-0.21) variables. Variables with a correlation above .50 with age of housing stock include percentage of population over 65 (P65AGED, 0.63), percentage of population over age 25 without a high school education (PWOHSED, 0.51), and percentage of housing units in multi-unit structures (PMULTI, 0.59). As shown in Table 4.1, the correlation between density and the age-of-housing-stock variable (PAGE1939) is less than .50 (0.41); as expected, density is correlated with percentage of housing units owner-occupied (POWNOCCH, -0.54) and percentage of housing units in multi-unit structures (PMULTI, 0.61).

As shown in Chapter 5, the low correlations of poverty with age of housing stock (0.12) and density (-0.04) result in low correlations between the per capita fund distribution under the present formula, which gives a double weight to poverty, and these two indicators of CD need. On the other hand, from the remaining correlation coefficients shown in Tables 4.1 and 4.2, we do expect the per capita distribution under the present formula to be highly correlated with PNW, PFEMALHP, PYUTHPOV, POCRWD, PWOPLUMB, PCINC72 (negative), MEDINC (negative), PPOORFAM, and POVAGE65.

As shown in Appendix E and Table 4.3, the correlation coefficients for several need variables change depending on the population group being considered. Especially interesting are the correlations for PAGE1939, DENSITY, and PPOORPER reported in Table 4.3. The correlation between DENSITY and PAGE1939 increases from .41 for all 435 cities to

Cities
itlement
435 Ent
Variables,
Need
Among
Correlations
Table 4.1

	P65AGE U	PCK I MF	321	PW0H5EU	PFF MAI HP	PYUTHPOV	рроонрен	РОСАМD	PWOPLUMB	PUNEMP75	PAGF 1939	人11トロ JU	HOJONMUA
P654GFD	1.0000	644[•	-•0395	.3389	1347	.0210	.1904	+062	.2292	.2044	.6396	1622.	2440
PCHIVE	.1449	1.0000	אאןי.	.1687	.4]64	-2792	.2836	.1654	.0123	.3040	.0420	.2044	3724
۲.« ۳	-•0395	A412.	1.0000	.4057	. 7707	.8091	.7351	.7016	• 3963	.1522	1039	.0475	2453
P. OHSED	енее.	. 16н5	.4057	1.0000	.5423	.5014	.4696	.3924	4397	0166.	•5]44	5445.	Z089
PFEMALHP	.1347	.4164	.7707	.5423	1.0000	-9065	.8955	.5073	.5471	.2149	.1746	.0330	335H
рүцтнроу	.0210	5415.	1904.	• 5014	5406.	1.0000	.947b	.7135	.6278	.1673	.0081	06.30	149.5
рроонргя	.1909	• 2836	1751.	•4076	, R955	H749.	1.0000	.5928	.6716	.1474	.1253	1670-	2416
POCHNO	2904	.1654	.7016	.3424	.5073	1135.	.5928	1.0000	.4672	.1550	2188	0244	0196
HNN Idond	.2242	.0123	. 3463	1954.	.5471	.6278	.6716	.4672	1.0000	.1252	• 3344	.0198	l495
PUNE ND 75	• 5044	.3040	.1522	.3910	.2149	.1673	.1474	.1550	.1252	1.0000	8462.	5965.	1256
₽ ▲ 6F1939	.6346	.0420	1034	.5194	.1746	.0081	.1253	2188	• 3344	.2948	1.0000	.4171	4000
DFNSITY	1625.	.2063	с ^{7н0} .	.2452	0560.	0630	0437	0244	.0198	2 39 2	.4171	1.0000	5415
POWNOCH	2440	3724	- • ² 245	2069	3358	-,1893	2816	0196	1895	-,1256	4000	5415	1.6000

Variable Definitions for Tables 4.1 and 4.2

P65AGED · percent of population over 65 PCRIME crimes per capita PNW percent of population nonwhite (Negro and Spanish) PFEMALHP percent of families with a poor, female head **PYUTHPOV** percent of population poor and under 18 **PPOORPER** percent of population with incomes below thepoverty_level PWOPLUMB percent of occupied houses without plumbing PUNEMP75 unemployment rate, 1975 POCRWD percent of occupied houses with 1,01 or more persons per room **PAGE1939** percent of housing units built before 1939 POWNOCCH percent of houses occupied by owner population per square mile DENSITY POP population per capita income, 1972 PCINC72 MEDINC median family income, 1970 PPOORFAM percent of families with incomes below the poverty level POVAGE65 percent of population over 65 and poor POLDSTR(PAGE1949) percent of housing units built before 1949 percent of housing units built after 1960 PNEWSTR annual average, 1965-1970, of new private PNEW housing units authorized by building permits as a percentage of occupied housing percent of occupied housing units in multi-PMULTI unit structures percent of workers employed by manufacturing PMFG industry percent of population over 25 with less than a PWOHSED high school education

53

Table 4.2 Correlations Among Selected Variables, 435 Entitlement Cities

	POP	PCINC73	MEDINC	PPOORFAM	POVAGE65	POLDSTR	PNEWSTR	PNEW	PMULTI	PMFG
P65AGED	.0344	.0261	3150	.1086	.7789	.6444	5738	3867	.3917	.0156
PCRIMF	.2252	.0078	1555	.2599	.1381	.1031	1202	0862	.1932	1343
PNW	.1893	3411	5026	•7541	.2196	.0202	0943	1250	0447	2326
PWOHSED	.0898	-,5521	5790	•4759	.5558	.5763	5907	4284	.2077	.4350
PFEMALHP	.1173	5717	7555	.9037	.5171	.2905	3063	2728	.0252	2327
PYUTHPOV	.0833	6139	7586	.9695	.4413	.1320	1851	1835	1267	2799
PPOORPER	.0703	6269	8439	•9836	.6080	.2488	2715	2299	0469	3591
POCRWD	.0729	5092	4380	.6544	.0404	1351	.0257	0089	1672	0792
PWOPLUMB	0109	4607	5527	.6470	•4968	.3892	3550	2313	.0806	0838
PUNEMP75	.0437	1859	1236	.1544	.1857	.2953	2679	1763	.2122	.3109
PAGE1939	.0791	2244	2650	.0531	.5706	•9593	8274	6141	.5912	.3223
DENSITY	.3255	.1216	.0612	0657	.0706	.3876	3455	3309	.6191	.1914
POWNOCCH	2102	0031	.2697	2400	2333	4126	.3041	.2930	8240	.1203

Population Siz (in thousands)	e	25-50	50 - 75	75-100	100-250	250-500	500 - 1250	500+		
Number of Citi	es 435	72	140	72	94	31	21	26		
PAGE1939 corre	lated wi	th								
DENSITY	.41	.48	.37	.36	.50	.70	.78	,71		
POWNOCCH	40	22	39	39	47	48	66	-,52		
PUNEMP75	.29	.02	.26	.36	.38	.49	.54	.44		
PPOORPER	.12	04	.10	.30	.20	09	.13	.12		
Density Correlated with										
PAGE1939	.41	.48	.37	.36	.50	.70	.78	.71		
POWNOCCH	54	48	47	57	58	-,83	82	70		
PUNEMP75	.23	16	.16	.25	.44	.58	.45	.36		
PPOORPER	04	.00	10	-,05	.00	.18	.07	.01		

Table 4.3: Correlation Coefficients Between (1) Percentage of Housing Units Built before 1939 (PAGE1939), DENSITY, and (2) Selected Need Variables by Population Size

.71 for cities above 500,000 population, thereby becoming more consistent with the notion that "older, declining" cities are characterized by both an aged housing stock and a high population density. However, over all population groups, poverty continues to exhibit low correlations with both density and aged housing. This is surprising given the higher correlations of percent unemployed with both density and age of housing at higher population levels; as discussed in Chapter 8, a low correlation between poverty and density may result from our not considering city variations in the cost of living when computing the poverty income level.

Regional Distribution of Need Variables. Table 4.4 provides a regional breakdown of percentages and per capita amounts for thirteen of the variables discussed above. Interesting aspects of Table 4.4 include (1) the high percentage of poor persons in the South (17.3), (2) the high percentage of houses built before 1939 in both the Northeast (66.9) and North Central (54.2) regions, and (3) the low percentage of home ownership in the Northeast (36.8). These percentages suggest that the South would suffer a per capita loss at the expense of the Northeast and North Central regions with a switch from the present formula to a formula with a decreased poverty weight and an age-of-housing-stock variable.

Factor Analysis of Community Development Needs

Devising a relative needs index for each of the need variables is possible but the large number of variables would result in complicated analysis. Therefore, factor analysis was used to reduce the need variables to five factors, each factor reflecting a different dimension of community development need. For each of the 435 cities, factor analysis creates a factor score for each of these five dimensions of CD need; these factor scores are interpreted as per capita need scores. In Chapters 5 and 6, in order to determine whether or not a given formula distributes funds according to a particular dimension of CD need, we correlate each set of factor scores with the per capita fund distributions of hold harmless, the present formula, and several alternative formulas. Regression analysis is also used to describe the sensitivity of the different formulas including hold harmless to the various need concepts.

Varimax Rotated Factor Matrix5/. In this section, we explain the varimax matrix that was the solution of a R-type factor analysis on the thirteen need variables. An orthogonal rotation method was used in order to obtain simple and meaningful factor patterns. The factors described below are linear combinations of the need variables and reveal relationships which cannot be easily seen from an examination of the

5/ This section is based on Chapter 17, <u>Statistical Package for the</u> Social Sciences, pp. 208-244.

	b Northeast	North Central	South	West	÷
		· · · · ·	- <u>-</u>		
P65AGED	12.26%	10.47%	9.31%	9.57%	
PNW	24.02	22,25	34,30	21,75	
C PWOHSED	52.89	43.58	48.42	34,69	
PFEMALHP	5.03	4.27	5.88	3,70	-
PYUTHPO V	5.25	4.55	7.28	3,98	-
PPOORPER	13.58	11.84	17.30	11.69	
PWOPLUMB	2.84	3.02	2,86	1,96	
POCRWD	7.88	7.45	9.58	6,99	
PAGE1939	66.94	54,20	29.17	29,24	
POWNOCCH	36.86	55,20	54.94	51,76	
PPOORFAM	10.39	8.67	13,63	8,31	
POVAGE65	2.68	2,33	2.57	1.79	
MEDINC ^C .	\$9795.	\$10636.	\$8543.	\$10755 .	

Table 4.4: Regional Distribution of Need Variables^a

a. Except for PAGE1939 (443), cities.

data base consisted of 449 entitlement

b. The list of states within each region follows. Northeast: Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, and Pennsylvania. North Central: Ohio, Indiana, Illinois, Michigan, Wisconsin, Minnesota, Iowa, Missouri, North Dakota, South Dakota, Nebraska, and Kansas. South: Delaware, Maryland, District of Columbia, Virginia, West Virginia, North Carolina, South Carolina, Georgia, Florida, Kentucky, Tennessee, Alabama, Mississippi, Arkansas, Louisiana, Oklahoma, and Texas. West: Montana, Idaho, Wyoming, Colorado, New Mexico, Arizona, Utah, Nevada, Washington, Oregon, California, Alaska, and Hawaii. Source is <u>City and County Data Book 1972</u>.

c. Unweighted average.

58
variables in their original form. The varimax rotated factor matrix in Table 4.5 shows five factors, each factor delineating a separate group of highly intercorrelated variables. We initially retained all six factors with an eigenvalue greater than .5. However, the sixth factor had very low coefficients and did not clearly describe a dimension of CD need; therefore, we reran the factor analysis retaining only five factors. The five factors explain 79 percent of the common variance in the thirteen need variables. The coefficients in Table 4.5 are called "factor loadings" and they can be examined to determine which need variables are critical to the definition of a factor.

Factor loadings represent correlation coefficients between factors (presented in the columns) and need variables (presented in the rows). For example, the correlation between FACTOR 1 and percent of poor persons (PPOORPER) is .97789. An estimate of the correlation between any pair of need variables can be derived from Table 4.5 by first multiplying the two variable loadings for each factor and next, summing the five results. Using this method, it is easy to see how the high correlation between, for example, DENSITY and POWNOCCH is mainly due to FACTOR 3. On the other hand, the correlation between DENSITY and PYUTHPOV should be relatively small because these two variables do not load highly on the same factor. This correlation interpretation of the factor loadings suggests how different variables can be used to define the different factors. As we will explain below, the high correlations between the poverty (PPOORPER, PFEMALHP, PYUTHPOV, PNW) and housingcondition (POCRWD, PWOPLUMB) variables and FACTOR 1 will establish FACTOR 1 as the "poverty and housing" factor. All we are saying is that as evidenced by their high correlations with FACTOR 1, these variables tend to "move together" as a group, separate from those variables (e.g., DENSITY, PAGE1939) that define the remaining factors.

Factor loadings in a given row also represent regression coefficients of factors with respect to a given need variable. Under this interpretation, PPOORPER after normalization would equal

(.97789 x FACTOR 1) ++(-.0744 x FACTOR 5)

It is obvious that the most important determinant of PPOORPER is FACTOR 1. The importance of a given factor for a given need variable can be also expressed in terms of the variance in the need variable that can be accounted for by the factor. The variance of PPOORPER accounted for by FACTOR 1 is equal to $(.97789)^2$, or .95626. The proportion of the variance in PPOORPER accounted for by all five factors is equal the sum of the squared loadings and is referred to as the communality of the variable.

In a similar manner, the coefficients in a given column show the contribution of each need variable to each factor. In this case the most important determinants of FACTOR 1 are PYUTHPOV (.97839), PPOORPER (.97789), PFEMALHP (.85808), PNW (.73808), POCRWD (.67983), PWOHSED (.49895), and PWOPLUMB (.49196). This pattern establishes FACTOR 1 as

Table	4.5

.

Varimax Rotated Factor Matrix

	FACTOR	1	FACTOR	2	FACTOR	З	FACTOR	4	FACTOR	5
	TACTOR	•	I HE TON	E	ACTOR	5	- ACTOR	-	THETCH	
P65AGED	.0060	7	.7265	1	.1734	+5	.1508	6	0468	15
PCRIME	.2484	9	.0342	2	.4185	50	.6635	3	1.442	s،
PNW	.7380	8	2150	2	.2646	54	.3947	9	.1349	1
PWOHSED	.4989	5	.3680	3	.1424	+6	.2095	8	•5594	9
PFEMALHP	.8580	8	.1613	17	.1342	21	.2665	6	.0395	51
PYUTHPOV	.9783	9	0314	-5	.0379	96	.0897	4	.1062	29
PPOORPER	.9778	9	.1597	'5	.0507	76	.0583	8	0744	+1
POCRWD	.6798	3	3611	9	.2273	32	.0161	8	.3034	6
PWOPLUMB	.4919	6	.3499	20	0228	32	1379	2	.0745	58
PUNEMP75	.0634	9	.2854	8	.0435	50	.5551	9	.2505	56
PAGE1939	.0487	3	.8463	32	.3358	30	.1276	8	.2776	53
DENSITY	.0083	5	.2346	0	.7934	43	.2039	1	.2390	0
POWNOCCH	2149	2	-,2102	23	8856	52	0969	2	.0794	9

۴.,

the poverty-and-housing dimension of community development need. We will refer to it simply as the poverty dimension of CD need.

From the above discussion and from the loadings in Table 4.5, it should be obvious that DENSITY and POWNOCCH are both highly correlated with FACTOR 3, that FACTOR 3 is the most important determinant of both these variables, and that DENSITY and POWNOCCH are the most important determinants of FACTOR 3. We therefore refer to FACTOR 3 as the density dimension of CD need. The following table defines each dimension of CD need in terms of need indicators with high loadings.

	Dimension	Need Variables Defining Dimension
FACTOR 1	Poverty	Poverty variables (PYUTHPOV, PPOORPER, PFEMALHP, PNW), percent of overcrowded houses, percent of houses without plumbing.
FACTOR 2	Age of Housing Stock	Percent of houses built before 1939, percent of population aged over 65
FACTOR 3	Density	Percent of owner-occupied houses (negative), population per square mile.
FACTOR 4	Crime and Unemployment	Crime rate, percent unemployed
FACTOR 5	Lack of Economic Opportunity	Percent of population without a high school education

Per Capita Need Scores. After the rotation matrix is obtained and the number of factors (dimensions) determined, the factor analysis will produce factor scores for each of the 435 cities. Since the need variables were input into the factor analysis in percentage terms, we interpret these scores as <u>per capita</u> need scores. In other words, each city receives a per capita need score for each of the five dimensions of community development need.

Factor scores for each city are calculated from the factor-score coefficients presented in Table 4.6. These factor-score coefficients are derived from the factor loadings in Table 4.5 by a method that eliminates double counting of need variables that are highly correlated. For example, in Table 4.6, we see that only PPOORPER and PYUTHPOV retain high coefficients for FACTOR 1. This means that these two variables are good proxies for the remaining need variables (PFEMALHP, PNW, POCRWD, PWOPLUMB) that had high loadings on FACTOR 1 in Table 4.5.

Table 4.6

Factor	Score	Coefficients
--------	-------	--------------

•	FACTOR 1	FACTOR 2	FACTOP 3	FACTOR 4	FACTOR 5
P65AGED	07051	.05641	02880	.12577	.05660
PCRIME	00205	.03938	03525	.50643	19892
PNW	.03036	31636	.11413	.41983	.05145
PWOHSED	.00033	.03669	03735	.05902	.37999
PFEMALHP	28183	07664	10813	.60749	03616
PYUTHPOV	.57220	61560	01243	- 40246	1.17065
PPOORPER	.67350	.99459	16380	44423	-1.57074
POCRWD	.01016	09126	.06383	12357	.41081
PWOPLUMR	03689	06709	.01156	.00492	.02811
PUNEMP75	01109	.01165	05314	.25234	.03178
PAGE1939	.08053	.82444	08313	18833	.35040
DENSITY	12459	11643	.31096	.09757	.20294
POWNOCCH	06387	.11797	76634	.36916	.36383

The factor score coefficients are a means of clarifying the factors by eliminating repetitive information.6/

Computing a factor score for a particular city with respect to, for example, FACTOR 1 requires two steps: (1) multiply each of the city's need variables (in normalized form) by the corresponding coefficient in the first column of Table 4.6, and (2) add the thirteen results obtained in step (1). Appendix F list the 435 cities and their scores on each of the five dimensions of CD need. In general, a city will receive a high score on a particular factor (dimension) if the city has a high percentage or per capita amount for each of those need variables that define the particular factor. For example, Birmingham (case 1) receives a high score on the poverty dimension, Cambridge (case 190) on the age-of-housing-stock dimension, and New York City (case 282) on the density dimension.7/

6/ Schmid, op. cit. p. 76.

7/ One problem with using factor scores as per capita need scores is that there may be a few cases where rankings based on factor scores are not consistent with rankings based on the need indicators that define a factor. An example of this occurred in the factor analysis conducted in Appendix H, which gave each city an equal weight of one. New York City, which has an above average percentage (62.13) of pre-1939 houses, received a below average score (-.46, see case 282 in Table H.3, Appendix H) on the age of housing dimension (FACTOR 2). This arises because the second factor reflects the average on all measures associated with aged housing. As shown by the Varimax Rotated Matrix in Appendix H (Table H.1), the average city with a high percent of pre-1939 houses also tends to have an above average percentage of aged persons (P65AGED, .71427 loading) and a below average percentage of overcrowded houses (POCRWD, -.54226 loading). In other words, a city scores high on FACTOR 2 if it has high rankings on PAGE1939 and P65AGED and a low ranking on POCRWD. Such is not the case for New York City. The FACTOR 2 score for New York City is decreased to a below average level of -.46 by its above average percentage for over-crowded housing (POCRWD, 9.9 percent). The fact that cities with high percentages of pre-1939 houses also tend to have low percentages of over-crowded houses is suggested by the regional distribution of need variables given in Table 4.4. Cities in the Northeast show an above average percentage of pre-1939 houses (66.94) but a below average percentage of overcrowded houses (7.88). This negative effect of POCRWD on the FACTOR 2 score is inconsistent with our designation of POCRWD as a need indicator; however, POCRWD does have a positive effect on each of the scores for the remaining factors. In addition, as indicated by a high correlation of PAGE1939 with the FACTOR 2 index scores, the inconsistency between rankings on FACTOR 2 and ranking on its key variable (PAGE1939) probably occurs in only a few cases. For a similar discussion, see Keeler (1973), p.8.

Weighting the Factor Scores. To construct a single index of community development need, it is necessary to weight each factor by its estimated importance. One study determined the importance of the factors statistically, weighting each factor by the proportional variance explained by that factor.8/ The proportion of common variance accounted for by each of our five factors can be easily computed from the coefficients given in Table 4.5. First we calculate the total amount of common variance accounted for by each factor by adding the square of the coefficients in each column of Table 4.5. Doing this for the first factor, we obtain 4.258. We next divide this amount by the variance accounted for by all common factors. Recall that the total variance of a variable accounted for by the combination of all five factors is equal to the sum of the variable's squared factor loadings; this sum is referred to as the communality of the variable. To obtain the variance accounted for by all factors, we add up the thirteen communalities. This procedure is equivalent to summing all the squared loadings in Table 4.5; this sum is equal to 9.863. The proportion of common variance explained by the first factor is therefore equal to 43 percent (4.258/ 9.863). The remaining proportions of explained variance are as follows: FACTOR1(43), FACTOR2(20), FACTOR3(19), FACTOR4(11), and FACTOR5(7). According to this weighting system, poverty is the most important dimension of community development need.

There are reasons why the amount of variance explained by a factor should not be used to determine its importance.9/ The factor solution given by the varimax rotated matrix in Table 4.5 was not obtained by extracting factors in the order of their importance. An initial unrotated factor solution (not presented) extracted orthogonal factors in the order of their importance. However, these unrotated factors did not give us a clear indication of which variables tend to "move together". To obtain a more meaningful patterning or clustering of variables, it was necessary to rotate this initial factor solution. In our case, the varimax rotation method, which assumes a fixed amount of common variance (79 percent) and a fixed number of factors(5), was used to simplify the columns of the factor matrix. In the extreme, a simple factor is defined as one with 1's and 0's in a column.10/

A second reason the amount of explained variance should not be used to determine the importance of each factor is that the input variables can be selected to overrepresent a certain factor or dimension.

8/ See Ross (1975).
9/ This paragraph based on SPSS, op. cit.
10/SPSS, op. cit.

The importance of a factor in a rotated solution (Table 4.5) often reflects only the number of variables defining a given factor relative to the total number of variables.11/ For example, in our case, if we would continue to input into the factor analysis variables such as PPOORFAM, MEDINC, and POVAGE65 that are highly correlated with the poverty variables already included in the data, the importance, in terms of explained variance, of the first factor would necessarily increase because the first factor itself is highly correlated with the included poverty variables and therefore would be highly correlated with these added poverty variables. In other words, each additional poverty variable, and its variance, can be explained by the poverty factor, which then increases the apparent importance of the poverty dimension; this is, of course, not a significant discovery.12/ However, the fact that the poverty factor does not explain PAGE1939 and DENSITY is a significant discovery. With respect to these two dimensions of CD need, additional factor runs indicated that including PMULTI and tax effort as input variables would increase the amount of variance explained by the density factor, and including PNEWSTR, PAGE1949, and percentage change in population (negative loading) would increase that explained by the age of housing dimension. We tried several factor runs using different combinations of variables. In most cases, and especially with respect to the first three factors, the factors and their interpretations were quite similar to those given in Table 4.5.

Because we cannot justify the exact number and types of CD need indicators to input into the factor analysis, we will not determine the importance of each factor statistically by weighting according to explained variance. In final analysis, the question of factor weights rests with the policy maker, not the statistician.13/

Total Need Score

Given the difficulty of objectively determining the relative importance of each factor, we conduct most of the correlation and regression analysis in terms of the five dimensions of CD need. However, because a total need score can neatly summarize the responsiveness of alternative formulas to CD need, and because we wanted to evaluate alternative formulas using a total evaluation index that combines need with fiscal capacity and tax effort, we decided to assign weights to the factors and

 $\frac{11}{}$ This paragraph based on Keeler (1973), pp. 48-49.

12/ Keeler, E. and Rogers, W. <u>A Classification of Large American Urban</u> Areas, NSF, May, 1973, p. 48.

13/ Schmid (1975), p. 77.

Sec. 1975

thereby compute a composite need score for each city. Although we do not attempt to provide a detailed justification for each factor weight, the weights are not entirely arbitrary. Our approach has been to weight each factor based on our perceptions of the importance of the group of variables that define that factor. Given the legislative emphasis placed on directing funds to areas with high concentrations of low income persons, we gave the highest weight to FACTOR 1 (.35), which reflects the poverty dimension of community development need. In addition to poverty variables such as female-headed households, nonwhite population, and poor persons under 18, this factor was also defined by two housing condition variables--overcrowded housing and housing without plumbing. This factor reflects many of the social, economic, and housing problems that arise from concentrations of persons of lower income in our larger cities; therefore, it receives the highest weight in our definition of community development need.

The next highest weight was assigned to the age of housing dimension (.25), which reflects the physical dimension of CD need. Age of housing is a factor associated with housing abandonment in our older declining cities and is also a proxy for both government repair costs of sanitation facilities and housing maintenance costs.

Of the remaining three factors, we gave the density dimension the highest weight (.20). We think the two density variables (population per square mile and lack of home ownership) can be used to measure the extent of important "neighborhood effect" externalities, which are likely to be especially significant in slum and blighted areas. One major goal of the CDBG program is the elimination of slums and blight. The problem of blight results from the existence of externalities--the influence of the neighborhood.14/ The housing consumed by a household consists not only in occupancy of a specific dwelling but on the character of dwellings in the neighborhood, together with their state of maintenance-repair. Each owner of property comprising the neighborhood obtains the highest return if his property is undermaintained while all or most others are well maintained. He obtains the least return if his property is well maintained while all or most others are poorly maintained. Each owner therefore has an incentive to let his property be undermaintained while others maintain their property well. The very generality of this incentive means that it cannot be realized and all property will tend to be undermaintained. This is one respect in which slums, or low income housing, may represent suboptimal resource use; strictly individual action does not result in redevelopment. Rental properties characterize those inner city neighborhoods experiencing the greatest amount of housing abandonment. Studies indicate that single-family home-ownership may be the strongest barrier to housing abandonment and neighborhood decline. Across cities, the extence of situations of undermaintenance and housing abandonment will

14/ This discussion is based on Rotherberg (1967).

increase with the increase in neighborhoods of low income persons living in substandard houses. In our needs methodology, we are assuming that the two density variables will provide us with a relative measure of this effect. In addition, we think that a number of social ills that slums are alleged to generate will increase with population and housing density. These include: (1) fire hazards, (2) health problems, (3) crime, and (4) individual personality problems. In terms of the other need indicators, we are saying that for given levels of, for example, femaleheaded households, poor persons under 18, unemployment, and nonwhite population, community development problems (and need) will increase with higher levels of population and housing density.

A higher level of population and housing density also means that sanitation facilities will be used more intensively, thereby increasing government costs. A review of several city expenditure studies indicated that density exhibits a significant, positive effect on per capita city expenditures.

Relative to the poverty, age of housing, and density dimensions, the remaining two dimensions--crime and unemployment, lack of economic opportunity--receive low weights. Giving these two factors an equal weight of .10, the total need score (NEED) is computed for each city as follows: NEED =+.35 FACTOR 1 + .25 FACTOR = + .20 FACTOR 3 + .10 FACTOR 4 + .10 FACTOR 5.

Changes in correlations between formula allocations and total CD need that would result from using different weight assignments can probably be estimated fairly accurately from the individual factor correlations. For example, if the present formula shows a high positive correlation with both FACTOR 1 and FACTOR 2 and a zero correlation with each of the remaining three factors, then decreasing the weight of the first two factors in the definition of total need would result in a lower correlation of the present formula with total need, especially when compared to those formula alternatives that show high correlations with FACTOR 3, FACTOR 4, and FACTOR 5.

Chapter 5

HOLD HARMLESS, THE PRESENT CDBG FORMULA, AND COMMUNITY DEVELOPMENT NEED

The basic purpose of this chapter is to evaluate and compare hold harmless and the present formula in terms of the need scores and need variables discussed in the last chapter. Chapter 5 is divided into five sections. In section one, we compare the categorical and formula distributions by describing the changes in relative shares by type of recipient and by population size. In section two, we show the regional breakdown of funds under both hold harmless and the existing formula and, in section three, we analyze gainers and losers in terms of their average need variables. For our purposes, a gainer (loser) is defined as an entitlement city with a hold harmless amount less (greater) than its full formula amount. Section four contains the most important analysis, a correlation and regression analysis of the two per capita fund distributions with both per capita need scores and need variables. Section five provides a summary and lists our conclusions with respect to hold harmless and the existing formula.

The main conclusions of this chapter, which are derived in section four, are (1) hold harmless is not responsive to need as defined in this study and (2) the existing formula is highly responsive to the poverty dimension but is not responsive to the other dimensions of CD need.

Hold Harmless Data

In this and later **Ch**apters the hold harmless amounts currently received by cities which qualify for entitlement shares are used in the analysis for two related purposes. First, the hold harmless amounts are used as typical of the distribution of funds under a discretionary approach to program funding. Under this assumption we compare the discretionary approach to the formula approach with respect to funding equity. Second, the hold harmless amounts are analyzed as one option for a community development block grant funding mechanism, that is, each city should receive what it received in the past. The advantages and disadvantages of hold harmless funding are naturally the same in both cases because the data are the same.

As discussed above, we use the distribution of hold harmless amounts in fiscal year 1976 to approximate the distribution under the displaced categorical programs. Such a procedure introduces some error into our analysis. To become eligible to receive a hold harmless amount, a city had to participate in one or more urban renewal projects, code enforcement programs, neighborhood development programs, or model city programs. Those non-entitlement cities, in both SMSA's and non-SMSA's, that participated in only water and sewer (WS), open space (OS), or neighborhood facilities (NF) are not being held harmless, and are not included in our data file. By not including these cities, our hold harmless data therefore understates the average amounts allocated under the categorical program. Table 5.1

۱.

Comparison of Hold Harmless Distribution with Present Formula Distribution by Type of Recipient, Fiscal Year 1976

	(1) Hold Harmless	(2) Hold Harmless	(3) a UR/NDP	(4) Model Cities	(5)b Other Categorical	(6) c Formula	(7) Formula	(8) Change in Share	(9) % of
~ · · · ·	<u>(per capita)</u>	% Share	% Share	% Share	% Share	per capita	% Share	<u>(7) - (2)</u>	Population
SMSA	\$12.25	87.5%	84.7%	95,4%	89.0%	\$13.67	80.%	- 7.5%	72.4%
Entitlement Cities(515)	19,67	74.0	70.3	84.8	73.0	15,33	47.	-27.0	38.1
Central Cities(363)	21.70	69.6	65.6	82.6	65.1	16,09	42.	-27.6	32,5
Non Central Cities(152)	7.95	4.4	4.7	2.2	7.9	10,94	5.	+ .6	5.1
Remainder of SMSA	4.01	13.5	14.4	10.6	16.0	11,83	33.	+19.5	34.3
Non-SMSA	4,60	12.5	15.3	4.6	11.0	9.20	20.	+ 7.5	27.5
<u>U S</u>	\$10.75	100%	100%	100%	100%	\$13,44	100%	0.0%	100%

,

٠

.

a. NDP is the abbreviation for Neighborhood Development Program

b. "Other Categorical" grants include (1) water and sewer, (2) open space, (3) rehabilitation,
 (4) neighborhood facilities, and (5) public faulty loans

c. Based on FY76 SMSA appropriation of \$2,077,600.

70

In the analysis below, we divide hold harmless amounts into three categories: (1) urban renewal (UR) and neighborhood development programs (NDP); (2) model cities (MC); and (3) other categoricals. For the first two categories given above (UR/NDP, MC), only very small differences exist between our hold harmless amounts and the actual categorical averages. The main discrepancies occur in the third category, which includes water and sewer, open space, and neighborhood facilities. Our estimates of these discrepancies, in both per capita dollar and percentage terms, are as follows:

		Actual Ca <u>Allocat</u>	tegorical <u>tion</u>	Hold Harmless Data		
Other	Category					
(a)	SMSA	\$ 1.74 (78	8.5%)	\$ 1.25	(89.%)	
(b)	Non-SMSA	\$ 1.26 (2	1.5%)	\$.43	(11. %)	
(c)	Total	\$ 1.62 (10	00.%)	\$ 1.03	(100.%)	
Total						
(a)	SMSA	\$12.74 (80	6.1%)	\$12.25	(87.5%)	
(b)	Non-SMSA	\$ 5.43 (13	3.9%)	\$ 4.60	(12.5%)	
(c)	Total	\$10.74 (10	00.%)	\$10.15	(100.%)	

In the "other category", the discrepancies in percentage terms are rather large; however, because this category accounted for such a small proportion of categorical funds (15 percent), the "Total" figures are not greatly affected. The SMSA share of "Total" funds is reduced by only 1.4 percentage points, from 87.5 to 86.1 percent.

There are two reasons why we use the hold harmless amounts instead of the actual categorical averages. First, the categorical data were not readily available in a form suitable for computing averages by city size and by region. Second, as discussed above, not phasing out hold harmless is frequently mentioned as an alternative to the present system and therefore we would like our data set to be consistent with that alternative. For these two reasons and because the distortion seems to be rather small, we have conducted our analysis using hold harmless amounts, instead of actual figures on the displaced categorical programs.

Relative Shares by Type of Recipient and by Population Size

Column (8) of Table 5.1 shows the percentage point differences between formula shares (column 7) and hold harmless shares (column 2) for six types of recipients. The 7.5 percentage point difference for SMSA communities is not divided equally among metropolitan recipients. The 363 central cities which received 69.6 percent of categorical funds would receive only 42 percent of formula funds, a decrease in share of 27.6 percentage points. On the other hand, the combined share going to non-central entitlement cities, urban counties, and communities in SMSA balances would increase from 17.9 to 38 percent, an increase of 20.1 percentage points. Non-SMSA communities which account for only 12.5 percent of hold harmless funds presently receive 20 percent of formula funds, an increase in share of 7.5 percentage points. To summarize, Table 5.1 shows us that assistance under the categorical programs favored the 363 central cities as a group and assistance under fullformula funding would favor smaller communities located in SMSA balances and non-SMSA areas.

Table 5.2 compares for the 515 entitlement cities hold harmless with the present formula by population size. As shown in column (11) of Table 5.2, the only group with a formula share greater than its hold harmless share is the group of three cities each with a population over 2.5 million. The largest decreases occur in the three population groups between one hundred thousand and one million; the combined share for the 148 entitlement cities in these three population groups would decrease from 44.6 percent to 23.7 percent with a switch to full formula funding. A comparison of columns (5) and (9) of Table 5.2 indicates that full formula funding would decrease the combined share of entitlement city funds going to these three population groups from a 60.3 percent hold harmless share to a 50.4 percent formula share, a decrease of 9.9 percentage points.

Regional Analysis of Hold Harmless and the Present Formula

Assistance under the displaced categorical programs favored the Northeast. As shown in column (1) of Table 5.3, for the five years between 1968 and 1972, communities in the Northeast received, on a per capita basis, an average categorical grant of \$13.63, compared to \$8.38 in the North Central region, \$9.95 in the South, and \$9.03 in the West. The Northeast, which accounted for 24.1 percent of the population and 17.8 percent of the poverty in the U.S., received 34.2 percent of the urban renewal and NDP funds, 30 percent of the model city funds, and 23.7 percent of the remaining categorical funds, or 32 percent of total categorical funds. In Table 5.4, the regional distribution of each categorical program is broken down by type of recipient. As expected, in each region the SMSA area received a much higher share of categorical funds than the non-SMSA area. The South is the only region to have a non-SMSA, hold harmless share greater than 5 percent.

Entitlement Cities. Entitlement cities are analyzed by region and by city type (central city, non-central city) in Table 5.5. Entitlement cities in the Northeast received 33.6 percent (Column 7) of categorical funds allocated to all entitlement cities while accounting for only 27 percent of the population and 26 percent of the poverty. As shown in columns (9) and (10) of Table 5.5, the 124 entitlement cities in the Northeast received on a per capita basis, \$16.68 in combined urban

71

Population	(1) Number of	(2) Hold Harmless	(3) % of Total	(4) % of SMSA	(5) % of Entit.	(6) Formula	(7) % of total	(8) % of SMSA	(9) % of Entit,	(10) Per Capita \$ Change	(11) % Change in Share
(thousands)	Cities	(per capita \$)	Hold Harmless	Hold Harmless	City HH	(per capita\$)	Formula	Formula	City Formula	(6) - (2)	(7) - (3)
Under 50	103	\$27,96	4.6%	5.3%	6.3%	\$15,73	2.1%	2.7%	4.5%	-\$12.23	-2.5%
50 - 100	258	13.39	11.5	13.1	15.6	12.77	8.9	11.2	19.0		-2.6
100 - 250	96	23,35	15.4	17.6	20.8	14.65	7.9	9.9	16.8	- 8.70	-7.5
250 - 500	31	26,68	13.7	15.7	18.6	16.19	6.8	8.5	14.5	- 10.49	-6.9
500 - 1,000	21	23.52	15.5	17.7	20,9	16,72	9.0	11.3	19.1	- 6,80	-6.5
1,000 - 2,500	3	22,36	5.0	5.8	6,8	15,72	2.9	3.7	6.2	- 6.57	-2.1
Over 2,500	3	12.04	8.14	9.3	11.0	16.97	9.4	11.8	19.9	+ 4.93	+1.26
Entitlement Cities	515	\$19.67	73,9%	84.5%	100.%	\$15.33	47.0%	59.0%	100.%	-\$ 4.34	-26.9%

1

Table 5.2 Comparison of Hold Harmless with Present Formula by Population Size, Fiscal Year 1976, 515 Entitlement Cities

. . . .

1 ¹ 1

1

•

1

٠

1

Region	(1) Hold Harmless (per capita \$)	(2) Hold Harmless % Share	(3) UR/NDP (per capita \$)	(4) UR/NDP % Share	(5) Model Cities (per capita \$)	(6) Model Cities % Share	<pre>(7) Other Categorical (per capita \$)</pre>	(8) Other Categorical <u>%</u> Share	(9) % of Population	(10) % of Poverty
Northeast	\$13.63	32.0%	\$9.62	34,2%	\$2.99	30.0%	\$1.02	23.7%	24.1%	17.8%
North Central	8.38	22.8	5,33	21,8	2,16	25.0	,89	23,9	27.9	22.0
South	9.95	30.1	6,96	31.7	2.01	25.7	.98	29,3	30.9	45.6
West	9.03	15.1	4.91	12.4	2.70	19.3	1.42	23.6	17.1	14.6

Table 5.3: Hold Harmless Distribution by Region

,

1

4

۰.

۴

.

1

ć

2

1

.

.

Table 5.4 Hold Harmless Distribution by Region and by Type of Recipient

Region	a Hoid Harmless % Share	b UR/NDP % Share	Model Citie % Share	es Other Categorica % Share
Northeast	32.0%	34.2%	30.0%	23.7%
SMSA	29,6	30,9	29.9	22.1
Entitlement City(124)	24.9	25.3	26.5	18.6
Remainder of SMSA	4.7	5.6	3.4	3.5
Non-SMSA	2.4	3.3	.1	1.6
iorth Central	22.8	21.8	25.0	23.9
SMSA	19.7	17.7	24,6	21,5
Entitlement City(132)	17.8	15.4	24,1	19.3
Remainder of SMSA	- 1.9	2.3	.5	2.2
Non-SMSA	3.1	4.1	.4	2,4
outh	30,1	31.7	25.7	29.3
- <u>SMSA</u>	24.7	25.4	22.9	23,4
Entitlement City(149)	20.0	20,2	19,4	18.4
Remainder of SMSA	4.7	5.2	3,5	5.0
Non-SHSA	5.4	6.3	2.8	5,9
lest	15.1	12.4	19,3	23.6
SMSA	13.5	10.8	17.9	21.6
Entitlement City(110)	11.3	1.4	14.7	16,2
Remainder of SMSA	2.2	1.4	3.2	5.4
Non-SMSA	1.5	1.6	1.4	2.0

Hold Harmless is divided as follows: 66% UR/NDP, 25% model cities, and 10% other categorical (open space, water and sewer, neighborhood facilities, rehabilitation, and public facility loans.) a,

b. UR/NDP = (Urban Renewal grants and Neighborhood Development Program grants)

....

Region	(1) Number of Cities	(2) Hold Harmless (per capita \$)	(3) Hold Harmless \$\$hare	(4) Formula (per capita	(5) Formula \$) % Share	(6) % Change 1n Share (5) - (3)	(7) % Share of Entit. City HH ^a	(8) % Share of Entit. City Formula ^a	(9) UR/NDP ^b (per capita	<pre>(10) % Share of Entit. \$) City UR/NDP^a</pre>	(11) Model City (per capita \$)	(12) % Share of Entit. City Model City ^a	·
Northeast	<u>124</u>	\$26.46	24.9%	\$15.65	12,4%	<u>-12.5%</u>	33.6%	26.4%	\$16.68	<u>35.9%</u>	\$6.19	31.2%	
Central City	78	26,96	22,8	15.98	11.0	-11.8	30,8	23,4	18.01	32,6	7.07	30.0	
Non-Central City	46	13.09	2,1	10,46	1.4	7	2,8	3.0	9.70	3.3	1.53	1.2	
North Central	132	18.54	17.8	14.22	<u>11.4</u>	- 6.4	24.1	24.2	<u>10,31</u>	22.0	5.71	28.5	
Central City	90	20.37	17.0	14.75	10,1	- 6.9	23,0	21.4	11.54	20,7	6.70	28,2	
Non-Central City	42	5,30	.8	10.18	1.3	+ .5	1.1	2.8	3.78	1.3	. 37	.3	
South	149	20.25	19.9	18,09	14.6	- 5.3	26,9	31.0	13,67	28.7	4.65	23.0	
Central City	135	21.01	19.5	18,43	14.0	- 5.5	26.4	29.7	14.15	28,2	4.86	22.8	
Non-Central City	14	7.22	.4	13.46	.6	+ ,2	.5	1.3	4.99	.5	.83	.2	
West	<u>110</u>	14.63	<u>11.3</u>	13.74	8.7	- 2.6	15.4	18.4	8,01	13.4	4.42	17.3	
Central City	60	17,20	10,2	14,47	7,0	- 3,2	13,8	14,8	9,34	11,9	5,53	16,5	
Non-Central City	50	5,98	1,1	11,32	1.7	+ ,6	1.5	3,6	3,73	1.5	.86	.8	
Entitlement Cities	515	\$19,76	73.9%	\$15,33	47.1%	-26.8%	100%	100%	\$12.42	100%	\$5.29	100.%	

Table 5.5: Comparison of Hold Harmless Distribution with Present Formula Distribution by Region and by City Type, Fiscal Year 1976, 515 entitlement cities

12

.

1

3

a. In (7), (8), (10) and (12), the share is relative to 515 entitlement cities; (7) is obtained by dividing (3) by .739,and (8) is obtained by dividing (5) by .471.

.

•

.

b. Urban Renewal and Neighborhood Development Program

75

renewal and neighborhood development (NDP) funds, or 35.9 percent of total urban renewal and NDP funds allocated to all entitlement cities. Of these 35.9 percentage points, the 78 central cities located in the Northeast accounted for 32.6 percentage points and the 46 non-central cities, only 3.3 percentage points.

The combined urban renewal and NDP category accounted for 63 percent of total categorical funds allocated to the 515 entitlement cities. The distribution by HUD of these urban renewal and NDP funds seems to have been affected by the existence of an aged housing stock in Northeastern cities; in 1970, approximately 65 percent of the housing units in entitlement cities located in the Northeast were built before 1939. On the other hand, entitlement cities in the West with only 30 percent of their housing units built before 1939 received a much lower per capita amount \$8.01, or only 13.4 percent of total urban renewal and NDP funds allocated to entitlement cities.

As shown in columns (4) and (5) of Table 5.5 and as expected from our earlier analysis of the regional distribution of poverty (see Table 4.4), entitlement cities in the South are favored under the present formula, primarily, because of the double weight given to the poverty factor. On a per capita basis, central cities in the South receive \$18.43, compared to \$15.98 in the Northeast, \$14.75 in the North Central region, and \$14.47 in the West (Column 4). Of the total amount going to entitlement cities under the existing formula, 31 percent is allocated to the South, 26 percent to the Northeast, 24 percent to the North Central region, and 19 percent to the West.

Column (6) of Table 5.5 shows that the hold harmless share is greater than the formula share for each of the four groups of central cities. As shown earlier in Tables 2.1 and 5.1, the main reasons central cities as a group lose under the existing formula are (1) balances of SMSA's and urban counties are given full formula status, and (2) approximately 20 percent of the total CDBG appropriation is allocated to non-SMSA areas. Under full formula funding, 52 percent of CDBGs would be allocated to small communities in (1) the balance of SMSA's (22 percent), (2) urban counties (10 percent), and (3) non-SMSA areas (20 percent). In Chapter 6, we consider the share going to central cities under several alternative formulas.

Again, in column (6) of Table 5.5, notice that the percentage point loss is highest for those central cities in the Northeast, equaling 11.8 percentage points, compared to 6.9 in the North Central region, 5.5 in the South, and only 3.2 in the West. It is obvious from a comparison of the per capita amounts given in columns (2) and (4) of Table 5.5 that without either a large increase in the CDBG appropriation or a formula change that significantly benefits central cities, the phase down of hold harmless will result in reduced Federal funding to central cities, especially those located in the Northeast and North Central regions.

Gainer and Loser Comparisons: Entitlement Cities

A phase-in city or "gainer" is defined as an entitlement city that has a formula amount greater than its hold harmless (HH) amount. In Table 5.6, phase-in cities are divided into two groups. First, of the 435 cities being considered in Table 5.6, 35 did not participate in the categorical programs (HH = 0.). Second, there are 192 entitlement cities that did participate (HH > 0.) but in each case, the hold harmless amount is less than the full formula amount. The remaining 208 cities are the phase-down cities or "losers"; these are entitlement cities each with a full formula amount less than its hold harmless amount. Table 5.6 which characterizes each group by listing average percentages for ten of the need variables reveals two important points. First, the percentages in column (1) indicate that when compared with the other two groups of entitlement cities those 35 cities that did not participate in the displaced categorical programs have, on the average, a lower level of per capita need. Second, as compared with the 192 phase-in cities, the 208 phase-down cities show a higher level of per capita need on nine of the ten need indicators. Although many of the percentage differences are quite small, there does exist a rather large difference with respect to the percentage of housing units built before 1939 -- 52.93 vs. 40.45. Again, this reflects the fact that many of the phase-down cities are the "older, declining cities" located in the Northeast. Appendix G lists for each city in the three categories five need variables (DENSITY, POCRWD, PPOORPER, PUNEMP75, PAGE1939), one measure of tax effort (TAX11NC), and per capita aid under hold harmless (HH), the existing formula (PRESENT), and one alternative formula (ALT5).

According to Table 5.6 and Appendix G, full funding under the present formula would tend to direct funds from more needy to less needy cities. As we explain below, this fact alone does not provide a sufficient argument for eliminating the phase-down provisions because it does not consider the per capita fund distribution within each group of cities. However, it does indicate that there may be dimensions of need that are not included in the existing formula. If so, the appropriate procedure would be to continue the phase-down of hold harmless and to derive a new formula that is responsive to those important dimensions of need ignored by the present formula.

To understand the inequity of not phasing down hold harmless, consider the per capita distributions given in Table 5.6. Under the categorical programs, the 208 phase-down cities received, on a per capita basis, 24.81 (33.48 minus 8.67) or 386 percent more than the 192 phase-in cities described in column (2) of Table 5.6. This 386 percentage difference is <u>not</u> justified on the basis of the percentages of need variables given in column (2) of Table 5.6. Except for age of housing stock (PAGE1939), the percentages for the phase-in cities are only slightly higher than those for the 192 phase-in cities. In fact, the poverty percentage (13.57) for the 192 phase-in cities is approximately the same as that (14.13) for the 208 phase-down cities and the over-crowded housing percentage is actually greater (8.83 >7.22). In the following sections, we will further demonstrate the

Table 5.6: Average Percentages of Need Variables for Phase-In Cities and Phase-Down Cities, Fiscal Year 1976; 435 Entitlement Cities

	Phase-In Cities ^a (HH = 0.)	Phase-In Cities (HH>O.)	Phase-Down ^a Cities
Number of Cities	35	192	208
Per Capitas			
Hold Harmless	\$ 0.0	\$ 8.67	\$33.48
CDBG Formula	\$10,69	\$15,94	\$15.48
Percentages			
PPOORPER	7.22%	13.57%	14.13%
POCRWD	5,67	8.83	7.22
PWOPLUMB	1.16	2.46	3.06
PAGE1939	24.04	40,45	52,93
POWNOCCH	65.50	58,90	54,17
PFEMALHP	2.20	3,75	4,69
PNW ^D	8.95	17,35	19.32
PWOHSED	38,97	42,08	48,70
PUNEMP75	8.17	8,69	10.01
P65AGED ^b	8,52	9.37	11.15

a. A phase-in city or "gainer is an entitlement city with a full formula amount greater than its hold harmless amount. A phase-down city is an entitlement city with a full formula amount less than its hold harmless amount.

.....

b. Unweighted average

1

inequity of the displaced categorical system by correlating the per capita hold harmless amounts of the 400 entitlement cities that received categorical funds with the per capita need scores developed in the last chapter and by regressing the per capita hold harmless amounts on the factor need scores.

Table 5.7 compares the categorical distribution with the formula distribution by gainer/loser status and by city type (central city, noncentral city) for all 515 entitlement cities. The phase-down, central cities received 55.6 percent of urban renewal/NDP funds, 58.3 percent of model city funds, and 44.2 percent of the remaining categorical funds, or 55.1 percent of total categorical funds. The inequity of the categorical system can be seen from Table 5.7 by comparing the population and poverty shares with the hold harmless share for the two groups of central cities. As seen in columns (1) and (3), the two groups account for similar shares of both population and poverty; however, the phase-down central cities received 55.1 percent of total categorical funds, compared to only 14.4 percent for the phase-in central cities. A switch to full-formula funding would result in each group receiving a 21 percent share of total CDBG funds.

It is important to emphasize the differences between the present formula method and the displaced categorical method of distributing CD funds. For example, under the categorical system, per capita grants to the 515 entitlement cities varied from a minimum of \$0.00 to a maximum of \$333.79; under the existing formula, per capita grants vary from \$6.15 to \$45.14, a reduction in range from \$333.79 to \$38.99. Table 5.8 shows that the range in per capita amounts would be decreased in each region by a shift to full funding under the existing CDBG formula. Notice that the South receives a maximum per capita formula amount (\$45.14) much higher than that received by any other region. The tendency of Southern cities to receive high per capita amounts under the formula is due to the high percentage of poverty existing in several cities located in the South (e.g., Laredo, 44.7 percent, Brownsville, 45.4 percent). Of the thirteen cities with a per capita formula amount greater than \$25, twelve are located in the South. Still, as Table 5.8 clearly shows, the variation in formula funds is much less than the variation in hold harmless amounts.

To summarize, there does not seem to be justification for one city receiving a per capita amount of \$333.79 while other cities receive nothing. It may be true that the most needy cities received the most funds under the categorical system, but still, there was no reason for ignoring as the categorical system did the community development need that existed in these less needy, phase-in cities. A formula, on the other hand, recognizes the need in all eligible cities by distributing funds according to each city's share of the need variables included in the formula. Of course, the problems of determing the formula factors and the eligible cities must be adequately dealt with to ensure equity in any formula system.

	Phase-In Cities		Phase		
	Central City	Non-Central City	-Central City	Non-Central City	Entitlement Cities
	(1)	(2)	(3)	(4)	(5)
Number of Cities	170	124	193	28	515
		- 			
Hold Harmless Share ^a	14.4%	.7%	55.1%	3.7%	73.9%
UR/NDP	10.0%	.5%	55.6%	4.1%	70.2%
Model Cities	24.2%	.0%	58.3%	2.2%	84.7%
Other Categorical	20.9%	3.6%	44.2%	4.3%	73.0%
CDBG Formula	21.0%	3.6%	21.0%	1.3%	46.9%
Poverty Share	17.2%	9.8%	16.6%	1.9%	36.7%
Population Share	15.7%	4.5%	16.8%	1.2%	38.2%
Hold Harmless(per capita \$)	\$ 9.31	\$ 1.61	\$33.32	\$32.48	\$19.67
CDBG Formula(per capita \$)	\$16.66	\$10.11	\$15,56	\$14.14	\$15.33
(Formula-Hold Harmless \$)	+\$7.34	+\$8.50	-\$17.75	-\$18.33	-\$4.34

Table 5.7: Relative Shares for Phase-In and Phase-Down Cities Under the Categorical Programs and Under the CDBG Formula

a. Each percentage share is computed relative to the U.S. total for the program or variable being considered. The percentages in column (5) can be used to compute shares relative to the totals for the 515 entitlement cities; for example, the 193 phase-in, central cities received 74,56 percent (55.1/.739) of categorical funds allocated to the 515 entitlement cities.

Table 5.8: Range in Per Capita Amounts of Hold Harmless and the Present CDBG Formula by Region, Fiscal Year 1976; 515 Entitlement Cities

	North- east	North Central	South	West	All Entitlement Cities	
	(124)	(132)	(149)	(110)	(515)	
Hold Harmless						
Range ^a	\$333.79	109.76	228,92	61,50	333,79	
Present CDBG Formula						
Minimum	\$6.15	6.20	8.66	6,62	6,15	
Maximum	\$23.11	30.37	45.14	23.43	45.14	
Range	\$16,96	24.17	36.48	16.81	38,99	
<u>Hold Harmless</u> Range ^a <u>Present CDBG Formula</u> Minimum Maximum Range	\$333.79 \$6.15 \$23.11 \$16.96	109.76 6.20 30.37 24.17	228.92 8.66 45.14 36.48	61.50 6.62 23.43 16.81	333.79 6.15 45.14 38.99	

۰.

a. For each region, the minimum per capita hold harmless amount equaled zero; therefore, the range equaled the maximum amount.

81

.*

*

:

The Responsiveness of Hold Harmless and the Present CDBG Formula To Community Development Need

In this section, we measure the responsiveness of per capita amounts under both hold harmless and the present formula to need variables and the per capita need indexes developed in Chapter 4. We use hold harmless and full formula amounts for entitlement cities as computed by HUD in fiscal year 1976. Because eliminating the phase down provision is one alternative to the present system, we think it is important to compare the hold harmless distribution of funds with that of the present formula in terms of responsiveness to community development need.

The statistical techniques used to measure the responsiveness and sensitivity of hold harmless and the present formula to CD need are correlation and regression analysis.1/ The simple correlation coefficient between per capita amounts and per capita need scores indicates the degree to which a formula's allocation responds to need --the question in correlation analysis is how closely related are per capita amounts and need scores. A higher correlation indicates a closer association between a formula's allocation and need. The regression analysis tells us the nature of the relationship between a formula and need.

Correlation Analysis

The clearest evidence of the problem with the hold harmless approach is shown by low correlation coefficients in the first column of Tables 5.9 and 5.10. In Table 5.9, the coefficients of correlation between hold harmless and the five dimensions of CD need indicate that the categorical system was not very responsive to need, as defined by our five sets of factor scores. The three low positive correlation coefficients and the two low negative coefficients tell us that, on an individual city basis, under the categorical programs, above-average per capita dollar amounts were not allocated to cities with above-average per capita need. Recall that Table 5.6 showed us that, on the average, phase-down cities were more needy than phase-in cities. However, when correlation analysis is used to examine hold harmless on an individual city basis, the point that stands out is the weak relationship between hold harmless and need. As can be seen from Table 5.10, similar results are obtained when hold harmless is correlated with several need variables; there is little or no relationship between hold harmless and any of the need variables.

Hold harmless did exhibit a much stronger correlation (0.36 vs, 0.02)

1/ The fourth section of Chapter 3, "Statistical Methods", provides a summary of the correlation and regression techniques used in this and the remaining chapters.

	Hold Harmless ^a	Present Formula ^b
Dimension of CD Need		
(1) Poverty	.14	.95
(2) Age of Housing Stock	.36	.02
(3) Density	05	.20
(4) Crime and Unemployment	.11	.09
(5) Lack of Economic Opportunity	01	.04

Table 5.9: Correlation Coefficients Between (1) Per Capita Amounts and (2) Per Capita Need Scores

• • • • •

a. Only 400 of the 435 entitlement cities participated in the categorical programs; therefore the correlation analysis for hold harmless was limited to 400 entitlement cities. A correlation analysis using 435 cities yielded similar results.

b. 435 entitlement cities

.

·...

· · · ·

83

í

,

1

1

.

. .

Table 5.10:	Correlations	Between	(1)	Per	Capita	Amounts	and	(2)
		Need Va	riab	les				

Need Variables	Hold Harmless ^a	Present Formula ^b
P65AGED	.22	.10
PCRIME	.10	.38
PNW	.06	.79
PWOHSED	.23	.55
PFEMALHP	.27	.85
PYUTHPOV	.14	.93
PPOORPER	.18	.95
POCRWD	10	.79
PWOPLUMB	.18	.50
PUNEMP75	.15	.13
PAGE1939	.34	.13
DENSITY	04	.21
POWNOCCH C	09	38
PMUITI	.09	.19
PNEWSTR C	32	27
PCINC72 c	21	51
MEDINC C	25	78

a. 400 entitlement cities

b. 435 entitlement cities

c. These variables are inverse indicators of need; therefore, high negative coefficients are desired.

than the present formula with respect to the age-of-housing-stock dimension of CD need. This was not entirely unexpected given our results in Tables 5.6 and 4.4. In Table 5.6, we saw that 52.9 percent of the housing units in phase-down cities were built before 1939; on the other hand, this percentage was only 29.1 for the South which receives the highest per capita allocation (\$18.09) under the present formula.

The second column of Tables 5.9 and 5.10 presents the results obtained from correlating allocations under the existing CDBG formula with both need scores and need variables. The present formula exhibits the expected strong correlation (0.95) with the poverty dimension of CD need but very low correlations with the remaining four dimensions. This pattern of correlations carries over to Table 5.10. The present formula has a fairly strong linear relationship with need as de- a fined by the following poverty-related variables: PPOORPER (0.95), PNW (0.79), PFEMALHP (0.85), POCRWD (0.79), PWOHSED (0.55), PWOPLUMB (0.50), MEDINC (-0.78), and PCINC72 (-0.51). However, the present formula shows a weak relationship with those variables that define other dimensions of CD need: PAGE1939 (0.13), DENSITY (0.21), POWNOCCH (-0.38), PUNEMP75 (0.13), P65AGED (0.10), PMULTI (0.19), and PNEWSTR (-0.27). Therefore, if the goal is to make CDBGs more responsive to, for example, the ageof-housing and density dimensions of CD need, then it will be necessary to change the present formula. As we will see in Chapter 6, alternative formulas that include age of housing as a formula factor will increase the responsiveness of CD funding to the age-of-housing and density dimensions of CD need.

Regression Analysis

We use regression analysis to determine the implicit emphasis that hold harmless and the present formula give to the various need dimensions. The general form of the multiple regression equation estimated is:

> Per Capita \$ = a + b FACTOR 1 + c FACTOR 2 + d FACTORS 3 + e FACTOR 4 + f FACTOR 5

> > N.*.

The coefficient b measures the change in per capita dollars for a one unit change in the poverty dimension (FACTOR 1), at given levels of FACTOR 2 to FACTOR 5. The regression coefficients c to f have a similar interpretation.2/ Since the average score on each of the need dimensions

2/ The regression coefficients are affected by the total CDBG amount allocated to the 435 entitlement cities. For example, all estimated coefficients will double if the CDBG allocation is doubled. This fact is important for our purposes because in fiscal year 1976 the total amount allocated to the 435 cities under the present formula was three-fourths that allocated under hold harmless. Therefore, to make coefficient is zero, the constant term <u>a</u> will equal the average per capita amount. In addition to the multiple regression coefficients, we also report in the regression tables (a) the multiple coefficient of determination, (b) the standard error of estimate, and (c) the standard deviation of the per capita amounts. The multiple coefficient of determination (R^2) is the proportion of variation in per capita dollars that is explained by the multiple regression equation, or by the five need indexes. A high R^2 statistic therefore indicates a close relationship between the actual formula allocation and need.

The standard error of the estimate measures the "average" disparity between actual per capita amounts and per capita amounts predicted by the multiple regression equation. It is therefore an absolute indication of how well the regression equation, or the estimated per capita amounts, describes the relationship between the actual per capita amounts and the five need indexes. If the standard error of the estimate equaled zero, the actual and predicted per capita amounts would be identical, which would indicate an exact relationship between actual formula allocations and the implicit relation between formula allocations and the need indexes. The standard deviation measures the variability, or spread, of the per capita amounts about the average per capita amount.

The regression results for hold harmless are presented in the first column of Table 5.11. The relative magnitudes of these regression coefficients describe the implicit logic of the hold harmless system. Hold harmless increases by \$7.60 per capita for each one unit increase in the age-of-housing-stock needs index. The rate of increase in hold harmless per capita with the poverty dimension is \$3.39, and with the crime and unemployment dimension, \$3.19. Hold harmless decreases with unit increases in the density scores (\$1.12) and the lack-of-economicopportunity scores (\$.61). The relative magnitudes of these scores indicate that hold harmless places most of its emphasis on the age of housing dimension of CD need.

For the case of hold harmless, the most important statistics are

(footnote 2 continued from previous page)

comparisons between these two distribution methods that are based on the same total CD allocation, the hold harmless coefficients should be multiplied by .75. We do not do this in our description of the multiple regression results because here we are only interested in a comparison of the relative magnitudes of regression coefficients for each of these two allocation systems considered separately. Such analysis will tell us the implicit emphasis that each allocation system gives to each of the five dimensions of need.

Table 5.11:	Regression of Per Capita Amounts Under Hold Harmless
	and the Present Formula on Per Capita Need Scores

	(1) Hold Harmless ^a	(2) Present _b Formula
Regression Coefficients for Dimensions of CD Need:(\$)		•
(1) Poverty	3.39	3.45
(2) Age of Housing	7.60	.00
(3) Density	-1.12	.75
(4) Crime and Unemployment	3.19	.30
(5) Lack of Economic Opportunity	61 ^C	.19
Other Statistics:		
(6) Coefficient of Multiple	.19	.95
(7) Standard Error of Estimate (\$)	17.42	.80
<pre>(8) Standard Deviation of Per Capita Amounts(\$)</pre>	19.43	3.64

a. 435 entitlement cities; intercept equaled \$20.39.

b. 435 entitlement cities; intercept equaled \$15.48.

c. Insignificant at .05 level.

given in rows (6)-(8) of Table 5.11. First, the R^2 statistic tells us how closely the implicit logic of the system, as indicated by five regression coefficients or by the estimated regression, is being followed. For hold harmless, the R^2 statistic is .19, which means that only 19 percent of the variation in hold harmless per capita can be explained by our five indexes of CD need. The .19 is 76 percentage points less than the R^2 statistic for the present formula. In essence, the low R^2 statistic indicates a very weak relation between (1) the actual distribution of hold harmless per capita and (2) that distribution of per capita amounts predicted from a regression equation that supposedly describes the implicit logic or emphasis of the hold harmless system.

Second, the standard error of estimate for hold harmless is \$17.42, or approximately 85 percent of its mean, which also indicates that the hold harmless equation does not provide a very good description of the relationship between hold harmless and per capita community development need. One interpretation of the standard error of estimate is that there is a probability of 68 percent that the actual hold harmless amount for a city is within plus or minus \$17.42 of the amount predicted by the hold harmless regression equation for that city. The width of the interval (plus or minus \$17.42) indicates how imperfectly the implicit logic of the hold harmless system is followed, especially when compared to how well the present-formula regression describes the relation between the present formula and need--the standard error of estimate is a low \$0.80 for the present-formula regression. Also notice that the standard deviation of hold harmless is \$19.43, which is over five times that of the present formula.3/

The regression coefficients for the present formula given in the second column of Table 5.11 are quite consistent with the correlation results for the present formula. First, the present formula increases by \$3.45 per capita with unit increases in the poverty scores, which is a much greater response than with the other dimensions of CD need. As indicated by the .00 regression coefficient in the second row of Table 5.11, the present formula per capita does not change with unit increases in the age of housing index, for fixed levels of the other four need indexes. Second, the R^2 for the present formula is a very high .95 and the standard error of estimate is a very low \$0.80, both of which can be interpreted as indicating a close relationship between the actual per capita distribution of the present formula and that per capita distribution predicted by its regression equation.

3/ Notice that the standard error of estimate (17.42) is almost as high as the standard deviation of hold harmless per capita (\$19.43). This also indicates that the five need indexes are doing a poor job of explaining the variation in hold harmless per capita.

Summary and Conclusions

Small communities in urban counties, balances of SMSA's, and non-SMSA areas are favored under the present CDBG formula. Central cities which received approximately 70 percent of categorical funds would receive only 42 percent under full formula funding. As a percentage of total funds going to the 515 entitlement cities, cities in the South, which received 27 percent of the categorical funds, would receive 31 percent under full formula funding; entitlement cities in the Northeast, which received 34 percent of the categorical funds going to the 515 entitlement cities, would receive only 26 percent under the formula.

For each dimension of CD need, the correlation between per capita hold harmless allocations and the recipient city need scores indicates that hold harmless was only weakly related to CD need as defined by each of our five indexes. The present formula exhibits the expected strong correlation (0.95) with the poverty dimension of CD need but very low correlations with the remaining four dimensions. In fact, hold harmless exhibited a stronger correlation (0.36 vs. 0.02) than the present formula with respect to the age-of-housing-stock dimension of CD need. In Chapter 6, we include the age of a housing stock as a formula factor in order to derive a formula distribution that is responsive to non-poverty dimensions of CD need.

The regression analysis showed that the rate at which hold harmless per capita increases with increases in the age of housing index was over twice that for each of the other four indexes. The five indexes of CD need explained only 19 percent of the variation in hold harmless per capita; in other words, 81 percent of the variation in hold harmless can be explained by factors other than the five need indexes. In the case of the present formula, the regression coefficient for the age of housing index was zero, while that for the poverty index was \$3.45. To summarize, hold harmless is most sensitive to the age of housing index and the present formula to the poverty index.

Chapter 6

EVALUATION OF ALTERNATIVE FORMULAS

In the first section of this chapter, we present alternatives to the present CDBG formula that include age of housing stock as a formula factor. The number of housing units constructed before 1939 was selected as a formula factor because of its significant correlation with variables that define those four dimensions of CD need to which the present formula is not responsive.

In the second section we first evaluate each alternative using the same correlation method that we applied in the last chapter to hold harmless and the present formula. For each alternative, the distribution of per capita allocations is correlated with need scores and need variables. In this section, we also evaluate each formula in terms of a total needs index. After presenting the correlation analysis, the alternative formulas are analyzed using the regression technique. In the third section, the formula shares and per capita means of the various alternatives are analyzed to determine the extent that various types of recipients gain and lose as compare with the present formula and hold harmless. We are especially interested in the effect of each alternative on the formula share of central cities.

Alternative Formulas

Each alternative examined in this chapter adds the number of housing units constructed before 1939 (AGE1939) as an additional formula factor. Age of housing was added for two reasons. Pre-1939 housing is a factor associated with housing abandonment and substandard housing and is a proxy for both government repair costs of sanitation facilities and sewage lines and housing maintenance costs. In addition, age of housing not only defines one of the four dimensions of CD need ignored by the present formula but is significantly correlated with four of the five need variables that have high factor loadings on the other three dimensions (density, crime, lack of economic opportunity). These four dimension-defining variables and their correlations (weighted) with percentage of housing units built before 1939 (PAGE1939) are as follows: DENSITY (0.55), POWNOCCH (-0.48), PUNEMP75 (0.40), and PWOHSED (0.56).1/

1/ The unweighted correlations (see Table 4.1) are as follows: DENSITY (0.41), POWNOCCH (-0.40), PUNEMP75 (0.29), and PWOHSED (0.51). The unweighted analysis gives each case an equal weight of one. The weighted correlation analysis is described in Chapter 3.

Overcrowded Pre-1939 Population Poverty Housing Housing (POP)(POORPER) (OCRWD) (AGE1939) .25 Present Formula .50 .25 .20 .20 Alternative 1 .40 .20 .25 Alternative 2 .50 .25 Alternative 3 .30 .40 .30 Alternative 4 .60 .40

.30

.30

.40

.20

.20

.50

.50

.60

Alternative 5

Alternative 6

Alternative 7

The formula factors and weights for the present formula and seven alternatives are as follows:

For example, in fiscal year 1976, the following formula would have been used to compute the total amount for an entitlement city under Alternative 1: (.20(POP/149,695,698) + .40(POORPER/17,157,884) + .20(OCRWD/ 3,710,656.) + .20 (AGE1939/18,458,419.) \$2,077,600,000. Rather than following the two-step approach used in the present formula (see Chapter 2 for explanation), we compute each entitlement city's share relative to SMSA totals (e.g., 149,695,698.) in a one-step procedure. Experimentation with the present formula indicates that the correlations are not affected by the switch to a one-step calculation procedure.

Numerous alternatives were examined in order to show the effects on the correlations and regression coefficients of increasing the weight given to AGE1939. The weight given to AGE1939 increases from Alternative 1 to Alternative 7. Appendix J defines seven other alternative formulas and evaluates each in terms of correlation with CD need. A fifth formula variable (without plumbing) is considered in Appendix J. As mentioned before, there are few variables which could be included in the formula (i.e., data exist and they are intuitively appealing).

Appendix H presents the correlation and regression results for the seven alternative formulas that were obtained when we conducted the analysis on 435 unweighted cases. Appendix I provides correlations between per capita amounts and need scores and need variables by population size.

Alternative Formulas and Community Development Need

Correlation Analysis

The correlations between allocations under the seven alternative formulas and need scores and need variables are presented in Tables 6.1 and 6.2; as baselines for comparison, the correlations examined in the last chapter for hold harmless and the present formula are also included in these tables.2/ As shown in the first row of Table 6.1, the correlation coefficients between the seven alternative formulas and the poverty dimension decline from 0.78 under Alternative 1 to 0.34 under Alternative 6. Given the low correlation between PPOORPER and PAGE1939 (0.12, see Table 4.1), it is not surprising that the correlations between the poverty dimension and per capita allocations decline as we increase the formula weight of age of housing stock and decrease that of poverty. The cost of adding age of housing stock to increase the formula's degree of responsiveness to non-poverty dimensions of CD need is simply a reduction in the correlation with the poverty dimension. 0f course, the important question here is how low should the poverty correlation be reduced. The answer to this question depends on both the increase in correlation with each of the non-poverty dimensions achieved by adding a variable such as age of housing stock and the relative importance of each of these non-poverty dimensions of CD need. We now turn to rows (2)-(5) of Table 6.1 to see what we gain by increasing the weight of age of housing stock at the expense of poverty, overcrowded housing, and population.

As shown in rows (2) and (3) of Table 6.1, the highest correlation increases occur with the aged-housing and density dimensions of CD need. The correlation coefficients between the age-of-housing dimension and the seven alternatives range from 0.45 under Alternative 1 to 0.86 under Alternative 7, while those of the density dimension range from 0.27 under Alternative 2 to 0.43 under Alternative 5. Notice also that each of the seven alternatives has a higher correlation with each of the nonpoverty dimensions than has either the present formula or hold harmless. In fact, each alternative dominates hold harmless on all five dimensions of CD need. One equity advantage of hold harmless over the present formula--a higher correlation with the aged-housing dimension--loses its importance when age of housing stock is added to the formula.

Consider, for example, Alternative 3. Under ALT3, the correlation with the poverty dimension drops from 0.95 under the present formula to 0.70 but those with the aged-housing and density dimensions increase from 0.02 to 0.50 in the case of aged-housing and from .20 to .41 in the case

2/ The correlation analysis of hold harmless was based on those 400 entitlement cities in our 435-file that had positive hold harmless amounts. Correlations using all 435 cities were approximately the same as those reported in this chapter.

Hold Harmless	PRESENT	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
.18	.95	.78	.71	.70	.62	.45	.34	.37
. 38	.02	.45	.62	.50	.69	.72	.82	.81
03	.20	.35	.27	.41	.31	.43	. 37	.37
.12	.09	.16	.15	.18	.16	.19	.17	.17
01	.04	.15	.08	.20	.11	.23	.19	.18
	Hold <u>Harmless</u> .18 .38 03 .12 01	Hold HarmlessPRESENT.18.95.38.0203.20.12.0901.04	Hold HarmlessPRESENTALT1.18.95.78.38.02.4503.20.35.12.09.1601.04.15	Hold HarmlessPRESENTALT1ALT2.18.95.78.71.38.02.45.6203.20.35.27.12.09.16.1501.04.15.08	Hold HarmlessPRESENTALT1ALT2ALT3.18.95.78.71.70.38.02.45.62.5003.20.35.27.41.12.09.16.15.1801.04.15.08.20	Hold HarmlessPRESENTALT1ALT2ALT3ALT4.18.95.78.71.70.62.38.02.45.62.50.6903.20.35.27.41.31.12.09.16.15.18.1601.04.15.08.20.11	Hold HarmlessPRESENTALT1ALT2ALT3ALT4ALT5.18.95.78.71.70.62.45.38.02.45.62.50.69.7203.20.35.27.41.31.43.12.09.16.15.18.16.1901.04.15.08.20.11.23	Hold HarmlessPRESENTALT1ALT2ALT3ALT4ALT5ALT6.18.95.78.71.70.62.45.34.38.02.45.62.50.69.72.8203.20.35.27.41.31.43.37.12.09.16.15.18.16.19.1701.04.15.08.20.11.23.19

.

· .

.

Table 6.1: Coefficients of Correlation Between (1) Per Capita Amounts Under Hold Harmless, the Present Formula, and Seven Alternative Formulas and (2) Per Capita Need Scores

"

. , ;

1

ĩ

of density. We think that formulas such as, for example, ALT1, ALT2, ALT3, and ALT4, not only continue to give priority to poverty areas but also adequately account for two dimensions of CD need--aged-housing and density--totally ignored by the present formula.

This point is even more striking in Table 6.2 which shows correlation coefficients for several need variables. Compare the coefficients of the present formula with those of ALT3 for PPOORPER, PAGE1939, and DENSITY. The correlation with PPOORPER falls from 0.95 under the present formula to 0.78 under ALT3, a decrease of only 0.17, while those for PAGE1939 and DENSITY increase from 0.12 and 0.20 under the present formula to 0.51 and 0.52 under ALT3, increases of 0.39 and 0.32, respectively.

To summarize Table 6.2, consider those variables with correlations that change as the weights given to age of housing stock and poverty change. In general, the correlation coefficients of P65AGED, DENSITY, PWOHSED, PUNEMP75, POWNOCCH (-), PMULTI, and PNEWSTR (-) tend to increase in absolute value as the formula weight of AGE1939 increases; those of PPOORPER, PNW, PYUTHPOV, POCRWD, PFEMALHP, PCINC73 (-), and MEDINC (-) tend to decrease. The correlation coefficients for PCRIME and PWOPLUMB do not vary with changes in the formula weights.

Correlations with a total needs index. To summarize those correlations given in Tables 6.1 and 6.2, we constructed a single index of CD need by weighing the five dimensions as follows: NEED = .35 FACTOR 1 + .25 FACTOR 2 + .20 FACTOR 3 + .10 FACTOR 4 + .10 FACTOR 5. The correlations of hold harmless, the present formula, and the seven alternatives with NEED are:

NEED

11

НН	.2987
PRESENT	.7912
ALT1	.9778
ALT2	.9701
ALT3	.9807
ALT4	.9616
ALT5	.9250
ALT6	.8656
ALT7	.8789

Hold harmless shows a much lower correlation (.29) than either the present formula or any of the seven alternatives. This reflects the low correlations of HH with the five dimensions of CD need given in Table 6.1. In each case, the correlation between NEED and an alternative formula is higher than that between NEED and the present formula. The present formula's correlation with NEED is undoubtedly affected by its low correlations with the nonpoverty dimensions of need. Alternative 3 shows a 0.98 correlation with NEED, which is 19 percentage points greater than the 0.79 of the present formula.
	Hold Harmless	Present	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	
P65AGED	.22	.10	.43	.53	.47	.58	.63	.68	.67	
PCRIME	.10	.38	.44	.38	.45	.38	.40	.34	.35	
PNW	.06	.79	.66	.54	.62	.48	.40	.27	.30	
PWOHSED	.23	.55	.71	.68	.72	.69	.69	.64	.65	
PFEMALHP	.27	.85	,82	.80	.77	.74	.60	.53	.55	
PYUTHPOV	.14	.93	.78	.70	.71	.62	.46	.35	.38	
PPOORPER	.18	.95	.85	.80	.78	.73	.55	.46	.49	
POCRWD	10	.79	.55	.33	.51	.26	.23	.05	.07	
PWOPLUMB	.18	.50	.58	.58	.56	.56	.51	,48	.49	
PUNEMP75	.15	.13	.30	.32	. 32	.34	.38	.39	.38	
DENSITY	04	.20	.45	.42	. 52	.46	.59	.55	.55	
POWNOCCH	09	38	56	52	61	54	62	56	56	
PMULTI	.09	.19	.48	.46	.55	.51	.65	.62	.61	
PAGE1939	.34	.12	.59	.70	.67	.78	,88	.93	.92	
PNEWSTR	32	27	64	72	69	77	83	86	85	
PCINC72	21	51	46	46	41	41	30	26	28	
MEDINC	25	78	74	72	68	66	51	45	47	

1

.

;

2

Table 6.2: Coefficients of Correlation Between (1) Per Capita Amounts Under Hold Harmless, the Present Formula, and Seven Alternative Formulas and (2) Need Variables

.

.

r

•

• • • •

.

As mentioned earlier, correlations with a total need index will vary depending on the weights given to the individual factors. Since the present formula shows the highest correlation with the poverty dimension (see Table 6.1), increasing the weight of FACTOR 1 in our definition of total need would increase the correlation of the present formula with NEED. In a similar manner, increasing the weight of the age of housing dimension (FACTOR 2) would tend to increase the difference in correlations with NEED between each of the seven alternatives and the present formula. The correlations with NEED therefore depend on one's judgment concerning the relative importance of the five factors. However, it is probably safe to say that correlations for alternatives such as ALT3 and ALT5 will always be greater than that for the present formula as long as some importance is attached to the nonpoverty dimensions of need, especially to FACTOR 2 and FACTOR 3.

Regression Analysis

The regression results for hold harmless, the present formula, and four of the alternative formulas are shown in Table 6.3. As can be seen from the regression coefficients listed under the alternative formulas, increasing the formula weight of pre-1939 housing tends to make the formula more sensitive to the nonpoverty dimensions of CD need, especially to the age of housing and density dimensions. <u>3</u>/ In each case the regression coefficients for the nonpoverty dimensions are higher under the four alternative formulas than under the present formula. For example, per capita aid under Alternative 7 (.4 POORPER, .6 AGE1939) increases by \$5.24 for each unit increase in the age of housing index, while per capita aid under the present formula does not change with changes in the age of housing index. Per capita aid under Alternative 7 increases by \$2.23 for each unit change in the density index, which is \$1.48 more than the increase under the present formula. On the other hand, the alternative formulas are less sensitive to the poverty dimension than is the

3/ The fact that the present and alternative formula amounts are computed using the same CDBG authorization suggests that it is appropriate to make coefficient comparisons between formulas. When making such comparisons, the reader should realize that the total dollar amount going to the 435 entitlement cities still varies under the formulas. As a rule the entitlement city amount will increase relative to SMSA balances and urban counties as the formula weight of pre-1939 housing increases. However, as shown below by the per capita averages (the intercept term) listed below in column (1) of Table 6.5, the per capita differences among the formulas are small, especially when compared to the per capita differences between hold harmless and the formulas.

Table 6.3: Regression of Per Capita Amounts Under Hold Harmless, the Present Formula and Four Alternatives on Per Capita Need

		Hold <u>Harmless</u>	Present	ALT1	ALT2	ALT3	ALT7
Regre	ssion Coefficients						
(1)	FACTOR1 (Poverty)	3.39	3.45	2.91	2.78	3.27	2.28
(2)	FACTOR2 (Age of Housing)	7.60	.00	1.65	2.47	2.31	5.24
(3)	FACTOR3 (Densi tý)	-1.12	.75	1.32	1.05	1.92	2.23
(4)	FACTOR4 (Crime and Unemployment)	3.19	.30	.57	.62	.76	1.13
(5)	FACTOR5 (Lack of Economic Opportunity)	61	.19	.61	.343	1.02	1.22
<u>Other</u>	Statistics						
(6)	Coefficient of Multiple Determination (R ²)	.19	.95	.97	.98	.96	.97
(7)	Standard Error of Estimate	17.42	.80	.64	.50	.90	1.02
(8)	Standard Deviation of Per Capita Amounts	19.43	3.64	3.75	3.96	4.68	6.37

present formula. Per capita aid under the present formula increases by \$3.45 for each unit change in the poverty index, which is \$1.17 higher than the \$2.28 increase for Alternative 7. However, the poverty coefficient remains higher than the age of housing coefficient for ALT1, ALT2, and ALT3.

As the \mathbb{R}^2 statistics show, at least 95 percent of the variation in each of the four alternative formulas can be explained by the five need indexes. Of all the formulas considered, the standard error of the estimate is lowest for Alternative 2. These two goodness-of-fit measures therefore tell us that there exists a very close relationship between the actual per capita amounts under each of the alternative formulas and the per capita amounts predicted from a regression equation that describes the implicit needs logic of the alternative formula being considered. In other words, if one agrees with the needs emphasis of one of the alternatives as indicated by its regression coefficients, he or she can feel confident that the actual distribution under the selected alternative will closely reflect its needs emphasis. As explained in Chapter 5, we can not say this about the hold harmless system, because the actual hold harmless amounts are not that closely related to the regression equation that describes its needs logic.

<u>Regression analysis using a total needs index</u>. To determine the rate of response of per capita allocations to the total needs index (NEED), we ran simple regressions of the following form: Per Capita \$ = a + b NEED. The regression coefficient, b, measures the change in per capita amounts that occurs with a one unit change in the total needs index. Among the formulas, which are all computed using the same CDBG authorization, a higher regression coefficient or slope indicates a greater sensitivity to differences in need.4/

4/ This is not exactly correct because even with the same CDBG authorization the total entitlement city amount will vary under the different formulas (see footnote 3 above). The reader can easily adjust the slopes reported in Table 6.4 to reflect the same total allocation to the 435 entitlement cities by using the per capita averages given in column (1) of Table 6.4. For example, the slopes for ALT7 should be reduced by 10 percent relative to that of the present formula because ALT7 allocates approximately 10 percent more dollars to the 435 entitlement cities than the present formula. Although the adjustments are small for the formulas, the required change is rather large for hold harmless, requiring a 24 percent reduction to make it consistent with the present formula. If NEED had consisted of all positive numbers, we could have computed elasticities from a simple log-linear regression of per capita dollars on NEED. The advantage of using elasticity coefficients, which measure the percentage change in per capita dollars associated with a one percent change in NEED, is that they do not vary with the total entitlement city allocation level.

Table 6.4:	Simple Regression of Per Capita Amounts Under Hold Harmless,
	the Present Formula, and the Alternative Formulas on
	Total Need (NEED) ^a

(1) Intercept ^b	(2) Regression Co- efficient for NEED	(3) Coefficient Determination R ²	(4) Standard Error of Estimate	
\$20.39	\$12.84	.10	\$18.37	
15.48	5.85	.62	2.22	
15.94	7.45	.95	.78	
16.13	7.81	.94	. 96	
16.47	9.33	.96	.91	
16.97	10.65	.92	1.49	
16.87	10.38	.85	2.09	
16.61	9.17	.74	2.61	
17.26	11.38	.77	3.04	
17.82	12.82	.46	6.84	
	(1) Intercept ^b \$20.39 15.48 15.94 16.13 16.47 16.97 16.87 16.61 17.26 17.82	(1)(2)InterceptbRegression Co- efficient for NEED\$20.39\$12.8415.485.8515.947.4516.137.8116.479.3316.9710.6516.8710.3816.619.1717.2611.3817.8212.82	(1) Interceptb(2) Regression Co- efficient for NEED(3) Coefficient Determination R2\$20.39\$12.84.1015.485.85.6215.947.45.9516.137.81.9416.479.33.9616.9710.65.9216.8710.38.8516.619.17.7417.2611.38.7717.8212.82.46	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

- a. The statistics reported in this table resulted from regressions of the following form: Per Capita \$ = a + b NEED, where a is the intercept and b is a measure of slope, or the change in per capita dolloars associated with a unit change in NEED. All statistics are defined in the last section in Chapter 3.
- b. The intercept equals the per capita amount for the formula being considered.
- c. ALT8 distributes funds solely on the basis of pre-1939 housing.

The regression results are given in Table 6.4. For comparison purposes we have added Alternative 8, which allocates funds solely on the basis of pre-1939 housing.

As shown by the slope coefficients given in the second column of Table 6.4, increasing the formula weight of age of housing stock tends to increase, relative to the present formula, the sensitivity of formulas to differences in NEED. For example, replacing overcrowded housing by pre-1939 housing increases the slope from \$5.85 for the present formula to \$7.81 for Alternative 2. Among the formulas, the highest slope is for Alternative 8, which allocates solely on the basis of pre-1939 houses.

Among the alternative formulas, there is a trade-off between rate of change and degree of fit.5/ For example, Alternative 7, which has a higher standard deviation or spread in per capita amounts than Alternative 1, shows a higher slope coefficient (\$11.38 vs. \$7.45) but a lower R^2 statistic (.77 vs. .95). The R^2 value for the present formula is .62 which is lower than that for each of the alternatives except Alternative 8.

The sensitivity of the various formulas to the total needs index can also be determined by arranging the cities by need score category and computing for each formula the average per capita amount allocated to cities within each category, as is done in Table 6.5. The need score categories in Table 6.5 are defined by standard deviations of NEED above and below the mean. A negative NEED score indicates below average need and a positive score, above average need. First, notice that for each formula the per capita averages with few exceptions increase as one moves from low to high need score categories. For example, the present formula's average per capita allocations increase from \$8.95 for cities with a NEED score less than - .98 to \$29.25 for those cities with a NEED score greater than +.98. Alternative 4 shows a wider range increasing from \$3.87 to \$29.94 for the same categories. Hold harmless shows the greatest range, increasing from a very low \$2.87 per capita for the least needy cities to \$36.56 per capita for the most needy cities. However hold harmless also shows an obvious inconsistency with need, allocating \$28.05 per capita to cities in the NEED category, 0.0 to +.49, but only \$22.32 per capita to those cities in the next higher NEED category, +.49 to +.98. Alternative 8 shows a similar inconsistency among the three categories with above average need.

5/ The proportion of variance in per capita amounts explained by need is indicated by the R² value in Table 6.3 and by R², in Table 6.4. Notice that for each of the formulas given in Table 6.3, the R² value is greater than the corresponding R² value given in Table 6.4. This results because to construct the total needs index, NEED, we had to assign weights to the five factor indexes, instead of allowing, as in Table 6.3, the least squares procedure to determine the coefficients for the five factor indexes. The least squares procedure finds the line of best fit by determining the regression coefficients which minimize the sum of squared residuals.

	Less than 98	98 to49	49 to 0.0	0.0 to +.49	+.49 to +.98	Greater than +.98
Hold Harmless	\$2.87	\$8.43	\$18.30	\$28.05	\$22.32	\$36.56
Present	8.95	11.83	14.28	16.91	18.23	29.25
ALT1	7.29	10.93	14.30	17.98	19.88	27.62
ALT2	6.53	10.67	14.49	18.52	20.04	26.85
ALT3	5.75	10.16	14.34	18.98	21.65	29.80
ALT4	3.87	9.46	14.68	20.26	22.50	29.94
ALT5	4.60	9.54	14.43	19.88	22.95	26.76
ALT6	5.31	9.93	14.50	19.50	21.87	23.40
ALT7	3.25	9.00	14.65	20.83	23.72	26.24
ALT8 ^b	2.00	8.00	14.60	21.97	26.16	18.83

Table 6.5: Average Per Capita Amounts for Hold Harmless, the Present Formula, and Seven Alternative Formulas By NEED Score; 435 Entitlement Cities

NEED Score Category^a

.

a. The NEED Index is constructed by weighting the five factors as follows: NEED = .35 (Poverty) + .25 (Age of Housing Stock) + .20 (Density) + .10 (Crime and Unemployment) + .10 (Lack of Economic Opportunity). Scores greater (less) than zero represent above (below) average per capita need. The categories are defined by standard deviations above and below the mean.

b. ALT8 allocates funds solely on the basis of pre-1939 housing.

1

.

The per capita averages given in Table 6.5 and the regression slopes given in Table 6.4 tell us that hold harmless and the alternative formulas respond more to differences in relative need than does the present formula. However, in comparing two formulas both with positive regression slopes, we can not say that the formula with the higher slope is the more desirable. The inability to judge between positive slopes or differences in range results primarily from our using relative measures of need, instead of absolute measures. Normative judgments are required to argue that the per capita spread given in Table 6.5 for Alternative 7 is more desireable than the smaller spread given for the present formula. As we stated in Chapter 3, the choice between alternative formulas may require normative judgments about the relative importance of sensitivity to need (the regression slope and per capita range) and degree of responsiveness to need (the correlation coefficient).

Allocations to Central Cities Under Alternative Formulas

Table 6.6 shows for hold harmless, the present formula, and the seven alternative formulas, per capita amounts and percentage shares allocated to central cities as a group. In column (2) of Table 6.9, the central city share is expressed as a percentage of CDBGs going to all located in the U.S., and in column (3), as a percentage of SMSA's total U.S. CDBGs. As shown in column (1), the per capita formula amounts for central cities increase from \$16.09 under the present formula to \$17.94 under Alternative 7, which includes two formula factors (AGE1939, .6; POORPER, .4) heavily concentrated in central cities. As a percent of the SMSA appropriation, the increase in the central city share is from 52.8 percent under the present formula to 58.9 percent under Alternative 7, or 6.1 percentage points. As indicated by the factor percentages given in the last four lines of column (2), the central city share increases as the formula weights of aged-housing (AGE1939) and poverty (POORPER) are increased at the expense of population (POP) and overcrowded housing (OCRWD). Central cities account for 59.8 percent of aged-housing and 57.7 percent of poor persons but only account for 51.8 percent of over-crowded housing and 44.9 percent of population. The share of SMSA funds allocated to central cities can be easily calculated for any formula that is limited to these four variables (AGE1939, OCRWD, POORPER, POP) by first multiplying each percentage share by the corresponding formula weight and then, summing the four products. Of course, the formula weight and the resulting product will be zero for those variables not included in the formula. It should be obvious that the central city share for a formula that includes only population will be 44.9 percent and the share for one that includes only aged-housing will be 59.8 percent. In other words, considering only the above four variables, central cities as a group are most favored under a formula that distributes funds solely on the basis of pre-1939 housing and least favored under one that distributes funds on a per capita basis.

The share received by central cities under each of the alternative formulas is much less than that received under the categorical system. Under the categorical programs central cities accounted for 79.2 percent of the SMSA amount or 69.6 percent of the total amount. Even if

	(1) Per Capita \$	(2) % of SMSA CD Funds	(3) % of TotalU.S. CD Funds
÷	ž.		
Hold Harmless	\$21.70	79.2%	69.6%
Present Formula	16.09	52.8	42.
Alternative 1	16.55	54,3	43,3
Alternative 2	16,75	55,0	43.8
Alternative 3	17.21	56.5	45.0
Alternative 4	17.82	58,5	46.6
Alternative 5	17.52	57,5	45.8
Alternative 6	17.11	56.2	44.8
Alternative 7	17.94	58,9	46.9
		% of SMSA	
POP		44.9	
POORPER		57.7	
OCRWD		51.8	
AGE1939		59.8	

Table 6.6: Per Capita Amounts and Percentage Shares Allocated to 363 Central Cities Under Hold Harmless, Present Formula, and Seven Alternatives^A

a. SMSA appropriation of \$2,077,600,000 was used in all formula computations in column (1). In columns (2) and (3), each CDBG appropriation used as the base is net of that amount going to outlying, entitlement cities. funds were allocated solely on the basis of pre-1939 housing, central cities would still receive, as a percentage of SMSA funds, 19.4 percentage points less than they received under the displaced categorical programs. In other words, adding aged housing in the framework of the present system will not restore central cities to the relative position they held during the categorical years.

Central City Allocations by Population Size and by Region

Table 6.7 provides a breakdown of central city shares under the present formula and the alternative formulas by population size. As a percentage of SMSA funds, the share to those cities with a population greater than 250,000 increases from 35.3 percent under the present formula to 40 percent under Alternative 7. As could be demonstrated by taking ratios of the variable shares given in Table 6.7, this largest population subgroup benefits more than the two smaller subgroups from increases in the formula weight of aged housing. Table 6.8 shows per capita allocations to central cities under hold harmless (column 2), the present formula (column 3), and the seven alternative formulas (columns 4-10) by region and by population size. Only 325 of the 363 central cities are considered in Table 6.8.6/ The table highlights the advantage to central cities in the Northeast and North Central regions of funding under one of the alternative formulas instead of funding under the present formula. For example, columns (3) and (6) show that the average per capita amount for central cities in the Northeast increases from \$15.48 under the present formula to \$19.75 under Alternative 3; for central cities in the North Central region, the increase is from \$14.79 to \$17.23. Table 6.8 also highlights the decreases in the average per capita grant for central cities in the South that takes place under the alternative formulas. The central cities in the South are reduced from \$18.43 under the present formula to \$17.24 under Alternative 3, and all the way to \$14.83 under Alternative 6, which increases the influence of AGE1939 at the expense of POORPER. Central cities in the West receive about the same average per capita grant under each alternative formula as they receive under the present formula. Within each region, the changes for cities above 250,000 are similar to those for all central cities.

Summary and Conclusion

In this chapter we have evaluated alternatives to the present formula that included age of housing stock as a formula factor. Adding age of housing to the formula significantly increased the correlation between per capita allocations and need scores for both the age-of-housing

6/ Only 325 of the 367 central cities were included on our 435 data file. These 325 cities accounted for 82 percent of central-city population and 89 percent of central-city poverty.

	(1) Population Less Than 100,000	(2) Population 100,000 - 250,000	(3) Population Greater Than 250,000
Present Formula	8.9%	8.6%	35,3%
Alternative 1	9.2	8.6	36.5
Alternative 2	9.5	8.9	36.6
Alternative 3	9.3	8.7	38.5
Alternative 4	10.0	9,2	39.3
Alternative 5	9.5	8.7	39.3
Alternative 6	9.4	8.9	37.9
Alternative 7	10.0	9.0	40.0
POP ^b	8.1%	7.7%	29,0%
POORPER	10.1	9,6	38,0
OCRWD	7.9	7,6	36,3
AGE1939	9.8	8,7	41.3

Table 6.7: Percentage of SMSA Appropriation Allocated to Central Cities Under the Present Formula and Seven Alternative Formulas by Population Size

.

1

4

.

.

.

.

a. SMSA appropriation used as a base is equal to the total SMSA allocation (\$2,077,600,000) minus that amount going to outlying, entitlement cities (\$45,629,839).

b. Variable percentages computed relative to SMSA totals.

٠.

.

	(1) Number of Central Cities	(2) Hold Harmless	(3) a Present Formula	(4) ALT1	(5)	(6) ALT3	(7) AL TA	(8) AL T5	(9) ALT6	(10 ⁻)
		namiress	Forniura	ALTI	AL 12	AL 13	AL 14	ALIS	AL 10	AL 17
Northeast	73	\$27.00	\$15 . * 8	\$18,20	\$18.71	\$19.75	\$21.00	\$21.85	\$21,39	\$23.02
POP GT 250,000 ^b	8	20.35	16.95	19,00	19.24	20,74	21.63	22,55	21,72	23.45
North Central	80	20.48	14.79	16,31	16,79	17.23	18.25	18,76	18,66	19,68
POP GT 250,000	15	21.26	15.58	17,26	17,73	18,42	19.51	20.03	19,73	21.01
South	116	21.10	18.43	17.11	16,97	17.24	17.34	15.59	14.83	15.33
POP GT 250,000	22	21.72	18,55	17.27	16,82	17,58	17.19	15.93	14.89	15,37
West	56	17.29	14.43	14,25	14,30	14.24	14.37	14.10	14.07	14.15
POP GT 250,000	12		14.70	14.79	14.84	15,02	15.16	15.12	14.97	15.22

Table 6.8: Per Capita Amounts for Central Cities Under Hold Harmless, the Present Formula, and Alternative Formulas by Region and by Population Size; 325 Central Cities

.

!

a. Formula computations in columns (3)-(10) are based on an SMSA appropriation of \$2,077,600,000.

b. Population greater than 250,000

dimension and the density dimension, and for three of the alternatives (ALT1, ALT2, ALT3), at a rather small expense in terms of a lower correlation with the poverty dimension. Each alternative considered completely dominated hold harmless in the sense of a higher correlation with each dimension of CD need. One equity advantage of hold harmless over the present formula--a higher correlation with the aged-housing dimension--loses its importance when age of housing is added to the formula.

In each case, the correlation between a comprehensive need index (NEED) and an alternative formula was higher than that between NEED and the present formula. Of course, correlations with a combined index will vary depending on the weight given to each of the five separate dimensions of CD need; however, it is probably safe to say that correlations for alternatives such as Alternative 3 and Alternative 5 will always be greater than that for the present formula as long as some importance is attached to the nonpoverty dimensions of need, especially to FACTOR 2 and FACTOR 3.

The multiple regression coefficients listed for the alternative formulas showed that increasing the formula weight of pre-1939 housing tends to make the formula more sensitive to the nonpoverty dimensions of CD need, especially to the age of housing and density dimensions. On the other hand, the alternative formulas are less sensitive to the poverty dimension than is the present formula.

Adding age of housing increases the share going to central cities, located primarily in the Northeast and North Central regions. As a percentage of the SMSA appropriation, the increase in the central city share is from 52.8 percent under the present formula to 58.9 percent under Alternative 7. However, even if funds were allocated solely on the basis of pre-1939 housing, central cities would still receive, as a percentage of SMSA funds, 19.4 percent less than the 79.2 percent received under the categorical programs.

Compared with the present formula, a switch to an alternative formula would benefit central cities located in the Northeast and North Central regions, at the expense of SMSA balances, urban counties, and central cities in the South. The average per capita amount for central cities in the Northeast (North Central region) would increase from \$15.48 (\$14.79) under the present formula to \$19.75 (\$17.23) under Alternative 3; central cities in the South would be reduced from \$18.43 under the present formula to \$17.24 under Alternative 3, and all the way to \$14.83 under Alternative 6.

CHAPTER 7

FISCAL CAPACITY, TAX EFFORT, AND A TOTAL EVALUATION INDEX

In the first two sections of this chapter, we compare the present formula and the seven alternatives in terms of correlation with fiscal capacity and fiscal effort. In the third section, we analyze the formula alternatives using a comprehensive evaluation index that provides a relative measure of an entitlement city's need as well as the city's tax effort in meeting its non-education requirements given its level of fiscal capacity. In a concluding section, we discuss the implications of the analysis for changing the existing formula in order to make CDBG allocations more responsive to tax effort and fiscal capacity.

Fiscal Capacity

Measures of fiscal capacity are concerned with the ability of governments to obtain resources for public purposes. Including a measure of fiscal capacity in an aid formula recognizes the different abilities of governments to finance public services from their own revenue sources. Many feel that the provision of housing and community services to persons of low income should not place a differential burden on taxpayers in different cities and therefore call for inclusion of a measure of fiscal capacity in the CDBG formula. Others rationalize including a measure of community fiscal capacity in a formula that distributes CD funds because the externalities associated with urban blight require city-wide rather than individual solutions. $\underline{1}$

The case for a "partial equalization" feature in the CDBG formula is especially strong if the objective is to obtain either a minimum level of low income housing and community services across cities or a greater equality of such services across cities.²/ With the wide diversity among cities in fiscal capacity and in program levels, complete uniformity in housing and community development levels is probably not a feasible or an appropriate objective; however, if a greater degree of

- 1/ Friedly, Philip H. "Experimental Approaches to the Amelioration of Housing Abandonment and Neighborhood Decline," paper prepared for 1971 annual meeting of the American Real Estate and Urban Economics Association.
- 2/ Advisory Commission on Intergovernmental Relations. <u>The Role of</u> Equalization in Federal Grants, 1964, p. 60.

uniformity is desired, including a partial equalization feature in the CDBG formula will increase the level of services in the lower capacity cities.

There are problems with the use of equalizing provisions in a CDBG formula. First, there is the question of the appropriate definition of fiscal capacity. Most categorical programs that incorporate equalizing features and the general revenue sharing program have used per capita income as their measure of a recipient's fiscal capacity. An Advisory Commission on Intergovernmental Relations study criticized the frequently used per capita income variable as an inappropriate measure of the relative financing capability of state and local governments because income fails to reflect closely the potential of certain revenue sources. In its place ACIR proposed an alternative capacity measure based on an "average-financing system" approach. $\frac{3}{2}$ However, data problems and variations in local financial responsibilities especially below the state level, prevent the use of this capacity measure in allocation formulas. Therefore, if a capacity factor is included, it will be necessary to use the money income variable published by the Census Bureau.

A second problem with equalization features concerns regional price differences. If regional variations in prices are not accounted for in the allocation formula and funds are distributed according to differences in per capita income, the high income recipients are most likely being treated in an inequitable manner. This inequity occurs because their higher per capita income may in part be due to the higher living costs in these cities. Our results indicate a significant correlation between per capita income and four measures of the cost of living. $\frac{4}{7}$ In this case, an equalization formula based on real per capita income or an explicit recognition of price differences in the allocation formula would result in a different and more equitable distribution in CDBG funds.

A third problem concerns the relationship between community development and housing needs and the level of fiscal capacity. If the greatest need exists in the higher income cities and if there

3/ Advisory Commission on Intergovernmental Relations. <u>Measuring</u> the Fiscal Capacity and Effort of State and Local Areas, 1971.

4/ See Table 8.6

existed either inadequate measures of need in the formula or arbitrary weight assignments or both, an equalizing provision could direct funds away from those areas that needed them most. In this case a nonequalizing formula would provide a more equitable distribution of CD funds. On the other hand, if need and income are inversely related, an equalizing provision will reinforce the other formula factors in directing funds to those cities with the greatest need. Table 7.1 shows the correlation coefficients between one capacity measure (PCINC-72) and several need variables. As expected the poverty variables, POCRWD and PWOPLUMB, exhibit large negative correlations; however, the correlations between per capita income and DENSITY and PAGE1939 are much lower, in an absolute sense.

Instead of adding a capacity variable to the formula, we choose instead to simply evaluate the per capita amounts of the present formula and the seven alternatives in terms of their correlation with PCINC72. We interpret a high negative correlation as providing additional support for the formula being considered.

PCINC72

The correlation coefficients between per capita allocations and per capita income (PCINC72) are as follows:

Hold Harmless	21
PRESENT	51
ALT1	46
ALT2	46
ALT3	41
ALT4	41
ALT5	30
ALT6	26
ALT7	28

As expected from the correlations between income and need variables given in Table 7.1, the present formula which gives a double weight to poverty and excludes age of housing stock exhibits the highest negative correlation with per capita income. Increasing the weight of age of housing reduces the correlation with fiscal capacity to as low as -0.26for Alternative 6; however, for both Alternative 1 and Alternative 2, the correlation with per capita income is not much lower, in an absolute sense, than that for the present formula (-0.46 vs. -0.51). Table 7.1: Coefficients of Correlation Between Per Capita Income and Need Variables; 435 Entitlement Cities

PCINC72

P65AGED	.02	
PCRIME	.00	
PNW	34	
PWOHSED	55	
PFEMALHP	57	
PYUTHPOV	61	
PPOORPER	62	
POCRWD	50	
PWOPLUMB	46	
PUNEMP75	18	
PAGE1939	22	
DENSITY	.12	
POWNOCCH	.00	

11

PCINC72 = per capita income (1972)

-

Tax Effort

A related fiscal concept that has received some support as a formula factor is "tax effort." Tax effort or revenue effort is an expression of the percentage relation between actual amounts of taxes or revenues obtained by a city government and its tax or revenue capacity. The idea is that those localities with the higher tax effort should receive a larger share of CD funds. There is one main argument for not including tax effort in the design of a CDBG formula: taxes are not imposed specifically for community development purposes. A city with a high tax effort may be doing relatively little to meet its CD needs. The tax effort factor is considered more appropriate for general revenue sharing where the funds are not used for a specific purpose. In addition, taxes that are exported do not impose a burden on the local population, and data problems prevent including the portion of state taxes that the residents of a given locality pay. The problem of an appropriate measure of fiscal capacity is also present.

Instead of adding tax effort to the CDBG formula, we choose to simply evaluate the per capita amounts under the present formula and the seven alternatives in terms of correlation with tax effort. In this analysis, we interpret a high positive correlation as providing support for the formula being considered. Before examining these formula correlations, we show how tax effort varies by region and by city type and how selected variables are correlated with tax effort by city size.

As shown in Table 7.2, taxpayers in the 96 Northeastern cities pay, on the average, 7.8 percent of their income in non-education taxes; this compares with only 3.58 percent for taxpayers in the North Central region, 3.88 percent in the South, and 3.22 percent in the West.5/

5/ These tax effort percentages are overstated because non-education taxes in 1974 are divided by income in 1972. Using total taxes and income in 1970, we obtained the following regional tax efforts: Northeast (8.0 percent), North Central (2.9 percent), South (3.1 percent), and West (2.5 percent). Using own general revenue (total general revenue minus total aid, or, taxes plus user charges) and income in 1970, we obtained the following regional revenue efforts: Northeast (9.5 percent), North Central (4.3 percent), South (4.5 percent), and West (3.9 percent). The correlation analysis using tax effort and revenue effort in 1970 yielded similar results to the analysis reported later in Chapter 7, which uses non-education taxes in 1974 divided by income in 1972 as the definition of tax effort.

Region	Number of Cities	(Tax/Income) ^a		
Northeast	96	,078		
North Central	112	.0358		
South	128	.0388		
West	99	.0322		
City Type				
crey type		<u>8.</u>		
Central City	325	.049		
Non-Central City	110	.030		
Entitlement Cities	435	.046		

Table 7.2: Tax Effort by Region and by City Type, 435 Entitlement Cities

a. Tax = Non-education taxes (1974)

Income = 1972 income

A

The high tax effort on the part of Northeastern cities is usually explained as follows. First, as a percentage of combined state and local expenditures, direct expenditures by state governments in the Northeast tend to be smaller than those by state governments in other regions. In other words, more expenditure responsibility is given to local governments in the Northeast, Second, and more important for our purposes, the high tax effort results from the concentration in Northeastern cities of several factors found in expenditure studies to be significant determinants of the demand for public services. These expenditure determinants include variables such as density, poverty, population, relatively high concentration of old persons, relatively high concentration of persons without high school education, unemployment, and aged housing. Finally, another explanation emphasizes the high input costs in Northeastern cities. Table 7.2 also shows that, on the average, taxpayers in central cities pay 4.9 percent of their income to their city governments for non-educational functions, which is 1.9 percent greater than the 3 percent paid by taxpayers in non-central cities.

Table 7.3 gives the correlation coefficients between tax effort (TAX1INC) and selected variables by city size. A comparison of the coefficients in columns (4)-(7) with those in columns (1)-(3) indicates that variables such as DENSITY, POWNOCCH, PAGE1949, PAGE1939, and PNW are more closely associated with tax effort at higher than at lower population levels. The correlations in columns (5)-(7) are consistent with expenditure studies that report variables such as DENSITY, PNW, and PAGE1939 to be significant determinants of expenditures, and therefore, taxes. For our purposes, the most important correlations are those between PAGE1939 and tax effort. As shown in columns (2)-(7), PAGE1939 exhibits a 0.41 or greater correlation with tax effort for all population groups greater than 50,000. The correlation coefficients between PAGE1939 and TAX1INC are particularly high for the three population groups greater than 250,000;0.52 for the 250-500 group, 0.68 for the 500-1250 group, and 0.65 for the greater than 500 group. These results, and the low correlations given for PPOORPER and POCRWD in Table 7.3, suggest that if one objective is to distribute CDBGs according to tax effort, aged housing should be considered as an additional formula factor. We next compare the present formula and the seven alternative formulas in terms of correlation with tax effort.

Table 7.4 presents correlation coefficients between per capita formula allocations and tax effort by city size. As shown by the coefficients in the second row of Table 7.4, the present formula does not allocate above-average per capita amounts to cities with above average tax effort. As expected, the correlation coefficients for the present formula in Table 7.4 are similar to those reported in Table 7.3 for PPOORPER. For both PRESENT` and PPOORPER, the highest correlation with tax effort occurs in the population group, 250,000 to 500,000. The pattern of the correlation coefficients for each of the alternative formulas closely resembles that of PAGE1939 in Table 7.3. The coefficients reported in columns (5)-(7) are again higher than those reported in columns (1)-(4) for the lower population groups. For the population group, 500,000 to 1,250,000, three of the seven alternative

Population (thousands)	(1) 25-50	(2) 50-75	(3) 75-100	(4) 100-250	(5) 250 - 500	(6) 500-1250	(7) GT 50 0	
Number of Citles	72	137	72	94	31	20	25	
DENSITY	.29	.09	.26	. 38	.59	.73	.80	
POWNOCCH	28	40	-,42	-,58	-,69	71	80	
PAGE1949	.26	.40	.53	.43	,56	.66	.63	
PAGE1939	.27	.42	.53	.41	,52	.68	.65	
PPOORPER	.02	.05	.28	,23	.47	.10	.14	
PUNEMP75	,12	.02	.11	.21	.34	.05	.01	
PNW	09	.28	.45	.16	45	.39	.56	
PWOHSED	.19	.26	.35	.37	.74	.13	.22	
PCINC72	.07	03	19	06	49	.08	.12	
POCRWD	04	.00	.00	.01	.19	08	04	

Table 7.3: Correlation Coefficients Between Tax Effort (TAX1INC) and Selected Variables by City Size, 430 Entitlement Cities^a

a. Because it also functions as a state government, Washington, D.C. was excluded. Four other cities (Gadsden, Taylor, Poughkeepsie, and Sterling Heights) were excluded because of data errors.

.

1

 Table 7.4: Coefficients of Correlation Between Tax Effort (TAXIINC) and Per Capita Amounts Under the Present Formula and the Seven Alternative Formulas by Population Size

3	GT 500	.1350	5002°	.5445	5630	.5940	.6746	.6723	C 8 9 9 *	
			•		į.				-	
(9)	5 00-1250	.1432	\$513*	.5827	.5739	5663.	.7021	.7126	.7087	
	•				÷				•	
3	250-500	9166.	.6248	2 507.	.6260	•6969	1763.	.6051	.6166	
		• •	•			•			-	
3	100-250	.2206	.3978	. \$905.	.4231	E+2+*	.4536	0644.	[[++	
ŝ	75-100	.2537	4775	.4979	.5036	.5169	.5448	.5407	5402	
(3)	50-75	\$630	.2167	.2402	.2606	.2800	.3686	.3808	. 3729	
8	25-50	.0202	. 1771.	.2020	.2165	.2358	• 3019	.3077	0000.	
	Population (thousands)	PRESENT	4171	AL 72	ALT3	ALT4	ALTS	ALTS	AL77	•

.

:.

•

ï

formulas exhibit a 0.70 or greater correlation with tax effort. As Table 7.4 clearly shows, a large gain in terms of increased correlation with tax effort is possible with a switch from the present formula to one of the alternative formulas. For example, a switch from the present formula to Alternative 3 would increase the correlation with tax effort in cities above 500,000 from 0.13 to 0.56. Similar increases occur for the other population groups. To summarize these correlation patterns, we conducted the anlaysis on 430 cities using the "weighted correlation" method defined in Chapter 3. This method determines the importance of a particular city on the basis of the percentage of total population accounted for by the city grouping within which the city is located. The weighted correlations between per capita formula amounts and tax effort are as follows:

Tax Effort (TAX1INC)

Hold Harmless	.05
PRESENT	.28
ALT1	.50
ALT2	.47
ALT3	.55
ALT4	.51
ALT5	.60
ALT6	.56
ALT7	.56

Again, the coefficients are much higher for the alternative formulas than for the present formula. Conducting the same analysis but this time giving each city an equal weight of one yielded the following results:

	(TAX1INC)
PRESENT	.09
ALT1	.23
ALT2	.25
ALT3	.26
ALT4	.27
ALT5	.32
ALT6	.32
ALT7	.32

Giving each city an equal weight results in a much lower correlation between the per capita distribution under each formula and tax effort. To understand why the correlations for the alternative formulas are much lower when each city receives an equal weight, consider columns (1) and (2) of Table 7.4. The coefficients in these columns indicate that within each of the two population groups below 75,000, the alternative formulas do not allocate funds according to tax effort. The coefficients vary from as low as .18 for ALT1 in the population group--25,000 to 50,000--to 0.37 for ALT7 in the population group--50,000 to 75,000.

- 1

These correlations are much lower than those given in columns (3)-(8). In the correlation analysis using equal weights, the 209 cities in the two lower population groups, while accounting for only 15 percent of the population in the 430 entitlement cities, represent 48 percent of the cases. The coefficients given above for the analysis using equal weights are therefore heavily influenced by the low correlations given in columns (1) and (2) of Table 7.4. On the other hand, the weighted method rightfully places more emphasis on the higher correlations given in columns (3)-(7). The fact that the two lower population groups account for only 15 percent of the population is reflected in the weighted analysis.

The correlation results were quite similar using a different measure of tax effort, non-education taxes as a percent of the market value of the property tax base (TXEFFORT). Table 7.5 presents correlation coefficients between per capita formula allocations and TXEFFORT by population size. Again, the coefficient for each alternative formula is higher than that of the present formula for each population group. These correlation patterns are summarized by the following weighted correlations:

	Tax Effort (TXEFFORT)
PRESENT	37
ALT1	.56
ALT2	.55
ALT3	.59
ALT4	.58
ALT5	.63
ALT6	.60
ALT7	.60

The correlations are much higher for the alternatives than for the present formula. Conducting the analysis giving each city an equal weight of one yielded the following results:

	Tax Effort (TXEFFORT)
PRESENT ALT1 ALT2 ALT3 ALT4 ALT5	.23 .39 .41 .41 .43 .45
ALT6 ALT7	.45

Table 7.5: Coefficients of Correlation Between Tax Effort (TXEFFORT) and Per Capita Amounts Under the Present Formula and the Seven Alternative Formulas by Population size

Population	(1)	(2)	(3)	(4)	(5)	(6)	
	(thousands)	50-75	75-100	100-250	250-500	500-1250	GT 500
а а Т	PRESENT	.1000	.2797	.3220	.4767	.3253	.2693
	ALT1	.2180	.5287	.4503	•5886	.5413	.5243
-	ALT2	.2403	•5560	•4568	.6245	.5777	.5690
	ALT3	.2433	.5561	.4593	.5672	.5685	,5583
	ALT4	.2638	.5760	.4621	.5897	.5992	.5979
	ALT5	.3062	.6039	.4607.	.4998	.6199	.6318
	ALT6	.3132	.6009	.4492	•4352	.6176	.6363
	ALT7	.3102	.6003	.4522	•4517	.6184	.6353

1.

5

,

1

•

Comprehensive Evaluation Index

In this section, we test the present formula, hold harmless, and the alternative formulas using an evaluation index which considers a city's need requirements, its tax effort, and its fiscal capacity. Two functional forms are considered, a linear index and a multiplicative index. We construct the linear evaluation index by weighing three component indexes as follows:

EVALUATION = .50 NEED + .25 TAX + .25 (1/CAPACITY)

We construct the multiplicative index by multiplying the needs index by the tax index and then dividing the product by the fiscal capacity index:

> EVALUATION = <u>NEED x TAX</u> CAPACITY

In both evaluation indexes, the underlying assumption is that the objectives of the CDBG program are such that per capita aid should increase with need requirements and tax effort and decrease with fiscal capacity. Beyond this, it is not entirely clear to us how indexes of need, tax effort, and fiscal capacity should be combined for the purposes of evaluating CDBG formula alternatives.

In the linear case, the relative importance of the component indexes are indicated by the weights attached to NEED, TAX, and CAPACITY. We have given NEED a double weight (.50). We do not attempt to justify this weight assignment except to say that the purposes of the CDBG Act emphasize those phenomena (urban blight, poverty, etc) that the need variables supposedly reflect. Fiscal capacity and tax effort are not even mentioned; however, as discussed in Chapter 3 and in the first two sections of this chapter, arguments can be made for distributing federal aid on basis of local fiscal capacity and local effort.

The weighing problem is also present in the multiplicative form, as the square of a component index could be used instead of the index itself. The multiplicative index is similar to the formula presently being used to allocate general revenue sharing funds. As compared with the linear index, the multiplicative index exhibits a much greater range and variability. It varies from .044 to 5.6 and has a standard deviation of 1.031; on the other hand, the linear index varies from .373 to 2.214 and has a standard deviation of only .327.

The fiscal capacity component (CAPACITY) is computed by dividing each city's per capita income (PCINC72) by the weighted average of per capita incomes for the 435 entitlement cities. Since we are dividing PCINC72 by a constant (the average PCINC72), the correlations between formula allocations and CAPACITY are the same as those for PCINC72. The needs index (NEED) is the same as that defined in Chapter 4, except that the scores have been transformed so that NEED is made up of

-

positive numbers only, with a mean of one.6/ The tax effort index (TAX) differs from the tax effort measure (TAX1INC) used earlier. Instead of dividing taxes by income, we use a per capita tax index. Specifically, TAX is computed by dividing each city's per capita non-education taxes by the weighted average of per capita non-education taxes for entitlement cities. By construction, each of these component indexes are comprised of positive numbers only and each has an average value of one.

Table 7.6 gives the correlations between per capita allocations and the two evaluation indexes; for comparison purposes, correlations with component indexes are also presented. The correlation coefficients for the multiplicative index are on the average about 20 percentage points less than those for the linear evaluation index. Given the much larger variability in the multiplicative index, this is not unexpected. In the following, we limit our discussion to the linear form.

Table 7.6 summarizes much of the correlation analysis up to this point. Hold harmless is not strongly correlated with any of the component indexes and therefore shows a low correlation with the linear evaluation index (0.19). The coefficient for the present formula (0.65) is at least 15 percentage points less than that for each of the alternatives; the present formula shows the highest negative correlation with CAPACITY (-0.51) but suffers from its lower correlations with TAX (0.19) and NEED (0.78).

The reader should view these correlation results with some caution. There are several problems with the component indexes. For example, in our definition of fiscal capacity, we have neither adjusted income for regional price variations nor included the property tax base. The tax effort index includes only non-education taxes and ignores tax exporting and state government taxes paid by city residents. Because of variations among states in financing local services, the tax effort measure used in this study does not accurately reflect the actual fiscal burden on city residents. We have repeatedly mentioned the judgment involved in combining the factor scores in order to compute a total needs index. In constructing a comprehensive evaluation index, additional judgment was required to determine the relative importance of TAX, NEED, and CAPACITY.

6/ The following transformation was used: (1) if NEED < 0, NEED = $e^{N \prod D}$; (2) if NEED > 0, NEED = 1. + NEED. See Schmid, (1975), Appendix A.

1 :

.

	Evalu	uation Indexes	Component	Component Indexes				
	(1) Linear ^a	(2) Multiplicative ^b	(1) NEED ^C	(2) TAX ^d	(3) CAPACITY ^e			
нн	. 19	. 09	.28	.00	27			
Present	.65	.44	.78	.19	51			
ALT1	.86	.65	.96	.40	46			
ALT2	.83	.62	.94	.37	46			
ALT3	.88	.70	.96	.46	41			
ALT4	. 84	.64	.93	.41	41			
ALT5	.86	.71	.90	.51	30			
ALT6	.80	.66	.84	.48	26			
ALT7	.80	.66	.85	.48	28			

Table 7.6: Correlation Coefficients Between (1) Per Capita Amounts Under Hold Harmless, the the Present Formula, and Seven Alternative Formulas, and (2) a Comprehensive Evaluation Index

a. Linear Evaluation Index = .50 NEED + .25 TAX + .25 (1/CAPACITY)

b. Multiplicative Index = (NEED x TAX)/CAPACITY

c. The NEED Index is the same as that defined in Chapter 4 except that the scores have been transformed so that NEED is made up of positive numbers only, with a mean of one. Footnote 6 explains the transformation.

d. TAX Index = (per capita non-education taxes)/(average per capita non-education taxes)

e. CAPACITY Index = (per capita income, 1972)/(average per capita income, 1972)

Summary and Conclusion

The present formula which gives a double weight to poverty and excludes age of housing exhibited the highest negative correlation with per capita income. Increasing the weight of age of housing reduced the correlation with per capita income to -0.26 for Alternative 6; however, the -0.46 correlation for both Alternative 1 and Alternative 2 was not much lower, in an absolute sense, than the -0.51 for the present formula. The present formula did not do as well with regards to tax effort, exhibiting only a 0.28 correlation. Including age of housing resulted in a large gain in terms of increased correlation with tax effort. A switch from the present formula to Alternative 3 would increase the correlation with tax effort from 0.28 to 0.55.

The alternative formulas were more effective than both hold harmless and the present formula in distributing CDBG funds in accordance with a comprehensive evaluation index based on need, tax effort, and fiscal capacity. For example, Alternative 3 showed a 0.88 correlation with the linear evaluation index, which compares favorably with 0.65 correlation of the present formula and the 0.19 correlation of hold harmless.

CHAPTER 8

POPULATION DECLINE AND COST OF LIVING

The two objectives of the first section of this chapter are to relate our needs methodology to population decline and to examine alternative formulas with respect to an additional criterion, change in population. In the second section, using BLS data for 38 SMSA's, we evaluate each formula in terms of correlation with price indexes.

Characteristics of Declining and Growing Cities

In this section we distinguish growing from declining cities on the basis of need scores, need variables, and fiscal measures, and we evaluate alternative formulas with respect to an additional criterion, change in population. We look at percentage changes in population between 1960 and 1973 for entitlement cities, focusing on those cities that have experienced the largest changes in population.1/

We first relate our needs index methodology to population change using all 435 entitlement cities included in our data file. Table 8.1 ranks the 435 cities in terms of per capita community development need. For example, East St. Louis, the most needy of the entitlement cities, shows a per capita need score (NEED) of 1.4312; this score is to be interpreted relative to an average score of zero for the 435 entitlement cities. Each city's need score was constructed by weighting five dimensions of CD need as follows: poverty (0.35), aged-housing (0.25), density (0.20), crime and unemployment (0.10), and low education (0.10). The scores on the separate dimensions and details of the factor analysis are given in Appendix H. Table 8.1 also provides the percentage change in population between 1960 and 1973 (PCH6073) for each city.

As shown in Table 8.1, 38 of the 50 most needy cities have suffered a decline in population since 1960. Ten of the twelve growth cities in this group were Southern cities that scored high on our CD need index because of their high percentages of poverty (e.g., Laredo, 44 percent). Arranging the 435 cities by percent of population decline indicated that of the 109 entitlement cities that suffered a decline of 5 percent or greater, 95 had above average per capita need scores (greater than zero). The top 50 of the 150 decliners all showed above average need scores whereas only 3 of the 50 fastest growing cities showed above average scores. In addition, only 24 of the 224 cities in Table 8.1 with below average needs scores have lost population since 1960.

1/ In calculating the change in population (1960-73), we subtracted the T973 population estimates given in <u>Initial Data Elements: Entitlement</u> Period 7 (published by the Office of General Revenue Sharing) from the 1960 population figures.

.

•

٠

.

*

3 **K** 2

.

.

"

.

.

8.1 Entitlement Cities Ranked According to Per Capita Need Score

e e e

RANK	STATCODE	NAME	,	NEED	PCH6073								
1	17.	EAST ST	LOUIS	1 4312	-25 2400		RANK	ζ	STATCODE	NAME		NEED	PCH6073
2 2	48.	LAREDO	20010	1.4199	26.7636			51	42.	PHTI ADEL	PHIA	.5731	-6.6007
3	48.	BROWNSVI	LLĘ	1.3534	34.4035			52	42.	JOHNSTOW	N	5529	-24.0755
ŝ	34.	NEWAUK	CITY	1.2693	-22.1653			53	42.	LANCASTE	R	•5520	-6.4058
6	13.	AUGUSTA		1.25//	-10.1004			54	32.	CINCINNA	TI	• 5475	-14.9707
. 7	48.	HARLINGE	N	1.0640	-20.4270			22	15.	MIANI		• 5473	21 6069
8	48.	MC ALLEN		1.0287	36.3430			57	45.	SPARTANB	URG	5456	3.7627
10	10.	CAMDEN	ON	1.0113	-22.2715			58	54.	HUNTINGT	ŎN	.5408	-12.8308
ii	42.	HARRISBU	PG	• 9783	-14.6903			59	. 13.	ATLANTA		• 5284	-7.6304
12	29.	ST LOUIS		. 9001	-23.5350			50	30.	ELMIKA		• 2281	-19.9043
13	22.	NEW ORLE	ANS	.9431	-7.8905			62	25.	SOMERVIL	LE	.5177	-10.9274
12	42.	CHESTER		.9241	-20.0161			63	51.	RICHMOND		.5142	7.1981
16	34	UNTON CT	UN -	.9194	-1.6269			64	13.	MACON	••	•5075	74.6743
17	22.	ALEXANDA	ŤĂ	• 91/0	3.0323			65	21.	COVINGIO	N	•4932	-20.0086
18	44.	PHOVIDEN	ĈÊ	.9042	-18,1762			22	26.	HATTLE	REFK	4779	-14.2965
19	34.	TRENTON		.8644	-8.0253			68	42.	READING			-14.6309
žĭ	24	HAL TINON	E .	.8449	-29.3896			69	42.	WILLIAMS	PORT	.4726	-10.6466
ŽŽ	34	PATERSON	C	.8209	-6.4851			70	36.	TROY	C • C O	•4726	-7.8739
23	36.	NEW YORK	CITY	-8024	-1 4651			43	10.	POCHESTE	CAGO	• • 7 0 0	-13 0501
56	37.	WILMINGT	ON	.7995	16.6581	÷ .	· · ·	73	36.	POUGHKEE	PSIE	4648	-17.4153
26	39.	CLEVELAN	•	•7948	-8.3330		•	74	25.	LAWHENCE		.4603	-4.8108
27	34.	PASSAIC	U	• / 9 3 4	-22.6577			75	42.	WILKES-B	ARRE	•4560	-9.9678
28	. 25.	BOSTUN		7611	-8 0237			19	39.	FAYETTEN	TILE	• 4529	-13.8481
59	47.	CHATTANO	OGA	7554	29.1017			78	37.	DURHAM		4457	29.6590
31	30.	HUFFALO		• 7532	-20.1266			7 9	21.	LOUISVIL	LE	•4384	-13.6485
32	5í.	PETERSHI	Nc	•7406	-13.4986			80	36.	SYRACUSE		•4278	-14.5162
33	25.	CAMBRIDG	Ē	.7287	18.7904			81	12.	PENSACOL	A	.4205	12.2184
.34	55.	MUNROE	- .	7209	11 8920			82		MORILE	RT .	4071	-3.3185
35	34.	EAST ORA	NGE	.7107	-4.7507			84	34.	IRVINGTO	N	4037	-2.3197
37	11.	BENKELEY	0.11	.6962	1.3338			85	36.	UTICA		• 3971	-14.5978
38	34.	JERSEY C		• 6889	-3.9718			86	36.	MOUNT VE	RNON	• 3955	-7.2930
39	48.	GALVESTO	Ň	.6792	-8.6036			87	24.	BUIDGEDO	N	- 3921	-20.5257
40	12.	DAYTONA	BEACH	•6658	25 3151			Âõ	13.	ALBANY	R I	3895	38.0868
41	ę.	SAN FRAN	<u>CISCO</u>	.6601	-7.1326			9Ó	· ĭ.	TUSCALOO	SA	.3868	10,9648
43	2.	HIPHINGH	FF	•6585	23.9959			91	54.	WHEELING		• 3740	-12.0718
44	25.	NEW HEDE	AM	• 04 38	-13.9829	•		92	39.	DAYION		. 100/	-18.7056
45	42.	YURK	UNU	.6255	-11-1821			93	53.	YAKIMA	•	-3597	4.3322
40	17.	CHICAGO		.6172	-9.8374			95	34	PERTH AN	BOY	.3570	.2411
24	20.	DETROIT		.6146	-16.5270			96	48.	WACO		.3530	1.5247
49	42	PITTSBUP	6H	• 6067	-4.9663			97	25.	LYNN	-	• 3503	-11,1275
50	25	FALL RIV	ER	-5863	-20.8638			28	3/•	ASHEVILL FL TZARFT	5	• J • 52	1 2610
					-+3401			100	48.	SAN ANTO	NI0	.3415	29.1687

125

\$

.

٩

4

RANK	STATCODE	NAME		A NEED	Deuroza	*				•		
101	42.	ALTOONA		3405	FCHOUT3	· RA	NK	STATCODE	NAME	11 P	NEED	PCH6073
RANK 1234567600000000000000000000000000000000000	STATCODE 426	NAME ALTOONAT BINGHAMU PORT OLK PORT OLK PORT OLK PORT OLK SHOR SHOR SHOR SHOR SHOR SHOR SHOR SHOR	ON TH HUR WN RT ON UZ LIS ILLE ELD R T BEACH SALEM NCH ADY	NEED 56677775589208584510198962193999999720858 • 333373218974330077551158929999993037208 • 33337373737373737373737373737373737373	PCH6073 -11.6262 -20.35566 -20.35566 -15.85666 -15.85777 -15.8577777777777777777777777777777777777	RA	1234567899m2345678990m234567890m23 5555555555555566657777777788988 NK		NAME KAMAZO POALDA POALCAST POALCAST ACCAST POALCAST AC	O RLES E ELD M LES PIDS ITY UGE E FALLS L GARDINO ITY RBARA SBURO LOLE ROC		PC - + 23823 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
1777777890 177777777890 1777777777890 1777777777890 17777777777777777890	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	WINSTON- LONG BRA SCHENECT DENVER DENVER DENVER DENVER DENVER DENVER DONTLAND SANTA MO GARY FORTA MO GARY MUWISTON CANTON GAINESVI BAYTTLE BORT MYE FORT MYE FORT MYE FORTAN FORTAN FORTAN FORTAN FORTAN FORTAN SALT LAK	SALEM NCH ADY E NICA LLE OCK RS G E CITY	/20811174924098799923 555547684058482096923 5555547684058482096923 2222222222222222 22222222222222222	325.77202 9039 225.77720 215.77202 4.34240 9.475231 4.3476231 9.502254 9.7726231 9.502254 9.7726231 7.262254 9.00000 207703 8.600700 8.600700 8.600700 8.600700 8.600700 8.600700 8.600700 8.600700 8.600700 8.600700 8.600700 8.600700 8.600700 8.600700 8.600700 8.600700 8.600700 8.60070000000000000000000000000000000000			0.000000000000000000000000000000000000	SAT MPLE TEMPLE SAN THE SAN TH	N SEURO TTLE ROC N ESEE T HAISTI	••••••••••••••••••••••••••••••••••••••	L222112765749912200 L222112766749912200 L222112766749912200 L222112766749912200 L222112766749912200 L222112766749912200 L222112766749912200 L220040763567698 L220040763578 L220040763578 L220040763578 L220040763578 L220040763578 L220040763578 L220040763578 L220040763578 L220040763578 L220040763578 L220040763578 L220040763578 L220040763578 L2200407777785 L20077777785 L20077777785 L2007777777785 L200777777777778 L20077777777777777 L200777777777777777777 L20077777777777777777777777777777777777

· •• •

.

**

.

Entitlement Cities Ranked According to Per Capita Need Score

1

RANK	STATCODE	NAME		NEED	PCH6073	RANK	STATCODE	NAME		NEED	PCH6073
201	39.	MANSFIEL	D	•0244	19.4189	251	25.	BROCKTON		1118	28.7570
žŏž	33.	MANCHEST	ER	.0513	.8669	252	.0.	SOUTH GA	TE	1139	.9503
203	6.	LONG BEA	CH E	0196	2.5971	253	39.	OWENSHOP	0	2:1122	10 4471
204	ວຸວຼ.	LA CRUSS	TON	.0167	12.9943	525	18.	SOUTH HE	ŇD	-1164	-8.2022
205	11.	HAKEHSEI	FID	.0152	30.7448	256	17.	JOI IFT		- 1195	14.1265
209	12.	JACKSONV	ĨĹĹE	.0149	157.3412	257	4i.	EUGENE		1209	76.8873
200	ī.	FLOHENCE		• 0141	-1.1929	258	.48.	FORT WOR	TH	1212	3,5433
209	9.	NEW BRIT	AIN	• 8116	-2.0002	259	42.	BETHLEHE	M	1244	-2.5781
ŽĬÓ	6.	RICHMOND		.0003	11.4790	260	31.	OMAHA	•	1254	24.3548
211	_6.	ALAMEDA	ALT.	.0007	2.2988	201	11.	DECATUR INCLEHOO	•	- 1280	13.1439
212	37.	HIGH PUL	N.	0019	23.3248	263	A 8	TYLED	U .	- 1511	19 1671
213	-20		10	0062	2.4119	264	6.	VALLEJO		- 1338	20.9744
214	28	GUI FPORT		0072	46.8422	265	19.	DES MUIN	ES	1376	-3.5625
512	17.	EVANSTON		0088	-3.0323	266	48.	LUBBOCK		1414	19.9211
519	28.	BILOXI		0099	2.7593	267	. 39.	CLEVELAN	DHEIGHT	1424	/ -9.4570
218	36.	YONKERS		- 0100	16.0355	268	51.	ALEXANDR	IA		19.3123
219	17.	CHAMPAIG	N	0177	63.1054	209	11.	RUCKFURU		- 1513	24 0403
· 220	, 2•	EVANSVIL		0179	-4.0110	271	6.	GLENDALE		- 1571	7.4116
221	19.	SPRINGFI	έιο	0332	11.2153	· 272	35.	ALHUGUER	QUE	- 1572	34.4258
222	8.	PUEBLO		0337	13.1833	273	34.	BLOOMFIE	ĹĎ	1573	6315
223	48.	DALLAS		0351	21.2000	274	37.	GREENSHO	RO	1577	28.7444
225	37.	GASTONIA		0355	57.5743	275	26.	ANN ARBO	R	1594	53.8119
226	48.	AUSTIN		0373	32.1284	270	40.	WICHIIA	FALLS	- 1615	15 0119
227	40.	LAWION		0464	40.2635	279	25.	PITTSFIF	10	- 1729	-3.4657
228		MEDEORD		0486	-2.1485	279	20.	TOPEKA		1745	13.3104
229	37.	RALEIGH		0578	43.1639	280	. 19.	COUNCIL	BLUFFS	1751	7.5473
531	55.	OSHKOSH		0585	14.3030	281	6.	SEASIDE		1820	79.6808
232	49.	PPOVO		- 0507	398.3694	282	41.	SALEM		1828	52.2186
233	6.	EL MONTE	× .	0617	-5.4837	583	30.	BILLINGS	DEDDALE	- 1801	25.1031
234	42.	OGDEN		0642	23.5723	284	16.	DAVENDOD	TENDALE	- 1478	11 7162
235	11.	KILLEEN		0644	90.3809	286		BOULDER	•	- 2007	99.5639
230	36.	NEW ROCH	ELLE	0655	-5.4422	287	25,	WALTHAM		2016	5.6751
. 234	53.	EVERETT		0714	23.1371	288	39.	LURAIN		2039	180.8258
519	51.	NEWPORT	NEWS	0/1/	-6 5316	289	6.	ONTAHIO			36.2281
240	17.	BERWYN		- 0831	-2.1063	290	20.	COLURADO	SPHINGS	- 2095	100.4012
241	36.	WHITE PL	WTH2	0833	3.6496	202	12.	CLEANWAT	ÉD	-2156	91.7443
242	32.	RACINE		0856	3.6146	203		SANTA RO	ŠĂ	2182	107.9087
243	63.	ALHAMBRA		0934	9.8748	294	6.	SAN DIEG	ŏ	2193	30.0030
249	39	MIDDLETO	WN	0940	14.1344	295	18.	ANDERSON		2242	45.2531
24	ĭ9.	SIOUX CI	TY		19 8692	296	48.	ABILENE		2251	2.7640
241	26.	LANSING	-	- 0909	21.5940	297	<u>ç</u> .	WICHITA			3.1533
246	47.	KINGSPOR	CITY	-1058	15.5301	298	16.	THISA			27:1935
249	<u>40</u> .	UKLAHUMA	FEDAVIDS	1060	6,1403	277	18.	INDIANAP	OL IS	- 2274	52.9341
25	〕 ●/•	NASUATER	L-DHILDO			200	***	STO SHINKE	~		

127

2

•

١

1

8.1 Entitlement Cities Ranked According to Per Capita Need Score

RANK	STATCODE	NAME			NEED	PCH6073		RANK	STATCODE	NAME		NEED	PCH6073
301	6.	MODESTO			2315	110.1068		351	27.	ROCHESTE	R	4307	34.8629
302	. 30.	ROME			2320	-2.5572		352	10.	HUNHANK	0100		-5.0/4/
303	30.	GREAT FA	115		5360	34 · 109/		354	5.	NAPA	P103	- 4406	96.0520
305	55.	MADISON	to to to		2375	32.7266		355	6.	PALO ALT	0	4410	3.1515
306	19.	WATERLOO			2378	5,2276		356	33.	NASHUA		4422	52.7413
307	40.	NURMAN			2423	74.1413		357	6.	MOUNTAIN	VIEW	4488	102.6473
308	21.	CHESAPEA	KE		4 / 9	0.0410		320	40.	HAWTHODN	e'		-1.J4UJ
310	~ ~ ~	SAL THAS			2412	122 2356		360	48.	TEXAS CI	Ťγ	- 4505	24.5680
3ii	4.	TUCSON			2483	45.2406		361	1.	HUNTSVIL	LĖ	4506	93.0180
ĴĺŹ	6.	OXNARD			2545	104.5493		362	55.	GREEN HA	Υ.	4552	41.2115
313	6.	MONTEREY			2557	115.0390		363	6.	HAYWARD		+628	30.1584
312	_ 2°	MERIDEN			633	9.4869		364	. 0.	SAN JUSE	000	- 4/42	156.04/6
312	30.	FARGO			2663	19 0266		366	6.	CHUI A VI	STA	- 4841	73.0066
317	18 .	LAFAYETT	E		2719	2.9352		367	6.	EL CAJON	314	- 4896	53.1707
3i8	25.	LEOMINST	ĒR		2754	24.1746		368	27.	MOORHEAD		4899	27.6957
319	26.	EAST LAN	ŠING ·	••	2836	59.8204		369	, 6 •	REDWOOD	CITY	4906	17.7419
320	17.	ELGIN	C. 1.1		2841	16.0323		3/0	14.	MELBUUHN	Ł	- 4909	,240.1099
- 321	17.	AUDODA	E, N		2004	23.0139		372	55.	WEST ALL	15	4987	A.1H01
323	17:	WAUKEGAN			A99	16.9761		373	48.	MIDLAND	2 J	5020	-6.5184
3Ž4	3 1.	LINCOLN			2931	26.6623		374	6.	COSTA ME	SA	5078	99.2309
325	19.	DURUQUE		- • 6	2940	9.4851		375	35.	LAS VEGA	S	5087	124.0694
326		STAMFORD		~ • 4	2942	12.2140		376	19.	CEDAR FA	LLS	-+2123	56.5/68
156	. 55.	NEWION	r .		2944	-2.3217		378	0 •		Υ .	-5287	54.4588
120	6.	SANTA MA	RTA .		3018	74.4479		379	55.	APPLETON	•	5338	17.1274
330	37.	BURLINGT	ON	3	3046	6.8669		380	54.	WEINTON	•	5360	-6.5831
331	6.	REDUNDO	BEACH	-	2606	35.7999		381	9.	BRISTOL		5473	26.5359
333	, "6.	SANTA AN	A		3196	66.6714		382	. 51	VIDGINIA	DEACH		114.8304
	21.	DUDENTY			2223	46.1096		384		TEMPE	BEACH		217.2452
335	25.	CHICOPEE			3304	2.8182		385	. 6.	DOWNEY		5884	3.2654
336	27.	ST CLOUD		~ .	1329	21.9521		386	. 6.	ANAHEIM		5918	79.8194
337	46.	SIOUX FA	LLS		3331	13.3756		387	.6.	SANTA CL	ARA	5923	50.0937
338	. ? •	NURWALK			3384	14.2110		388	12.	HIALLAH			81.1039
339	40.	HOISE	TV		1241	-5,4840		390	24.	INDEPEND	FNCE	- 6165	89.4451
341		DANHURY			3640	130,9914	•	391	- 4 .	MESA		6179	157.0175
342	10.	HAMMOND			3720	-3.6035	2.0	392	6.	FULLERTO	N	6421	58.3727
343	6.	LOMPOC			1246	84.0938		393	2.	ANCHORAG	ε	6439	228.4836
.344	41 •	SPRINGFI	ELD		096	57.1687		394	38.			- 6450	10 2030
J 9 0	44.	CLIETON				12.0001		396		ORANGE		6483	213,1295
347	37.	VENTURA	SAN BUF		145	114.1084		397	48.	GRAND PR	AIHIE	6750	62.9349
348	39.	ELYHIA	South BAP		147	22.7163		398	26.	LINCOLN	PARK	6985	-5.0694
349	. 12.	HOLLYWOO	Q	4	152	224.1772		399	26.	WYOMING	M .	7067	24.8332
350	6.	SAN MATE	0		292	11.3153		400	20.	RUTAL DA	ĸ	1158	.8752

128

Table 8.1 Entitlement Cities Ranked According to Per Capita Need Score

•

.

*,

:

1 4

,

.

RANK	STATCODE	NAME	. *	NEED	PCH6073	
\$01	49.	OREM		7314	77.7968	
402	.6.	TORRANCE	1952398	7370	32.4478	
403	15.	BOCA RAT	ON	7411	454.2784	
404	<u> </u>	GARDEN G	ROVE	7414	39.6227	
405	, 9•	SUNNYVAL	ε	7537	101.0664	
409	· 1 <u>c</u> •	TTUSVIL	LE	1542	390.8596	
407	2.	AURURA	TCO	(654	119.9460	
400	* 8•	ALL INCTO	IER	1046	148.5500	
A10	48	DACADENA	N		124.5/96	
Aii	40.	HUNTINGT	ON REACH	- 1922	100.0300	
412	č.	HUENA DA	DE DEACH		1124.4/80	
413	48.	THUTNG	nn.	- 8101	121 1445	
414	6.	CONCORD		- 4163	154 0112	
415	39.	PARMA		8707	22.3446	
416	17.	DES PLAT	NES	8756	58 6972	
417	6.	FREMONT		8764	154.4151	
418	6.	WEST COV	INA	8881	42.8251	
419	53.	RICHLAND	-	8957	5.8678	
420	26.	ROSEVILL	ε	8983	17.0699	
421	34.	SAYHEVIL	LE	9004	51.0905	
422	39.	KETTERIN	G	9127	36.1781	
423	4.	SCOTTSDA	LE	9145	636.2431	
424	26.	TAYLOR		9408	62.6343	
425	53.	BELLEVUE		9533	402.0675	
426	48.	GARLAND	•	9551	162.9290	
421	£0.	WARKEN		9768	97.1754	
420	40 •	MESQUITE		-1.0054	117.7363	
429	20.	OVERLAND	PARK	-1.0122		
430	20.	DEARBORN	HEIGHIS	-1.0162		
432		STEDLING	SUCKES	-1.0206	12,0916	
235	55.	SIERLING	HEIGHIS	-1.033(E	
733	56.	EL OUT CCA	IUN	-1+1123	28.9569	
732	57.	FLURISSA	NI	-1.1603	15.6539	
-33	204				15 8003	

Restricting the analysis to the 63 cities with population over 200,000, Table 8.1 shows that each of the 16 most needy cities has lost population. On the other hand, only one of the 28 least needy cities in this over 200,000 group has lost population. To summarize, these comparisons indicate that, on the average, there is some consistency between our ranking according to CD need and a ranking according to population decline.

We now consider characteristics that distinguish growing from declining cities, focusing on the following four groups of cities:

- Group A: Declining cities which have experienced a population decline of 10 percent or more during the period 1960-73. The 52 cities in Group A account for 12 percent of total entitlement city population.
- Group B: Declining cities which have experienced a population decline between 5 and 10 percent during the period 1960-73. The 57 cities in Group B account for 18 percent of total entitlement city population.
- Group C: Growing cities which have experienced a population increase between 5 and 10 percent during the period 1960-73. The 17 cities in Group C account for 2 percent of total entitlement city population.
- Group D: Growing cities which have experienced an increase in population increase of 10 percent or more during the period 1960-73. The 229 cities in Group D account for 37 percent of the total entitlement city population.

Of the 109 declining cities in Groups A and B, 78, or 72 percent, are located in the Northeast or North Central region. Of the 246 cities in Groups C and D, 166, or 67 percent, are located in the South or West.

Characteristics other than regional location distinguish growing cities from declining cities. As shown in Table 8.2, the quantities for several need variables tend to increase from Group A to Group D. In 1970, 68.1 percent of the housing units in Group A cities were constructed before 1939, compared to only 26 percent in the fast-growing Group D cities. As indicated by the percentages for POWNOCCH and PMULTI, the population density in the declining cities exceeds that in the growth cities. Substandard housing as measured by percent of houses without plumbing is more of a problem in declining than growing cities. However, the percent of overcrowded housing (POCRWD) is actually higher in Group D cities (8.21) than in either of the two declining groups. This finding is consistent with the regional results presented earlier in Table 4.4. There we saw that the percentage of overcrowded housing was a high 9.58 percent in the South, compared to 7.88 in the Northeast, 7.45 in the North Central region, and 6.99 in the West. POCRWD is probably higher in the growth cities because 83 of the 229 Group D cities
	Group A LT - 10%	Group B LT - 5% and GT - 10%	Group C LT + 10% and GT + 5%	Group D GT +10%	
Number of Cities	52	57	17	229	
PAGE1939	68.1%	60,9%	39.6%	26.0%	
PAGE1949	81.2	73.9	55.4	39.4	
PAFTER60	7.9	12.1	23.1	30.5	
PMULTI ^a	49.1	44.9	37.6	30.7	
POWNOCCHa	49.9	53.6	56,9	60.4	
PWOPLUMB	3.5	3.2	2.6	2.2	
POCRWD	7.3	7.6	6.3	8.2	
PPOORPER	16.1	14.4	11.8	12.7	
PYUTHPOV ^a	6.2	4.7	3.5	4,5	
PFEMALHP	6.3	5.4	3.8	4.1	
PPOORFAM	12.2	10.7	8.8	9.8	
PUNEMP75	11.0	9.9	8.8	8.5	
POVAGE65 ^a	3.4	2.7	2.4	1.9	
P65AGED	12.5	11.4	11.3	8.7	
PNW	29.6	29.0	17.5	23.5	
PNEGRO	28.1	24.7	14.4	13.0	
PCRIME	.055	.043	.036	.039	

Table 8.2:Need Indicators by Percent Change in
Entitlement City Population, 1960-73

a. unweighted average

LT = less than (algebraically)

GT = greater than (algebraically)

are located in the South.

The percentages for the poverty variables given in Table 8.2 were all higher in the declining than in the growth cities. Both the percentage of families below the low income level and the unemployment rate were approximately 2.5 percentage points higher in Group A cities than in Group D cities. The declining cities showed a higher incidence of (1) female-headed households, (2) poor persons under 18 and over 65, (3) minority populations, and (4) per capita crime.

The CD need scores given in Table 8.3 reinforce our picture of declining cities as being disadvantaged relative to growth cities. Except for FACTOR 5, both groups of declining cities show above average per capita need levels, while the two groups of growing cities show below average scores. The main difference between the rapid decliners and the fast growing cities occurs in the age of housing dimension, which shows a 1.023 average score for Group A cities and a -0.442 score for Group D cities. The average score on the total CD need index was 0.583 for the rapid decliners, compared with -0.200 for the group of fast growing cities.

Spending and taxing patterns differ between declining and growing cities. In his discussion of local finance, George Peterson presented numerous fiscal comparisons showing declining cities as (a) having higher per capita expenditures and employment on common city functions; (b) paying higher average monthly wages for common function employees; (c) having a negative percent change in public employment levels, 1973-1975, (d) having a lower percent change in taxable property value, 1965-1973, (e) having both a higher effective property tax rate and a higher level of tax effort; and (f) relying to a greater extent on Federal and state aid as a revenue source.2/ Our results also indicated that per capita tax and expenditure levels are higher in declining cities. Per capita general expenditures were 63 percent higher in Group A than in Group D cities. In fiscal 1974-75, per capita non-education taxes were \$168 in Group A cities, which was \$53 greater than the \$115 in Group D cities. As a percentage of total income, "own general revenue" (total revenue - aid) equaled 4.47 percent in Group A cities, 4.55 in Group B cities, 3.99 in Group C cities, and 2.42 in Group D cities. Per capita income, one measure of a city's fiscal capacity, averaged \$3986 in Group D cities, or 13 percent above the level in Group A cities. Between 1970 and 1972, per capita income increased in Group D cities by 20 percent and in Group A cities by 18.4 percent.

2/ George E, Peterson, "Finance," Chapter 2 in The Urban Predicament edited by William Gordon and Nathan Glazer, The Urban Institute, Washington, D.C., (1976). Also see Muller (1975) for a similar classification of cities.

	Group A LT - 10%	Group B LT - 5% and GT - 10%	Group C LT + 10% and GT + 5%	Group D GT + 10%
FACTOR 1 (Poverty)	.495	.055	-,326	029
FACTOR 2 (Age of housing)	1.023	.527	.053	442
FACTOR 3 (Density)	.367	.296	043	248
FACTOR 4 (Crime and unemployment)	.548	.286	045	-,297
FACTOR 5 (Low education)	.258	061	228	-,003
Total Need Score ^b	.583	.233	137	200
\$ Change population 1970-73	-7.25%	-3.96%	-2.78%	+5.91%

Table 8.3; Per Capita Need Scores by Percent Change In Entitlement City Population, 1960-73^a

a. The factor analysis is explained in Appendix H; each city receives an equal weight of one.

b. Need score = .35 FACTOR 1 + .25 FACTOR 2 + .20 FACTOR 3 + .10 FACTOR 4 + .10 FACTOR 5

LT = less than (algebraically)

6T = greater than (alegbraically)

We now compare per capita amounts allocated to declining and growing cities under five of the formulas. Table 8.4 provides the data. First, notice that under each formula, the average per capita amount decreases as you go from Group A to Group D; higher per capita amounts are allocated to the more needy, declining cities. However, aid to the declining cities is much greater under the alternative formulas than under the present formula. Declining cities in Group A would receive \$22.74 per capita under ALT4 (.4 AGE1939, .6 POORPER), or 35.8 percent more than they would receive under full funding of the present formula. On the other hand, the average per capita amount allocated to the growth cities in Group D would decrease from \$14.97 under PRESENT to \$13.15 under ALT4, a decrease of 12.2 percent. The explanation for these shifts lies in the percentages for PAGE1939 given in Table 8.2; there is anobvious, positive relationship between age of housing and population decline.

Correlation analysis can be used to evaluate the formulas in terms of the additional criterion, population decline. For the moment, we assume that hardship is greater in declining cities; therefore, we desire a high negative correlation between per capita formula amounts and changes in population (PCH6073). The correlations are as follows:

PCH6073

НН	18
PRESENT	23
ALT1	42
ALT2	46
ALT3	44
ALT4	48
ALT5	50
ALT6	50
ALT7	50

The above results show that the alternative formulas are more closely correlated with population decline than either the present formula or hold harmless. These results are therefore consistent with the per capita averages given in Table 8.4.

Two problems exist with the above correlation results. First, there is some indication that, on a group basis, hold harmless has a stronger relationship with population decline than is indicated by the -0.18 correlation given above. Forty-seven of the 52 Group A cities and 36 of the 57 Group B cities had hold harmless amounts greater than their present formula amounts. Only 66, or 26 percent, of the two groups of growth cities would lose with the phase out of hold harmless. From these and our earlier results, we can characterize phase-down cities (losers) as being located in the Northeast, as having an aged housing stock, and as experiencing a decline in population since 1960. The low negative correlation results not because per capita allocations to declining cities are less than per capita allocations to growing cities (see Table 8.4), but because the variation of per capita allocations

	Group A LT - 10%	Group B LT - 5% and GT - 10%	Group C LT + 10% and GT + 5%	Group D GT + 10%
PRESENT	\$16.75	\$15.93	\$13.78	\$14.97
ALT1	18.99	17.65	14.11	13.91
ALT2	20.12	18.30	14.56	13.61
ALT4	22.74	20.42	14.88	13.15
ALT6	22.41	20.23	14,92	12.29
Hold Harmless	34,71	26,48	18,24	13,66

Table 8.4:	Per Capita Formula Amounts by Percent Change 1	n
	Entitlement City Population, 1960-73	

LT = Less than (algebraically)

GT = Greater than (algebraically)

between cities in the same or different groups is only weakly related to population decline.

.

A more important qualification concerns our assumption that need increases with population decline. There is another argument that CD need, in the form of infrastructure requirements, is higher in growing cities than in declining cities. A growing population puts pressure on public facilities, thereby forcing either a cut-back in other services or an increase in debt or taxes to finance the needed increase in capital stock. This aspect of CD need has been ignored in this study. Our main purpose in this section has been simply to document the higher incidence of need indicators that exists in declining cities and to examine the effects of different formulas on growing and declining cities. We do not say that population loss is an indicator of need; we only show that need indicators, as defined in this study, are concentrated in declining cities. Of course, our definition of need is deficient to the extent that population growth itself is a positive indicator of CD need.

Cost Variations

The present formula does not take into account city variations in the cost of living and therefore treats in an inequitable manner those cities with higher input costs. In addition, the 1970 Census did not consider cost of living differences in its definition of poverty income levels. This means that present poverty counts understate actual poverty in cities with above average costs. Using BLS data for 38 SMSAs, we correlated certain variables with an "intermediate income cost of living" index (IYCPI), obtaining the following results:3/

	IYCPI
РОР	.4383
DENSITY	.7131
MEDINC	.2214
PERCAPIN	.2444
PPOORPER	1932
PAGE1939	.6916
POWNOCCH	5843

 $[\]frac{3}{U.S.}$ Bureau of Labor Statistics. Handbook of Labor Statistics 1974, Bulletin 1825, tables 138-140, pp. 346-348. Budget costs are for Autumn, 1972. Honolulu and Anchorage were dropped, reducing the file from 40 to 38.

Density (0.71) and age of housing stock (0.69) exhibit the highest correlations with the cost of living index. The importance of density in explaining variations in the cost of living was also observed in a regression analysis of the BLS data. The two best fitting equations are reported in Table 8.5. The constant term, DENSITY, and DUMSOUTH were highly significant in both equations. For our purposes the most important result was the .69 correlation between PAGE1939 and IYCPI. This .69 correlation provides yet another reason for including age of the housing stock as a formula factor.

Each of the formula distributions was evaluated in terms of correlation with IYCPI; the following coefficients were obtained:

	IYCPI
НН	.2490
PRESENT	1238
ALT1	.3626
ALT2	.4047
ALT3	.4513
ALT4	.4776
ALT5	.6061
ALT6	.6164
ALT7	.6066

For this group of 38 cities, the present formula does not distribute above average, per capita amounts to cities with above average living costs. Given the -0.19 correlation between PPOORPER and IYCPI and the significant, negative coefficients for DUMSOUTH in both regression equations, the insignificant, -0.12 correlation between the present formula, which gives POORPER a double weight and favors the South, and IYCPI was not unexpected. The effects of adding aged housing to the formula are illustrated by the correlations of the alternative formulas with IYCPI. The correlation with IYCPI increases from -0.12 for the present formula to 0.45 for ALT3, and, to 0.61 for ALT6. Positive correlations are desirable, of course, because above average amounts should go to those cities with above average living costs; ideally, we would rather express everything in real, rather than money terms.

So far we have restricted the analysis to the "intermediate income cost of living" index. BLS also publishes the following indexes:

IYRPI=intermediate income rent index

Table 8.5: Regression Equations for Cost of Living Index

	Intermediate Income Cost of Living Index		
	Equation (1)	Equation (2)	
Regression Coefficients			
(1) Intercept	95.2	91.7	
(2) Density	.00788	.00743	
(3) DUMSOUTH ^a	6.71	-4.56	
(4) JANTEMP ^b		133 ^d	
(5) PERCAPIN ^C		.0024 ^e	
<u>Coefficient of</u> <u>Multiple Determination</u> (R ²)	.67	.71	

a. DUMSOUTH = Value of 1 for Southern city, 0 otherwise.

b. JANTEMP = Average January temperature.

c. PERCAPIN = Per Capita income

d. Insignificant at .05 level, significant at .10 level.

e. Insignificant at .10 level.

IYHPI=intermediate income housing price index

Similar indexes are given for lower income families (LYCPI, LYRPI, LYHPI). A correlation analysis similar to that above was conducted on each index; the results are presented in Table 8.6.

Summary and Conclusions

Compared with growing cities, our results show declining cities as (1) having an older housing stock, (2) having higher concentrations of low income persons, (3) having higher levels of per capita expenditures and taxes, and (4) receiving higher per capita CDBG allocations, especially under the alternative formulas. The correlation analysis showed that the alternative formulas are more responsive to population decline than either the present formula or hold harmless.

DENSITY and PAGE1939 exhibit a significant, positive correlation with the cost of living. For the 38 cities considered, Alternative 6 exhibited a 0.61 correlation with an "intermediate income cost of living index", which compares favorably with the -0.12 exhibited by the present formula.

	LYCPI ^a	LYHPI	LYRPI	IYCPI	IYHPI	IYRPI
PRESENT	08	03	03	12	14	12
ALT1	.35	.17	.18	.36	.26	.13
ALT2	. 39	.18	.19	.40	.29	.16
ALT3	.42	.21	.22	.45	.34	.18
ALT4	.45	.21	.22	.47	.35	.20
ALT5	.55	.27	.28	.60	.48	.27
ALT6	.57	.27	.28	.61	.48	.28
ALT7	.56	.26	.28	.60	.47	.28
POP	.32	.06	.05	.43	. 39	.17
DENSITY	.62	. 32	.33	.71	.61	.43
MEDINC	.26	.21	.23	.22	.26	.34
PERCAPIN	.40	.35	.37	.24	.25	.42
PPOOPER	13	07	07	19	22	16
PAGE1939	. 59	.26	.27	.69	.56	.30
POWNOCCH	59	54	53	58	54	45
MEDVALUE	.51	.56	.57	.44	.52	.55
MEDRENT	.44	.64	.64	.33	.41	.64

Table 8.6: Coefficients of Correlation Between (1) Cost of Living Indexes and (2) Per Capita Formula Amount and Need Variables, 38 Entitlement Cities

a. LYCPI = lower income cost of living index LYHPI = lower income housing price index

LYRPI = lower income rent index

IYCPI = intermediate income cost of living index IYHPI = intermediate income housing price index

IYRPI = intermediate income rent index

Indexes constructed by the Bureau of Labor Statistics.

Chapter 9 Allocations Among Types of Recipients

An unresolved issue is the distribution of funds among types of recipients. Our estimates indicate that under full funding with the present formula, the total SMSA share (approximately 80% of total authorization) would be divided as follows: (1) 522 entitlement cities, 60%; (2) 73 urban counties, 12.5%; and (3) SMSA balances, 27.5%. Added to the non-SMSA 20 percent, this results in approximately 52 percent of all CDBG funds being directed toward small cities in urban counties, SMSA balances, and non-SMSA areas. This result is surprising given the predominant large-city focus of the previous categorical programs.

The Introduction to this study emphasized two limitations to our methodology: (1) it cannot determine the appropriate rural-urban split in funding and (2) it accepts the implicit assumption of the CDBG program that, within metropolitan areas, all persons, poor persons, and overcrowded housing represent equal CD need regardless of their location. However, our techniques and data can add to the understanding of these two issues. In this chapter we present information and analysis related to these questions. We also discuss allocation mechanisms, involving more than one formula, which would direct more funds to entitlement cities.

The first section explains how funds are distributed among types of recipients in the present, single-formula allocation mechanism, and discusses what assumptions must be accepted to prefer a distribution which favors entitlement cities more than the single formula alternatives discussed earlier. The second section reports the results of a factor analysis on 803 cities with population above 25,000 to determine how need varies with city size. In this section we also use our methodology to determine if central cities with populations below 50,000 have greater need for CD funds than all similarly populated cities. The next two sections examine an alternative allocation system, the dual formula approach. A final section outlines some of the arguments for changing the allocation between urban and rural areas.

Present Allocation Mechanism and Underlying Assumption

The 20% - 80% division of funds between non-metropolitan areas and metropolitan areas is mandated by the CDBG legislation. The distribution of the metropolitan area funds among entitlement cities, urban counties, and SMSA balances is proportional to the relative population, overcrowded housing, and poverty (counted twice) in the different recipient classes. In other words, the CDBG allocation mechanism implicitly assumes that each person, poor person, and overcrowded house (or, in the case of our alternative formulas, aged housing unit) indicates the same level of CD need regardless of its location within the SMSA. We adopted this assumption in the analysis in Chapters 5 through 8. Consequently any redistribution among types of recipients brought about by introducing age of housing into the formula is determined by the relative share of aged housing in entitlement cities, urban counties, and SMSA balances.

The percentage shares of SMSA funds allocated to all 522 entitlement cities under hold harmless and the various formulas are as follows:

		% of	SMSA funds
Hold harmle	SS		84.5%
Present			60.0
Alternative	1		61.3
н	2		61.9
н	3		63.2
11	4		64.9
н	5		64.2
н	6		63.0
н	7		65.5

A similar result is obtained if we consider only those entitlement cities which are central cities. The share of SMSA funds allocated to central cities increased from 52.8 percent under the present formula to 58.9 percent under Alternative 7, and to 59.8 percent under an alternative that allocated solely on the basis of aged-housing. In other words, by adding aged housing to the formula, we not only increase the equity of the entitlement city distribution, but we also increase the total allocation to the larger, central cities, primarily at the expense of urban counties and balances of SMSA's. On the other hand, the share received by central cities under each of the alternatives was less than the 79.2 percent of SMSA funds received under the categorical programs. In fact, even if funds were allocated solely on the basis of pre-1939 housing, central cities would still receive, as a percentage of SMSA funds, 19.4 percentage points less than that received under the displaced categorical programs.

An alternative assumption would be that these formula factors denote greater need in entitlement cities. 1/ Although intuitively appealing,

1/ This alternative assumption is already implicitly contained in the CDBG legislation because non-SMSA areas receive only 20% of CDBG funds although they account for 27.6% of the population, 41.3% of the poverty, 31.8% of the overcrowded housing, and 32.6% of the aged housing. this alternative assumption is difficult to verify. Poverty and older housing can be found throughout urban areas and generate similar problems regardless of location. Analysis presented below shows that per capita need does seem to increase with city size but that the rate of increase is small. Logically the choice of the alternative assumption over the equal-need assumption must be based on one or more of the following four premises:

- 1. In the less densely populated areas of SMSA's, the formula need variables may indicate specific need, such as the existence of old housing; but the link between the formula factors and urban maladies either does not exist or is weaker. In other words, the existence of old housing may be a problem in itself in a small suburban jurisdiction; but, in suburbs, it is not necessarily associated with neighborhood decay. This premise can be expressed in terms of our factor analysis methodology by saying that the relationship between aged housing and the age of housing dimension of CD need is weaker in suburban areas.
- Data for formula purposes does not exist to measure accurately the differential need in large cities that arises from the dense concentration of formula factors. In economic terminology, the negative externalities associated with poverty and aged housing may be more serious in per capita terms in densely populated areas.
- 3. The needs approach may ignore other important factors such as the capacity of a local jurisdiction to solve its own problems using its own resources. In other words the relatively wealthier suburban jurisdictions may need less assistance. Of course, this premise could also justify the addition of a capacity measure to the formula.
- 4. Without a limit on the distribution to other areas, the share going to central cities is not sufficient to overcome the serious problems of those cities.

The methodology of this study cannot prove or disprove these premises.

Adoption of this alternative assumption presents the problem of determining how much more need the formula factors represent in entitlement cities than in the remainder of the SMSA. Once we depart from assuming that the formula variables accurately reflect need, we are left with no objective method to determine the shares of large and small cities. We can use a fixed percentage method similar to the rural-urban split or we can use a residual method such as a two-formula system.

Variation in Need by Size of City

Our data provide evidence that large cities are more needy than small communities. A factor analysis was conducted on 802 cities with population above 25,000 to determine how per capita need varies with city size. The initial reason for extending the factor analysis to all cities above 25,000 population was to determine if a large, positive shift in per capita need occurred at a particular city size. Detection of a large positive shift in per capita need at a particular city size could be used to support that city size as the appropriate cutoff for entitlement cities.

The "factor loadings" of the varimax rotated matrix are presented in Table 9.1. These results differ from those reported in Table 4.5 because the factor analysis is now performed over all cities over 25,000. The following table defines each dimension of CD need in terms of need indicators with high loadings.

	Dimension	Need Variables, defining dimensions
FACTOR 1	Poverty, without Plumbing	Poverty Variables, PNW, PWOPLUMB.
FACTOR 2	Age of Housing Stock	PAGE1949,2/ P65AGED
FACTOR 3	Crime	PCRIME, PNW
FACTOR 4	Density	POWNOCCH, DENSITY
FACTOR 5	Low Education, Over- crowded housing	PWOHSED, POCRWD

It should be noted (a) that Factor 3 is now the crime dimension and Factor 4 the density dimension, and (b) that overcrowded housing is now loading on Factor 5 rather than on Factor 1, the poverty dimension.

Table 9.2 provides unweighted average need scores for each city size group. Although a large shift was not detected, there does seem to be, for each dimension of CD need, a trend from low to high per capita need (from negative to positive scores) as population increases. The 237 cities in the lowest population group (25-35,000) received below average need scores on each dimension. Except for an average need score (+.007) on the age-of-housing-stock dimension, the second population group (35-50,000) also received below average need scores.3/ To summarize, the data in Table 9.2 provide evidence that, on a per capita basis, cities

- 2/ PAGF1949 (percentage of houses constructed before 1949) was used in this analysis in the place of PAGE1939 because our 845 city file did not contain PAGE1939.
- 3/ The average score for each dimension is zero. Other results indicate that only with respect to houses without plumbing do small cities exhibit a higher per capita need than large cities.

	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5	
POSAGED	.07634	.13243	.08409	.12805	05598	
POWNOCCH	29966	24898	24698	68930	.09703	
PCHIME	.14661	.05396	.69828	.21501	.03380	
PNW	.65761	12682	.55330	.12911	.22370	
PWOHSED	• 40460	.44127	.11050	.16030	.61130	
PFEMALHP	.85840	.18732	.33218	.04033	.12996	
PYUTHPOV	.93166	.01584	.23127	03930	.21090	
PPOORPER	.94792	.18282	.16193	.04888	.01944	
POCHWD	.58766	38587	.10797	.07681	.56334	
PWOPLUMB	.72302	.22804	17239	.07187	.14352	
POLDSTR	.17123	.79450	07285	.30768	,15553	
DENSITY	13279	.17465	.10710	.65057	.15908	
	العدور المعمامة				÷ .	

Table 9.1:	Varimax Rotated Factor Matrix from Factor Analysis of 802 Cities,	
	Population Greater than 25,000 ^a	

-

a <u>c</u>arte e

1

.

(

.

a. We did not have crime data for 43 of the 845 cities; therefore, the factor analysis was conducted on only 802 cities.

.

٠

			Populatio (thousa	n Size nds)					
	25-35	35-50	50-75	75-100	100-250	250-500	500-1000	1000-2500 Gr	eater Than 2500
Number of Cities	237	189	152	71	97	30	20	3	3
Need Dimension:									
Poverty Variables; without Plumbing	03	048	+.012	273	+.143	+.345	+.453	+.197	+.175
Age of housing stock (1949); % over 65	056	+.007	007	+.005	+.077	+.080	+.114	+.384	09
Crime; Nonwhite; female headed household	344	103	094	+.189	+.522	+.719	+1.115	+1.457	+1.28
Lack of Homeownership; Density	186	038	+.079	+.150	+.004	+.351	+.496	+.419	+2.19
Low education; overcrowded housing	088	013	+.026	+.139	021	+.154	+.145	+.542	+.371

Table 9.2: Average Per Capita Need Scores By City Size

a. Factor analysis conducted on cities above 25,000. For each dimension, the average score is zero. Scores above (below) zero indicate above (below) average per capita need.

between 25 and 50,000 are less needy than cities above 50,000 population. Such comparisons do not necessarily justify treating small cities in SMSA balances as residual recipients (with a share less than their formula share), but do suggest that, if policy decisions were to be made to reduce or eliminate aid to low need recipients, city size may be an appropriate dividing line.

Central Cities Below 50,000 Population

Another issue concerns the question of whether or not we should strive to get rid of "artificial" distinctions created by SMSA's in administering entitlement funds. In other words, are the 92 entitlement cities with populations below 50,000 in greater need of CD funds than other similarly populated cities simply because they are central cities of SMSA's? A comparison of need variables and per capita need scores for 76 central cities with a population below 50,000 with all 456 cities with a population between 25,000 and 50,000 indicates that the 76 central cities are on the average in greater need of CD funding per capita than the average city in this population subgroup. Column (1) in Table 9.3 gives average need percentages and per capita scores for 76 central (entitlement) cities below 50,000 population; column (2) gives the same for all cities with a population below 50,000 and above 25,000. For each variable and dimension, the percentage or need score in column (1) is greater than that in column (2). This suggests that, for determining entitlement city status, the SMSA and central city concepts may not be "artificial" at all. Furthermore, a comparison of column (1) with column (3) -- which provides the averages for 389 entitlement cities above 50,000 population -- indicates that except for POCRWD and the aged housing dimension of CD need, the 76 central cities below 50,000 are, on a per capita basis, in greater need than entitlement cities above 50,000. Columns (2) and (3) of Table 9.3 summarize per capita need in cities below and above 50,000 population. Large cities as a group and on a per capita basis are more needy than small cities on all measures of need considered except that relating to houses without adequate plumbing.

Dual Formula Approach

As part of its overall evaluation of the CDBG program, the Department of Housing and Urban Development funded a two-year monitoring study by the Brookings Institution. The Brookings study attempts to answer three questions: (1) is the CDBG formula an equitable and effective distribution mechanism, (2) how have CDBG funds affected local government expenditures, and (3) how has the block grant mode of funding affected the way local governments make community development decisions.

The principal focus of the formula portion of the Brookings study is the effect of the present CDBG allocation system on various types of recipients (e.g., central cities, small cities, urban counties) and a

		(1) Central City 25-50,000 (76)	(2) All Cities ^a 25-50,000 (456)	(3) All Cities 50,000+ (389)
Need	Variables			_
	PPOORPER	14.30%	10,80%	13.58%
	POCRWD	7.27%	6.74%	8.20%
	PWOPLUMB	3,56%	2.72%	2.63%
	PAGE1949	59,50%	48,61%	58.4%
Dime	nsion Scores			
	(1) Poverty and Overcrowded housing	+.194	053	+,062
	(2) Aged-housing and density	+.069	-,131	+,154
· ·	(3) Without plumbing	+.254	+.041	048

Table 9.3: Central Cities Between 25,000 and 50,000 Compared with Cities by Population Size in Terms of Need Variables and Per Capita Need Scores

a. This population subgroup includes the 76 central cities in column (1).

b. The per capita need scores were derived from a factor analysis on 845 cities with population above 25,000. The average score for each of the three dimensions is equal to zero. Dimensions are defined by variables with high loadings.

1

comparison of this distribution pattern with that for the seven folded-in categorical grants. The Brookings analysis posits that the most urgent needs are in urban centers (central cities) and adopts this urban focus as the framework against which alternatives are evaluated. Numerous tables document (1) the decrease in the share going to central cities under the present formula relative to the categorical distribution, (2) the decrease in the share going to the Northeast, and (3) the large discretionary amount remaining under the present formula. The main recommendation is that each of the 587 entitlement recipients should be given the maximum of either its present formula amount or an alternative amount computed from a formula that substitutes the age of the housing stock for overcrowded housing as a formula variable and gives the double weight to age of housing rather than poverty. This two-formula approach would reinstate the urban focus of the CD distribution system by increasing the central city share of SMSA funds from 52.8 under the present formula to 62.2 percent under the proposed two-formula approach and decreasing the SMSA discretionary share from 28 to 16 percent.4/

The Brookings recommendation reduces the SMSA balances since each entitlement city receives at least its present formula amount and many cities receive a larger amount based on the second formula. The use of two formulas also reflects Brookings conclusion that community development need has two dimensions, poverty which is adequately provided for by the current formula and the combination of poverty and community age to which the second formula is designed to be responsive. This dual formula approach is one significant contribution of the Brookings study.

We shall examine similar distribution systems that allow each entitlement city to receive the maximum of its present formula amount or an amount computed by a formula containing pre-1939 housing. The relative emphasis given to aged housing increases across the distribution systems examined. The distribution systems considered in this section are defined as follows:

> an entitlement city receives maximum of present formula amount or an amount computed by Alternative 5

MAXPOR6

MAXPOR5

MAXPOR7

formula amount or an amount computed by Alternative 6

an entitlement city receives maximum of present

an entitlement city receives maximum of present formula amount or an amount computed by Alternative 7

^{4/} These recommendations and conclusions are contained in Chapters 3-6 of Block Grants for Community Development (Interim Report) by Richard P. Nathan, Paul R. Dommel, Sarah F. Liebschutz, Milton D. Morris, and Associates, The Brookings Institution, Washington, D.C. (forthcoming).

MAXPOR8

an entitlement city receives maximum of present formula amount or an amount computed by Alternative 8. Alternative 8 allocates solely on the basis of pre-1939 housing.

Table 9.4 presents per capita amounts and percentage shares under MAXPOR8, MAXPOR7, the present formula, and hold harmless by type of recipient and by region.5/ First, compare the figures for MAXPOR8 given in columns (1) and (2) with those of both the present formula and hold harmless given in columns (5) - (8). The most striking point is that the entitlement city share of SMSA funds increases from 59.0 percent under the present formula to 79.2 percent under MAXPOR8, which is only 5.3 percentage points less than the 84.5 percent received by these 515 entitlement cities under the categorical programs. As expected, the main gainers under MAXPOR8 are central cities located in the Northeast and North Central regions; 72 of the 78 central cities in the Northeast and 71 of the 90 central cities in the North Central region received higher allocations under MAXPOR8 than under the present formula. The share of SMSA funds allocated to central cities in the Northeast and North Central regions increases from 26.5 percent under the present formula to 42.6 percent under MAXPOR8, which is only 3 percentage points less than the 45.6 percent share received under the categorical system. On the other hand, entitlement cities in the South and West receive practically no advantage under MAXPOR8 compared to the present system; the share for these cities increases by only 2.1 percentage points, from 29.5 percent under the present formula to 31.6 percent under MAXPOR8, which is 3.9 percentage points less than the 35.5 percent received under the categorical system. Of course, this is not unexpected given that only 30 percent of the housing units in these cities were constructed before 1939 (see Table 4.4).

The disadvantage with MAXPOR8 as an alternative to the present system is the substantial reduction in the share going to other recipient classes. MAXPOR8 approximates the SMSA shares that existed under the categorical programs (column 8); however, given the population shares listed in column (9), this objective of approximating the categorical share is questionable. Entitlement cities which account for only 52.7 percent of the SMSA population receive 84.5 percent of the CDBG funds. At the same time, the small communities in SMSA balances which account for 30.5 percent of the population would be reduced from a 28.2 percent share under the present formula to the residual share of 9 percent under MAXPOR8.

This 9 percent share for SMSA balances assumes that urban counties continue to receive their present formula share of 12.8 percent under the MAXPOR8 system. Of course, the 21.8 percent non-entitlement city share

^{5/} In computing the entitlement city share, we assume that each of the 80 cities not in our 435-file has a formula amount greater than that under an alternative formula. This means that the entitlement city shares in Tables 9.4 and 9.5 are slightly underestimated.

	(1) MAXPOR8 Present/ALT8 ^a (per capita \$)	(2) MAXPOR8 Present/ALT8 % Share	(3) MAXPOR7 Present/ALT7 (per capita \$)	(4) MAXPOR7 Present/ALT7 % Share	(5) Present Formula (per capita \$)	(6) Present Formula % Share	(7) H H (per capita \$)	(8) H H % Share	(9) % of SMSA POP
Entitlement (itigs/515)	\$20.56	70.2%	\$18.66	71 89	\$15.33	59.0%	\$19.67	84 5%	52 7%
	120,50	<u>//</u>	\$10,80	71,02	15,35	15.0	110.07	04,52	<u>32.7 k</u>
Northeast(124)	25.51	26.3	21.64	22,3	15,65	15,3	26,46	28,7	14.1
Central Cities(78) Non-Central City(46)	26.99	23.4 2.9	22,97	19.9 2.4	15.98 10,46	13.6 1.7	26,96 13,07	26.2 2.5	
North Central(132)	20,97	21.3	18,35	18.6	14.22	14.6	18.54	20.3	13.9
Central Cities(90) Non-Central Cities(42)	22,46	19.2 2.1	19,61	16.8 1.8	14.75 10,18	12.9 1.7	20.37 5.30	19.4 .9	
South(149)	18.69	18.8	18.64	18.7	18.09	18.3	20,25	22.8	13.7
Central Cities(135) Non-Central Cities(14)	18.95	18.1 .7	18.91	18.0 .7	18.43 13.36	17.7 .6	21.01 7.22	22.5 .4	
West(110)	15.99	12.8	15,22	12.2	13,74	11,2	14,63	12.7	11.0
Central Cities(60) Non-Central Cities(50)	17.11	10.4 2.4	16,22	9.8 2.4	14.47 11.32	9.0 2.2	17.20 5.98	11.6 1.2	
Remainder of SMSA	\$ 6.30	21.8%	\$ 8.15	28,2%	\$11.85	41.%	\$ 4.01	15.5%	47.3%
Urban County ^d SMSA Balance ^e	10.41 4.03	12.8 9.0	10.41 6.90	12.8 15.4	10.41 12.62	12.8 28,2			16.8 30.5
SMSA Total	\$13.67	100.%	\$13,67	100.%	\$13.67	100.%	\$12,26	100.%	100.%

Table 9.4: Per Capita Amounts and Percentage Shares Under MAXPOR8, MAXPOR7, Present Formula, and Hold Harmless by Type of Recipient and by Region; Shares are Computed Relative to SMSA Totals^b

.

.

2

.

a. ALT8 distributes CDBGs according to the recipient's share of AGE1939; see text for definitions of MAXPOR8 and MAXPOR7,

b. Shares are computed relative to an SMSA appropriation of \$2,077,600,000. In computing the entitlement city share, we assume that each of the 80 cities not in our 435-file has a formula amount greater than that under Alternative 8. This means that the entitlement city share is under-estimated.

c. The \$4.01 and 15.5 percent is the combined per capita amount and share for Urban Counties and SMSA balances.

ŧ

d. The figures for urban counties in columns(1)-(4) assume that each urban county receives its present formula amount.

e. In columns (1)-(4), the SMSA balance is computed as a residual: SMSA Balance equals Total SMSA minus Entitlement Cities minus Urban County or Remainder of SMSA minus Urban County,

(Remainder of SMSA) under MAXPOR8 could be divided between urban counties and SMSA blances using a needs formula. This would reduce the urban county share and increase the SMSA balance and, therefore, increase the equity between urban counties and SMSA balances under MAXPOR8 but decrease the equity between urban counties and entitlement cities. Still, the "Remainder of the SMSA" would be receiving only 21.8 percent while accounting for 47.3 percent of the SMSA population, and, assuming that the present formula reflects need, 41 percent of the need (column 6).

This is opposite to that situation we found when we computed central city shares for the seven alternative formulas. In that case, we mentioned that even after adding aged housing to the formula, many would consider the central city share (e.g., 56.6 percent under ALT3) of SMSA funds to be too small, especially when compared with the 79.2 percent share received by central cities during the categorical years, and when compared to intuitive notions about the level of aid that should be directed to our "older, declining cities."

Considering MAXPOR8 and recalling that central cities account for 56.5 percent of the need as defined by ALT3, the central city share of 71.1 percent under MAXPOR8 may be too large. Therefore, in columns (3) and (4) of Table 9.4, we illustrate the two-formula approach using ALT7, which reduces the weight of aged housing to .6 and includes poor persons with a .4 weight. MAXPOR7 results in an entitlement city share of 71.8 percent and a central city share of 64.5 percent, the latter being 11.7 percentage points greater than the 52.8 percent received under the present formula and 14.7 percentage points less than the 79.2 percent received by central cities during the categorical years. The regional distribution again favors entitlement cities in the Northeast and North Central regions (presumably the older cities); approximately 170 of the 256 entitlement cities in these two regions would gain from a switch from full-funding under the present formula to full-funding with MAXPOR7. Another advantage of MAXPOR7 over MAXPOR8 is that the 28.2 percent left over for the "Remainder of SMSA" appears more acceptable than the 21.8 percent under MAXPOR8. Although 12.8 percentage points less than the 41 percent received under the present system, the 28.2 percent to urban counties and SMSA balances under MAXPOR7 does represent a 12.7 percentage points increase over the 15.5 percent received under the categorical programs.

As before, Table 9.4 assumes that the urban county share remains at 12.8 percent, and, as before, this causes some inequity between urban counties and SMSA balances because this 12.8 percent share to urban counties, which account for 16.8 percent of the SMSA population and 12.8 percent of the need as defined by the present formula, is only 2.6 percentage points less than the residually determined 15.4 percent share allocated to SMSA balances, which account for 30.5 percent of the SMSA population and 28.2 percent of SMSA need as defined by the present formula (column 6). In this case, assuming for the moment that the optimal "Remainder of SMSA" share is 28.2 percent, an alternative procedure would be to divide the 28.2 percent between urban counties and SMSA balances on the basis of a needs formula, instead of allowing urban counties to receive their fixed 12.8 percent share and treating SMSA balances as the residual recipients. Using the present formula to implement such a procedure would reduce the urban county share of SMSA funds from 12.8 to 8.8 percent and increase that of SMSA balances from 15.4 to 19.4 percent. Under this method, the small communities in urban counties would share along with SMSA balances the costs of redirecting funds to the larger cities. As indicated by a higher percentage of population below the low income level (9.8 percent compared to only 6.9 percent in urban counties), SMSA balances, on a per capita basis, are more needy than urban counties.

Table 9.5 presents several percentage shares computed using U.S. totals as a base. The purpose here is to show in a manner similar to that shown above for urban counties and SMSA balances certain interdependencies among CDBG recipients that should be considered in order to arrive at an equitable outcome in two-formula systems such as MAXPOR8, MAXPOR5, MAXPOR6, and MAXPOR7. First, in row (7) of Table 9.5, notice that the variable shares for the non-SMSA area are all greater than the fixed 20 percent, non-SMSA share. In fact, the non-SMSA share under both the present formula and Alternative 7 would be approximately 36 percent. The switch from the present formula to MAXPOR7 reduced, as a percentage of U.S. funds, the share of SMSA balances from 23 percent (column 2, Table 9.5) to 13 percent (column 6) while leaving unchanged the 20 percent allocated to non-SMSA communities. Assuming that the initial SMSA/non-SMSA split was optimal and that the goal is now to increase the share to central cities, the residual method may create an inequitable distribution between SMSA balances and non-SMSA areas.

Proposed HUD Dual Formula System

In the above discussion of the dual formula system, we used in our examples of second formulas, formulas designed to serve both general and specific purposes. A general formula is designed to be relevant to all recipients and includes variables such as population that tend to spread funds among a broad spectrum of recipients. Examples include Alternative 6 (.2 POP, .30 POORPER, .5 AGE1939) in MAXPOR6 and the Brookings alternative (.25 POP, .25 POORPER, .50 AGE1939) in its dual formula proposal. A specific formula, on the other hand, tends to key in on especially trouble cities to the exclusion of most recipients. Two examples of a specific formula discussed above include Alternative 8 and Alternative 7. In these two formulas, age of housing stock is the variable used to target funds to older cities.

There are variables that can be used other than age of housing to target funds to cities with serious economic and community development problems. Efforts at the Department of Housing and Urban Development to improve the present formula system have focused primarily on identifying a good secondary formula to target CD funds to especially troubled cities. The Department's dual formula proposal would allow each entitlement city to receive the greater of its present formula amount or an amount computed using a secondary formula based on poverty (.3), age of housing (.5), and decline in population, 1960 to 1973 (.2).

		(1) Hold Harmless	(2) Present _a Formula	(3) MAXPOR8 Present/ALT8	(4) MAXPOR5 Present/ALT5	(5) MAXPOR6 Present/ALT6	(6) MAXPOR7 Present/ALT7	(7) Population	(8) Poverty	(9) Overcrowded Housing	(10) Age of Housing Stock
(1)	Entitlement _b Cities(515)	74.%	47.%	63.%	55%	55.%	57.%	38.1%	36,8%	39.8%	
(2)	Central Cities	69.6	42.	56.7	49.8	49.8	51.5	32,5	33.8	35.3	40.4
(3)	Remainder of SMSA	13.5	33.	17.	25	25	23	34.3	21,9	28,4	
(4)	Urban Counties		10,	10.	10	10	10	12,2	6.	9,3	
(5)	SMSA Balance		23.	7	15	15	13	22,1	15,9	19.1	
(6)	SMSA	87.5	80,	80,	80,	80.	80,	72,4	58,7	68,2	67,4
(7)	Non-SMSA	12,5	20,	20	20	20	20	27,6	41,3	31,8	32,6
(8)	US	100,%	100,%	100.%	100,%	100.%	100.%	100.%	100,%	100.%	100.%

Table 9.5: Percentage Shares for Formula Amounts and Selected Variables by Type of Recipient; Shares Computed Relative To U.S. Totals

a. The percentages in column (2) were obtained by multiplying those in column (6) of Table 6.8 by .8, the SMSA share. A similar procedure was followed in columns (4)-(6),

b. The following row equalities hold: (1) + (3) = (6), $(4) \div (5) = (3)$, (6) + (7) = (8).

- - - ----

1

(

. . .

.

This secondary formula responds to three kinds of need. First, including poverty recognizes the concentrations of poor in our larger cities. Second, by including age of housing stock, the formula recognizes the costs of maintaining or rehabilitating an aging physical infrastructure in our older cities. As discussed in Chapter 5 of this study, age of housing is one dimension of CD need to which the present formula is non-responsive.

The population loss variable responds to the middle class flight from the central cities, and with it, the problems of a declining tax base. The efficiency with which the population loss variable can put money into cities with particularly serious fiscal and economic problems was suggested in our section on population decline in Chapter 8. Relative to growing cities, declining cities showed a higher incidence of (1) female-headed households, (2) poor persons under 18 and over 65, (3) minority populations, (4) per capita crime, (5) houses without plumbing, and (6) unemployment. The population density in the declining cities exceeds that in growing cities. Except for FACTOR 5 (lack of economic opportunity), both groups of declining cities considered in Chapter 8 showed above average per capita need levels, while the two groups of growing cities showed below average scores. Fiscal comparisons between growing and declining cities showed declining cities as (a) having higher per capita expenditures and employment on common city functions; (b) paying higher average monthly wages for common function employees; (c) having a negative percent change in public employment levels, 1973-1975; (d) having a lower percent change in taxable property value, 1965-1973; (e) having both a higher effective property tax rate and a higher level of tax effort; and (f) relying to a greater extent on Federal and state aid as a revenue source.6/ Per capita income, one measure of a city's fiscal capacity, is approximately ten percent lower in declining than in growing cities.

The present formula is not responsive to many of the above fiscal and community development problems associated with declining cities. The dual formula system described above responds to these problems. For example, 138 of the 197 cities whose secondary formula amounts were greater than their present formula amounts showed an above average score on our total needs index (NEED).

This dual formula will also make the phase-out of hold harmless less painful. Of the 175 hold harmless losers (out of 187) for which we have completed data, the number which lose funding decreases to 101 in 1980.

6/ George E. Peterson, "Finance," Chapter 2 in <u>The Urban Predicament</u> edited by William Gordan and Nathan Glazer, The Urban Institute, Washington, D.C., (1976). The number which lose more than 10% is reduced from 157 to 89.7/

The dual formula achieves these results by directing funds to declining cities at the expense of SMSA balances and those entitlement cities which have experienced population growth since 1960. We estimate that under this dual system SMSA balances would be less than 5 percent of total SMSA funds in FY80.

Allocation Between Urban and Rural Areas

Our earlier discussions of the SMSA discretionary share and per capita need by population size is related to the question of the proper allocation of CDBG funds between urban and rural areas. Should the non-SMSA share be increased or decreased? To provide support for the development of small towns in rural areas, a fixed portion (20 percent) is being allocated to non-SMSA areas. Under the categorical programs, non-SMSA recipients received approximately 14 percent of total CD funds.

After HUD meets the "hold harmless" requirements of qualifying non-SMSA communities, the remaining funds in the non-SMSA allocation are allocated among the states on the basis of the three factor formula and distributed on a discretionary basis by HUD to eligible non-SMSA applicants. This represents the first time that a fixed portion of HUD funds has been allocated to rural areas. Administration proposals would have allowed state governments to control the intrastate allocation of non-entitlement funds (both within and outside the SMSA's). However, primarily because of the lack of interest displayed by state governments in the past for the community development problems of small rural cities, Congress mandated that HUD deal directly with the rural city and therefore control the intrastate distribution of CD funds.

During the legislative debate on CDBGs, proponents of a fixed rural share argued that CD aid to small cities would slow down the migration of the poor to urban areas and therefore alleviate the fiscal problems of our central cities. In addition, it was considered essential that aid be distributed to rural areas, given our national policy of balanced population growth. To support their contention that a need for CD funds does exist in small rural communities, the proponents of a fixed rural

7/ In addition to the formulas discussed in the text, we also simulated the two-formula system using tax effort in the second formula. One of the formulas (.33 AGE1939, .33POORPER, and .33 TAX) that included non-education taxes (TAX) as a formula factor exhibited the following correlations with the need scores and tax effort: 0.28, (poverty); 0.49, (age of housing); 0.66, (density); 0.26, (crime and unemployment); 0.13, (lack of economic opportunity); 0.77, total need (need), and 0.90, tax effort (TAX1INC). The results are not reported in full because they required certain simplifying assumptions which may introduce small inaccuracies in the percentage shares. allocation referenced in 1970 HUD study that identified the governmental, economic, physical, and social needs of these communities.8/ The HUD study found that there was a significant need in the following areas: city administration, code enforcement, supervised recreation programs, fire and police services, street maintenance, garbage collection, library services, industrial development, and health and medical services. The greatest needs existed in those communities with less than 15,000 population. We agree that there is no basis for assuming that non-SMSA communities have no CD program needs. Moreover, an additional basis for extending formula assistance to them might be simply that since their populations support CDBG aid through taxes, they should at least be made eligible in some systematic way for the benefits of the program.

Some argued that it was unfair not to consider formula factors in determining the initial rural-urban split. In 1976 a formula calculated urban-rural split would have given rural areas a 35.5 percent share, since these areas in 1976 accounted for 27.5 percent of the nation's population, 41.3 percent of its poverty population, and 31.8 percent of its overcrowded housing. A suggestion has been made for increasing the rural share to at least 30 percent.9/

Some also argued that the present system seems to discriminate especially against those small cities (both within and outside SMSA's) between 10,000 and 50,000 population.10/ The cities below 10,000 rely on the Farmers Home Administration while those above 50,000 rely on the formula grants for CD aid. This bias against the 10,000-50,000 cities will increase with the phase-out of "hold harmless." Such reasoning leads to proposals that call for either a decrease in the population cutoff for entitlement cities below the present 50,000 cut-off or, at least, dropping the phase-out of "hold harmless" since many of the cities in this range participated in the old categorical programs.

Arguments for maintaining or even reducing the 20 percent and not decreasing the population cut-off for entitlement cities can also be presented. First, the stated purposes of the 1974 CD Act placed more emphasis on the CD problems in the urban areas, as opposed to rural areas. Because of the higher density of such areas, urban population, poverty, and overcrowding should be given more weight because of the likely

- 8/ U.S. House of Representatives, Subcommittee on Housing. Housing and Urban Development Legislation-1971, Parts 1-3. 92nd Congress, 1971,
- 9/ See James Abourezk statement in <u>Congressional Record-Senate</u>, July 25, 1975, pp. 13679-13681.
- 10/ Ibid., p. 13681 and U.S. Senate, Subcommittee on Housing and Urban Affairs. 1973 Housing and Urban Development Legislation, Parts 1-2. 93rd Congress, 1973, p. 149.

externalities involved. For example, given amounts of population, poverty, and overcrowding imply a higher degree of neighborhood instability in urban areas simply because of the higher concentration in these areas. This reasoning provides one rationale for <u>not</u> using the formula factors to determine the initial urban-rural split.

Decreasing the entitlement city population cut-off to, for example, the 25,000 level would bring in a large number of communities. It is important to remember that under the present, fixed-percentage system for non-SMSA's, the larger SMSA cities are at a relative advantage because their CDBG amounts are computed using formula variables. If you bring in all cities above 25,000 population (both SMSA and non-SMSA) on an entitlement basis, the share to larger SMSA cities could possibly decrease because included in the 25-50,000 group would be some non-SMSA cities which are presently receiving an amount smaller than that based on their share of formula factors. Our earlier conclusion that per capita need varies positively with city size and the externality argument briefly mentioned above both support maintaining the entitlement city threshold above a population level that would allow numerous non-SMSA cities to enter on a full-formula basis.

Extending "hold harmless" would be another method of aiding those smaller cities (both within and outside SMSA's) that have taken an active interest in their CD problems. However, this extension of "hold harmless" would not benefit those small cities that for whatever reason, did not participate in the old categorical programs; in addition, the inequity of the hold harmless distribution has already been documented.

Based on the above discussion, we recommend not providing non-SMSA areas with a full formula share; however, we cannot provide an objective method for determining the SMSA/non-SMSA split. Assuming for the moment that 20 percent was the initial optimal share, we do recommend, however, adjusting the share downward as new SMSA's are created. According to Table 9.6 the increase in the number of SMSA's from 243 in 1970 to 266 in 1976 has reduced the non-SMSA share of population by 3.9 percentage points, of poor persons by 2.5 percentage points, and of overcrowded housing by 3.4 percentage points. Formula weights would be used to adjust the 20 percent share downward as new SMSA's are created.<u>11</u>/ For example, assuming for the moment that 20 percent was the optimal share in 1970 and using the 1976 non-SMSA shares in column (2) of Table 9.6, we derived

11/ The downward adjustment would have to be from a starting date of January, 1975, instead of from 1970.

	(1) 1970 Non-SMSA % Share	(2) 1976 Non-SMSA % Share	(3) % Change (2 - 1)
POP	31.4%	27.5%	-3,9%
POORPER	43.8	41.3	-2.5
OCRWD	35.2	31.8	-3.4
AGE1939	36.7	32.6	-4.1
WOPLUMB	63.6	58.9	-4.7
	·		

Table 9.6: Non-SMSA Share of Selected Variables, 1970 and 1976^a

a. This table does not incorporate 1973 population estimates; decreases in the non-SMSA shares are due to an increase in the number of SMSA'S from 243 in 1970 to 266 in 1976.

159

a 1976 non-SMSA share of 18.4 percent.12/

Summary and Conclusion

Concern has been expressed about the decrease in the share going to large cities under the present formula relative to the categorical distribution and the related increase in the share going to small communities. In this chapter we have presented information and analysis related to the distribution of CD funds among types of recipients. It is not clear what the appropriate distribution of funds among entitlement cities, urban counties, SMSA balances, and non-SMSA areas should be. We have shown that community development need on a per capita basis increases with city size but at a moderate rate. We have also shown the small cities (less than 50,000) which are central cities have more need than the average small city.

In the third section we examined in some detail a dual formula approach that is designed to increase the share of entitlement cities at the expense of SMSA balances. The dual formula system would allow each entitlement city to receive the maximum of its present formula amount or an amount computed by an alternative formula. The share of the SMSA balances is computed as a residual by subtracting that amount going to entitlement recipients from the total SMSA appropriation. Although it is hard to prove that small cities in SMSA balances should receive less than their formula share, we did show that, on a per capita basis, cities below 50,000 are less needy than cities above 50,000.

In the fourth section, we examined a second formula which was designed to direct funds to cities with special problems. For the reasons discussed in previous chapters, age of housing stock was included to respond to the non-poverty dimensions of need. Decline in population was included to respond to fiscal problems and the problems of long-run economic decline. As in all the dual formula approaches, entitlement cities gain at the expense of the SMSA balances.

In dual formula systems, a question arises concerning whether or not urban counties and non-SMSA areas should share along with SMSA balances the costs of redirecting funds to our larger cities. To continue to allocate to urban counties their present formula share of 12.8 percent may cause some inequity between urban counties and SMSA balances. An

12/ To calculate the 1970 non-SMSA formula share, use the percentages in column (1) of Table 9.6 as follows: .25 (31.4) + .50 (43.8) + .25 (35.2) = 38.55. Using the percentages in column (2) we derive a 1976 non-SMSA share of 35.47 percent. Therefore, if 20 percent was optimal in 1970 when the non-SMSA formula share was actually 38.55 percent, then 18.4 percent is optimal in 1976, since formula share is now only 35.47 percent (35.47/38.55 = 18.4 / 20). Of course, instead of using a 1970 starting date, we would have to use January, 1975, the starting date of the CDBG program. alternative procedure would be to divide the 28.2 percent between urban counties and SMSA balances on the basis of a needs formula.

In a final section, we outlined some of the arguments for changing the allocation between urban and rural areas. We outlined one method that proportionately reduces the non-SMSA share as new SMSA's are created.

BIBLIOGRAPHY

- 1. Abourezk, James. Statement in Congressional Record-Senate July 25, 1975, pp. 13679-13681.
- 2. Advisory Commission on Intergovernmental Relations. <u>Measuring the Fiscal Capacity and Effort of State</u> <u>and Local Areas</u>. Washington: U.S. Government Printing <u>Office</u>, 1971.
- 3. Advisory Commission on Intergovernmental Relations. <u>The Role of Equalization in Federal Grants</u>. Washington: U. S. Government Printing Office, 1964
- Albuquerque Urban Observation. Social Reporting for Albuquerque: Development of a Social Index System, 1971
- 5. Arthur D. Little, Inc. A Study of Property Taxes and Urban Blight: Part 1 & Part 2. Report in HUD under contract H-1299, January, 1973
- 6. Auten, Gerald A. "The Distribution of Revenue-Sharing Funds and Local Public Expenditure Needs," <u>Public Finance</u> Quarterly, July, 1974
- 7. Barro, Stephen M. Equalization and Equity in General Revenue Sharing: An Analysis of Alternative Distribution Formulas: Part I: Alternative Interstate Distribution Formulas. Rand (June, 1975).
- 8. Blalock, Jr. Hubert M. <u>Social Statistics</u>, McGraw-Hill, New York, 1972
- 9. Bryce, Herrington J. Identifying Socio-Economic Differences Between High and Low Income Metropolitan Areas. The Urban Institute, May 1973.
- 10. DeLeon, R. and LeGates, R. Redistribution Effects of Special Revenue Sharing for Community Development, April, 1976
- 11. Flax, Michael J. and Jones, Martin V. <u>The Quality of</u> Life in Metropolitan Washington (D.C.): <u>Some Statistical</u> Benchmarks. The Urban Institute, 1970.

- 12. Friedly, Philip H. "Experimental Approaches to the Amelioration of Housing Abandonment and Neighborhood Decline," paper prepared for 1971 annual meeting of the American Real Estate and Urban Economics Association.
- 13. Garn, Harvey A. and Flax, Michael J. Urban Institute Indicator Program. The Urban Institute, 1971.
- 14. Hadden, J. and Borgatta, E., American Cities: <u>Their</u> <u>Social Characteristics</u>. Chicago: Rand McNally, 1965
- Hughes, James W. Urban Indicators, Metropolitan Evolution, and Public Policy. Rugers University, 1973.
- 16. Keeler, E. and Rogers, W. A Classification of Large American Urban Areas. National Science Foundation, May, 1973
- 17. Linton, Mields, and Coston, Inc. A Study of the Problems of Abandoned Housing. Report submitted to HUD, February 1971.
- Liu, Ben-Chieh. "Quality of Life: Concept, Measure and Results," <u>The American Journal of Economics and</u> Sociology, January, 1975.
- 19. Liu, Ben-Chieh. <u>Quality of Life Indicators in United</u> States Metropolitan Areas, 1970 Midwest Research Institute, 1975.
- Liu, Ben-Chieh. The Quality of Life in The United States, 1970. Midwest Research Institute, May 1973
- 21. Lyndon B. Johnson School of Public Affairs. <u>Report</u> of the Community Analysis Research Project. University of Texas at Austin, 1973
- 22. Marcuse, Peter. "Social Indicators and Housing Policy," Urban Affairs Quarterly, December, 1971.
- 23. Meeker, David O. reply to James Abourezk in Congressional Record-Senate, July 25, 1975, p. 1381.
- 24. Mid-American Observatory. A Social Report for Central Portions of the Kansas City area: Testing and Reporting of Governmental Indices, May, 1973
- 25. Milwaukee Urban Observatory. <u>A Social Report for</u> Milwaukee: Trends and Indicators, 1973-4.

- 26. Muller, Thomas. Growing and Declining Urban Areas: <u>A Fiscal</u> Comparison. Urban Institute, November, 1975.
- 27. Mushkin, Selma J. and Cotton, John F. <u>Sharing Federal</u> <u>Funds for State and Local Needs; Grants-in-aid</u> and PFB Systems. Praeger, New York, 1969
- 28. Musgrave, Richard A. and A. Mitchell Polinsky. "Revenue Sharing: A Critical View," in Federal Reserve Board of Boston <u>Financing State and Local Governments</u>. Boston, 1970, pp. 17-45.
- 29. Nathan, Richard. "The Record of the New Federalism: What it Means for the Nation's Cities," report submitted to PD&R, Dept. of HUD, September 30, 1974
- 30. National Urban League and Center for Community Change. The National Survey of Housing Abandonment. April, 1971.
- 31. Office of Management and Budget. Social Indicators, 1973
- Roscoe, John T. Fundamental Research Statistics. Holt, Rinehart and Winston, Inc., New York, 1969.
- 33. Ross, John P. Alternative Formulae for General Revenue Sharing: Population Based Measures of Need. The Center for Urban and Regional Studies, VPI, Blacksburg, Va. (June 15, 1975).
- 34. Rothenberg, Jerome. Economic Evaluation of Urban Renewal. The Brookings Institution, Washington, D. C. 1967
- 35. Schmid. G., Lipinski, H., and Palmer, M. <u>An Alternative</u> Approach to General Revenue Sharing: <u>A Needs-Based</u> <u>Allocation Formula</u>. Institute for the Future (June, <u>1975</u>).
- 36. Smith, David M. <u>The Geography of Social Well-Being in</u> the United States: An Introduction to Territorial Social Indicators. New York: McGraw-Hill, 1973
- 37. Sternlieb, G. and Burchell, R. W. "Neighborhood Change and Housing Abandonment" in <u>Suburbanization Dynamics</u> and the Future of the City by J. W. Hughes, 1973, pp. 89-124.

- United Nations. <u>Social Indicators for Housing and</u> Urban Development, 1973.
- 39. Urban Observatory of San Diego. <u>Toward a Social Report</u> for the City of San Diego, 1972.
- 40. U. S. Environmental Protection Agency. Studies in Environment-Vol II-Qualify of Life, February, 1974.
- 41. U. S. Bureau of Labor Statistics. <u>Autumn 1973 Urban</u> Family Budgets and Comparative Indexes for Selected Urban Areas. Washington, D. C., 1974.
- 42. U. S. Bureau of Labor Statistics, Handbook of Labor Statistics 1974, Bulletin 1825, tables 138-140, pp. 346-348.
- 43. U. S. Department of Housing and Urban Development. <u>Abandoned Housing Research: A Compendium</u>. Washington, D. C., 1973.
- 44. U. S. Department of Housing and Urban Development, Summary of the Housing and Community Development Act of 1974, August 22, 1974
- 45. U. S. Department of Housing and Urban Development. Annual Housing Survey: 1973, Part A: General Housing Characteristics. July, 1975.
- 46. U. S. Department of Housing and Urban Development Annual Housing Survey: 1973, Part B: Indicators of Housing and Neighborhood Quality. August, 1975
- 47. U. S. Department of Housing and Urban Development. Community Development Block Grants, Federal Register, Part V, Vol. 40, Number III, June 9, 1975
- 48. U. S. House of Representatives, Subcommittee on Housing. Housing and Urban Development Leigslation-1971, Parts 1-3. 92nd Congress, First Session, 1971

- 49. U. S. House of Representatives, Subcommittee on Housing. Housing and Community Development Leigslation-1973, Parts 1-3. 93rd Congress, First Session, 1973.
- 50. U. S. Senate, Subcommittee on Housing and Urban Affairs. <u>1971 Housing and Urban Development Leigslation, Parts</u> <u>1-2.</u> 93rd Congress, First Session, 1971
- 51. U. S. Senate, Subcommittee on Housing and Urban Affairs. 1973 Housing and Urban Development Leigslation, Parts 1-2. 93rd Congress, First Session, 1973.
- 52. Wilson, John O. Quality of Life in the United States-An Excursion into the New Frontier of Socio-Economic Indicators. Midwest Research Institute, 1970.
- 53. York County Planning Commission. An Analysis of Socio Economic Factors and Housing Conditions, June, 1973.
Appendix A

VARIABLE DEFINITIONS AND DATA SOURCES

Variable Definitions	
AGE1939	number of housing units built be- fore 1939
CD	community development
CDBG	community development block grant
DENSITY	population per square mile
НН	hold harmless
MEDINC	median income, 1970
MEDRENT	median gross rent, renter-occupied property
MEDVALUE	median value, owner-occupied, single family house
PCTXBASE	per capita market value of the property tax base (1972)
PRESENT	present CDBG formula
POORPER	persons with incomes below the poverty level
P65AGED	percent of population over 65
PCRIME	crimes per capita
PNW	percent of population nonwhite (Spanish and Negro)
PFEMALHP	percent of families with a poor, female head
ΡΥυτηρον	percent of population poor and under 18
PPOORPER	percent of population with incomes below the poverty level
PWOPLUMB	percent of occupied houses without plumbing

PUNEMP75

POCRWD

PAGE1939

PNEGRO

POWNOCCH

DENSITY

POP

PCINC72

MEDINC

PPOORFAM

POVAGE65

POLDSTR(PAGE1949)

PNEWSTR(PAFTER60)

PNEW

PMULTI

PMFG

PWOHSED

OCRWD

percent of occupied houses with 1.01 or more persons per room

percent of housing units built before 1939

percent Negro

percent of houses occupied by owners

population per square mile

population

per capita income, 1972

median family income, 1970

percent of families with incomes below the poverty level

percent of population over 65 and poor

percent of housing units built before 1949

percent of housing units built after 1960

annual average, 1965-1970, of new private housing units authorized by building permits as a percentage of occupied housing

percent of occupied housing units in multi-unit structures

percent of workers employed by manufacturing industry

percent of population over 25 with less than a high school education

number of occupied houses with 1.01 or more persons per room

TAX1INC

TXEFFORT

WOPLUMB

non-education taxes (1972) as a percentage of personal income (1972)

non-education taxes (1972) as a percentage of the market value of the property tax base (1972)

number of occupied houses without adequate plumbing facilities

Formula Definitions

	Population (POP)	Poverty (POORPER)	Overcrowded Housing (OCRWD)	Pre-1939 Housing (AGE1939)	Without Plumbing (WOPLUMB)
Present Formula	.25	.50	.25		
Alternative 1	.20	.40	.20	.20	
Alternative 2	.25	.50		.25	
Alternative 3		.40	.30	.30	
Alternative 4	·	.60		.40	
Alternative 5		.30	.20	.50	
Alternative 6	.20	.30		.50	
Alternative 7		.40		.60	
Alternative 8				1.00	
Alternative 9		1.00	a at the st		
Alternative 10		.30	*	.70	
Alternative 11	.15	. 30	.20	.25	.10
Alternative 12		.40	i i A	.40	.20
Alternative 13		.50		.30	.20
Alternative 14		.40	.20	.30	.10

Data Sources

Data Systems & Statistics Division, CPD, Dept of HUD. Population, poor persons, overcrowded housing, and pre-1939 housing used in formula.

U. S. Bureau of the Census, <u>Census of Housing</u>, <u>Detailed Housing</u> <u>Characteristics</u>, Washington, D.C.: U. S. Department of Commerce, 1970. AGE1939.

U. S. Bureau of the Census, <u>City and County Data Book, 1972</u>, Washington, D.C.: U. S. Department of Commerce, 1973 Remainder of Variables.

U. S. Bureau of the Census, <u>1972 Census of Governments</u>, Washington, D.C.: U. S. Department of Commerce, 1974. Total Assessed Valuation of locally assessed real property subject to tax; ratio of assessed valuation to actual market sales price.

U. S. Bureau of Labor Statistics, <u>Handbook of Labor Statistics</u> <u>1974</u>, Bulletin 1825, 1975, Tables <u>138-140</u>, pp. 346-348. Indexes of annual budgets.

U. S. Office of Revenue Sharing, <u>Initial Data Elements: Entitlement</u> <u>Period 7</u>, Washington, D.C.: U. S. Department of the Treasury, April, 1976. Non-education taxes, per capita income, population (1973).

Appendix B

REVIEW OF CONGRESSIONAL CONSIDERATION ON CDBGs

Serious consideration of CDBGs began in 1971 with the Nixon Administration's proposal for special revenue sharing for community development. In the "Community Development Act of 1971" (S. 1618 and H.R. 8853), the Nixon Administration proposed a special revenue sharing grant for community development based on a fixed formula. Eighty percent of the alloted funds was to be divided among the SMSA's for distribution to local general purpose governments within those areas. Each SMSA's share was to be based on a needs formula comprised of four equally weighted factors -- population, poverty, amount of overcrowded housing, and extent of housing deficiencies. Within SMSA's, central cities and cities of over 50,000 were to receive an automatic grant on the basis of the same four-The balance of each SMSA's allocation was to factor formula. be used for "holding harmless" metropolitan cities and for distribution to counties and smaller cities within the SMSA.

The remaining twenty percent was to be distributed by HUD to units of general local governments and states (both within and outside SMSA's) on a discretionary basis. These funds were to be used to provide "hold harmless" funds and to assist localities with special needs. S.1618 and H.R. 8853 also contained the following features: (1) eligible activities included all those activities that were eligible under the displaced categorical programs; and (2) the only precondition was to be an annual statement of the recipient's objectives and projected use of funds. Not included in these bills were (1) a local matching requirement; (2) an automatic formula allocation to qualified urban counties; and (3) a fixed percentage allocation to non-SMSA (rural) areas. Small cities outside of SMSA areas were included in the administration's Rural Community Redevelopment proposal (S.1612) in which the Department of Agriculture would distribute funds to state governments for distribution to small rural cities.

The Community Development Block Grant proposal (Title VI of H.R. 9688), prepared by the House Committee on Banking and Currency in 1971, was similar to that of the Administration in that both called for an automatic distribution to large cities on the basis of an objective needs formula. Funds were to be allocated on the basis of community need (population, overcrowded housing, and poverty, counted twice) both among and within SMSA's to central cities and cities of over 50,000.

An incentive for regional planning was incorporated into the House proposal by allowing the smaller general local governments within SMSA's to combine their CD efforts in order to be eligible for an automatic grant. The House proposal also set aside a fixed amount to be distributed to rural cities, primarily to be used to finance water and sewer projects. In the Senate, the Sparkman Bill (S.2333) would have distributed 75% of the funds to those communities that were conducting on-going community development programs with 25% going to the remaining localities. For communities conducting on-going programs, an initial grant entitlement was computed based on the average assistance received under the categorical programs. The bill allowed for maximum annual increments of fifteen percent.

This formula took no account of objective need factors and would have tended to perpetuate the grant distribution that existed under the categorical programs. The bill also contained a local matching requirement (10%) and required that the entitlement communities submit with their applications detailed development and housing plans.

In 1973, hearings were again held on community development legislation. The Administration's "Better Communities Act of 1973" (S. 1743 and H.R. 7277) called for 65% of the funds to be issued to metropolitan cities (central cities and cities of over 50,000) and urban counties on the basis of an objective needs formula (population, overcrowding, and poverty, counted twice). The bill proposed that the states be given the responsibility of making funding decisions for 90% of the remaining funds, on the condition that each state's share be divided equally between SMSA and non-SMSA areas. As before, the Administration's bills required neither local matching funds nor the detailed application procedures that attempted to link local activity to national community development and housing goals.

The Barrett and Ashley Bill in the House (H.R. 10036) would have distributed 80% of the funds to SMSA areas with the remaining 20% going on a discretionary basis to non-SMSA communities and state governments. Within SMSA areas, only metropolitan cities would have been eligible for formula entitlements; in addition to the usual objective need factors, a fourth factor, "past program experience," was included in the formula for distribution between and within SMSA areas. The formula in the Sparkman bill in the Senate (S. 1744) was similar except that SMSA areas received only 75% of the funds. In the Sparkman Bill, the term "extent of program experience" was computed by summing the average, during the five fiscal years preceding the date of enactment, of each of the displaced categorical grants received by the community.

Appendix C

FORMULA MATHEMATICS

I. One-step procedure.

Under this method, the allocation to each recipient unit or area would be determined as follows:

(1) $G_j = \left(\frac{1}{4} \frac{POP_j}{POP_m} + \frac{1}{2} \frac{POV_j}{POV_m} + \frac{1}{2} \frac{OC_j}{OC_m} \right) \times G_m$

where G_m = total amount going to all metropolitan (SMSA) areas.

G_i = total amount going to jth city

"m" = refers to total metropolitan (SMSA) quantities

"j" = refers to quantities of either the jth city, jth urban county, or remainder of jth SMSA area

POP = population

POV = persons in poverty

OC = overcrowded housing

II. Two-step procedure (using the jth city as an example).

In the first step, the allocation to <u>all</u> cities $(G_{\hat{C}})$ is determined as follows:

(2)
$$G_{c} = \left(\frac{1}{4} \frac{POP_{c}}{POP_{m}} + \frac{1}{2} \frac{POV_{c}}{POV_{m}} + \frac{1}{4} \frac{OC_{c}}{OC_{m}} \right) \times G$$

where "c" refers to total city quantities and G equals total authorization.

The second step computes the allocation to each individual city (e.g., jth city) as follows:

(3) $G_j = \begin{pmatrix} \frac{1}{4} & \frac{POP_j}{POP_c} + \frac{1}{2} & \frac{POV_j}{POV_c} + \frac{1}{4} & \frac{OC_j}{OC_c} \end{pmatrix} \times G_c$

Using the definition of G_c from equation (2) above, we get (4) $G_j = \begin{pmatrix} \frac{1}{4} & \frac{POP_j}{POP_c} + \frac{1}{2} & \frac{POV_j}{POV_c} + \frac{1}{4} & \frac{OC_j}{OC_c} \end{pmatrix} \times \begin{pmatrix} \frac{1}{4} & \frac{POP_c}{POP_m} + \frac{1}{2} & \frac{POV_c}{POV_m} + \frac{1}{4} & \frac{OC_c}{OC_m} \end{pmatrix} \times G$

Expanding (4), we obtain

(5)
$$G_{j} = 1/16 \left(\frac{POP_{j}}{POP_{c}} \right) \left(\frac{POP_{c}}{POP_{m}} \right) \times G + 1/8 \left(\frac{POV_{j}}{POV_{c}} \right) \frac{POP_{c}}{POP_{m}} \times G + 1/16 \left(\frac{OC_{j}}{OC_{c}} \right) \frac{POP_{c}}{POP_{m}} \times G + 1/8 \left(\frac{POP_{j}}{POP_{c}} \right) \frac{POV_{c}}{POV_{m}} \cdot G + \frac{1}{4} \left(\frac{POV_{j}}{POV_{c}} \right) \frac{POV_{c}}{POV_{c}} \cdot G + 1/16 \left(\frac{POP_{j}}{POP_{c}} \right) \frac{OC_{c}}{OC_{m}} \cdot G + 1/18 \left(\frac{OC_{j}}{OC_{c}} \right) \frac{POV_{c}}{POV_{m}} \cdot G + 1/16 \left(\frac{POP_{j}}{POP_{c}} \right) \frac{OC_{c}}{OC_{m}} \cdot G + 1/16 \left(\frac{OC_{j}}{OC_{c}} \right) \frac{POV_{c}}{POV_{m}} \cdot G$$

The allocation to the jth unit (G_j) calculated by equation (5) (two-step process) will equal that calculated by equation (1) (one-step process) only if

(6) $\frac{POP_j}{POP_c} = \frac{POV_j}{POV_c} = \frac{OC_j}{OC_c}$

Substitution of condition (6) into equation (5) will reduce (5) to equation (1). This difference between the two procedures can also be seen by considering the effect on the allocation to the jth unit of a change in one of the formula factors (e.g., POV_j); ignoring the second-order effects, from equation (1), we obtain

(7) $\Delta G_{j} = \frac{1}{2} \left(\frac{1}{POV_{m}} \right)$

From equation (5), we obtain

(8)
$$\frac{\Delta G_{j}}{\Delta POV_{j}} = 1/8 \left(\frac{1}{POV_{C}}\right) \frac{POP_{C}}{POP_{m}} + \frac{1}{4} \left(\frac{1}{POV_{C}}\right) + 1/8 \left(\frac{1}{POV_{C}}\right) \frac{OC_{C}}{OC_{m}}$$

If condition (6) holds, equation (8) reduces to equation (7).

Appendix D

ABANDONMENT STUDIES

- I. The National Survey of Housing Abandonment:
 - A. National Urban League and the Center for Community Change
 - B. Seven Cities
 - C. Characteristics of a "crisis ghetto":

decreasing median family income female headed families declining total population public welfare dependency increasing rates of crime and vandalism primarily black neighborhoods increasing unemployment

D. Barriers to the formation of "crisis ghettos":

single family homeownership black middle class continued investment in home mortgages

II. The Urban Housing Dilemma

- A. George Sternlieb
- B. New York City
- C. Characteristics of poorly maintained areas:

high turnover nonwhite tenancy welfare tenancy large families low incomes older buildings vandalism multi-unit structures

III. A Study of the Problems of Abandoned Housing

- A. Linton, Mields, and Caston, Inc.
- B. Five cities
- C. Characteristics of neighborhood experiencing abandonment: low income

high percentage of young people rental properties multi-unit buildings declining rate of homeownership minimal public services high vacancy rate overcrowding within occupied units strongly anti-social tenant attitudes old housing stock substandard buildings

- IV. Housing and Poverty
 - A. William G. Grigsbly
 - B. Baltimore
 - C. Factors in neighborhood decay:

high turnover vandalism vacancy rates low income high rent-income ratio

V. A Study of Property Taxes and Urban Blight

- A. Arthur D. Little, Inc.
- B. Ten cities
- C. Characteristics of blighted and downward transitional neighborhoods

low income increased population turnover crime and vandalism nonwhite old housing stock rental units

VI. An Analysis of Socio-Economic Factors and Housing Conditions

- A. York County Planning Commission
- B. York, Pennsylvania
- C. Socio-economic indicators associated with substandard housing:

female family heads households without autos

unemployed persons persons below poverty level renter occupied units persons on public assistance single persons divorced persons widowed persons income (negative) crime high school education (negative) married persons (negative)

Appendix E

CORRELATIONS AMONG SELECTED VARIABLES BY POPULATION SIZE

The coefficients of correlation among selected variables are given for seven population groups in Tables E.1 to E.7. Within each population group, each city receives an equal weight of one. Definitions of the variables used in this appendix follow.

P65AGED	percent of population over 65
PCRIME	crimes per capita
PNW	percent of population nonwhite (Spanish & Negro)
PFEMALHP	percent of families with a poor, female head
ΡΥυτηρον	percent of population poor and under 18
PPOORPER	percent of population with incomes below the poverty level
PWOPLUMB	percent of occupied houses without plumbing
PUNEMP75	unemployment rate, 1975
POCRWD	percent of occupied houses with 1.01 or more persons per room
PAGE1939	percent of housing units built before 1939
POWNOCCH	percent of houses occupied by owner
DENSITY	population per square mile
РОР	population
PCINC72	per capita income, 1972
MEDINC	median family income, 1970
PPOORFAM	percent of families with incomes below the poverty level

POVAGE65 percent of population over 65 and poor

PAGE1949 percent of housing units built before 1949

PNEWSTR percent of housing units built after 1960

PNEW

PMULTI

PMFG

PWOHSED

annual average, 1965-1970, a new private housing units authorized by building permits as a percentage of occupied housing

percent of occupied housing units in multi-unit structures

percent of workers employed by manufacturing industry

percent of population over 25 with less than a high school education

	P65AGED	PCRIME	PNW	PWOHSED	PFEMALHP	PYUTHPOV	PPOORPE	POCRWD	PWOPLUMB	PUNEMP75
P65AGFD	1.0000	.4362	.0310	.3717	.2092	.0134	.1950	3458	.1904	.1983
PCRIMF	.4362	1.0000	.3753	.2524	.4080	.1604	.2229	0268	.0245	.2841
PNW	.0310	.3753	1.0000	.3824	.7785	.8432	.7771	.7547	.6143	.0403
PWOHSED	.3717	.2524	.3824	1.0000	.4688	.3676	.3515	.2333	.4949	.1475
PFEMALHP	.2092	.4080	.7785	.4688	1.0000	.8515	.8476	.4850	.5692	.0851
PYUTHPOV	.0134	.1604	.8432	.3676	.8515	1.0000	.9446	.7679	.6649	.0733
PPOORPER	.1950	.2229	.7771	.3515	.8476	.9446	1.0000	.6301	.6874	.0687
POCRWD	3458	0268	.7547	.2333	.4450	.7679	.6301	1.0000	.5195	0194
PWOPL UMB	.1904	.0245	.6143	.4949	.5692	.6649	.6874	.5195	1.0000	.0149
PUNEMP75	.1983	.2841	.0403	.1475	.0851	.0733	.0687	0194	.0149	1.0000
PAGE1939	.5444	.1594	-,1955	•5390	.0729	1653	0401	3420	.2335	.0287
DENSITY	.1516	.0856	0169	.0903	.0896	0807	.0001	1549	.1482	1651
POWNOCCH	0516	3926	2340	0716	2600	1037	1790	0134	0895	.0493
PCINC7	.2326	.0117	3338	2622	4503	5064	5201	4675	2606	0143
MEDINC	2197	2323	5744	4270	7416	7533	8238	4486	4710	0521
PAGE 1949	.5214	.1617	0983	.5913	.1851	0379	.0831	2765	.3132	0108
PNEWSTR	3969	1202	0029	6226	2551	0840	1871	.1286	3465	.0459
PNEW	0127	1206	1095	4311	2856	-,1734	2083	0345	1312	.0804
PHULTI	.2854	.2603	1557	.0855	1011	2742	1913	2859	0571	0342
PMFG	.0645	1192	2591	.5489	2744	3020	3595	1683	.0276	.1541

Table E.1Correlations Among Selected Variables for 72 Entitlement Cities,
Population less than 50,000

×

, ,

L

Ŧ

2

\$

Table E.1	Correlations Among Selected Variables for 72 Entitleme	nt Cities.
	Population less than 50,000	

. .

	PAGE1939	DENSITY	POWNOCCH	PCINC73	MEDINC	PAGE1949	PNEWSTH	PNFW	PMULTT	PMFG	•
P65AGFD	.5444	.1516	0516	.2326	2197	.5214	3964	0127	.2854	.0645	
PCRIME	.1594	.0456	3926	••117.	2323	.1417	1202	1204	.2603	1192	
PNW	1955	0169	2340	3338	5744	0983	0024	1095	1557	2591	
PWOHSFN	.5390	.0903	0716	2022	4270	.5913	6226	4311	.0855	.5449	
PFEMALHP	.0729	.0896	2400	4503	7416	.1851	2551	2856	1011	2244	•
PYUTHPOV	1653	0807	1037	5064	7533	0379	0840	1734.	2742	3020	
PPOORPER	0401	.0001	1790	5201	8238	.0A31	1871	20A3	1913	3595	
PACAND	3420	1549	0134	4075	4486	2765	.1246	0345	2859	1683	•
PWOPI UMR	.2335	.1482	0A95.	7006	4710	.3132	3465	1312	0571	.0276	
PUNEMP75	.0287	1651	,0493	0143	0521	0108	.0459	.0804	0342	.1541	
PAGE1939	1.0000	.4815	2239	1108	0426	.9344	8283	-,5115	.5448	.4935	
NENSITY	.4A15	1.0000	4801	0391	0259	.4237	-,3540	,2661	.4753	.0440	•
POWNOCCH	-,2239	4801	1.0000	.1699	.3663	1760	.1324	.2650	6901	.2137	•
PCINC7A	1108	0391	.1699	1.0000	.6436	1524	.283A	.5598	.0685	.1390	•
MEDINC	0826	0259	.3663	.6436	1.0000	1623	.2458	. 3215	.0405	.3196	X
PAGE1949	.9344	.4237	1760	1524	1623.	1.0000	4411	5902	.4740	.4948	
PNEWSTR .	4243	3540	.1329	.2434	.2458	9411	1.0000	.7173	2710	4687	
PHEW	5115	2661	.2650	• •5598	. 3215	5902	. 7173	1.0000	1645	2234	•
PMULTI	.5448	.4753		.0685	.0405	.4740	2710	1645	1.0000	.1317	
PMFG	.4935	.0440	.2137	.1390	.3196	.4948	4687:	2234	.1317	1.0000	

		P65AGED	PCRIME	PNW	PWOHSED	PFEMALHP	PYUTHPOV	PPOORPER	POCRWD	PWOPLUMB	PUNEMP75
P	65AGFD	1.0000	0603	0360	.3411	.1083	.0140	.1334	2787	.1565	.1248
P	CRIMF	0603	1.0000	.4165	.0229	.3615	.2650	.2567	.1285	.0338	.1347
Р	NW	0360	.4165	1.0000	•4100	.8029	.8725	.8098	.7043	.6082	.2197
Р	WOHSFD	.3411	.0229	.4100	1.0000	.5114	.5084	•4669	.4631	.4516	.5502
Ρ	FEMALHP	.1083	.3615	.8029	•5114	1.0000	.9176	.9096	.5569	.6898	.2621
Ρ	YUTHPOV	.0140	.2650	.8725	.5084	.9176	1.0000	.9587	.7694	.7897	.2958
+ Р	POORPER	.1334	.2567	.8098	.4669	.9096	.9587	1.0000	.6652	.8046	.2312
Р Р	OCRWD	2787	.1285	.7043	.4631	.5569	•7694	.6652	1.0000	.6294	.3516
Ρ	WOPLUMB	.1565	.0338	.6082	.4516	.6898	.7897	.8046	.6294	1.0000	.2043
P	UNEMP75	.1248	.1347	.2197	.5502	.2621	.2958	.2312	.3516	.2043	1.0000
P	AGE1939	.6767	2403	1346	.5019	.1197	.0120	.1078	1869	.2514	.2619
D	ENSITY	.2284	0191	0573	.2761	0955	1164	1038	0581	0206	.1663
P	OWNOCCH	3273	2068	2114	1823	2804	1629	2538	.0238	2110	0669
₽	CINC72	0104	0001	4230	5941	6414	6734	7030	5879	5884	3503
м	FDINC	2996	1005	5655	5951	7839	7778	8562	5114	6583	2464
P	AGE1949	.6878	1722	.0047	.5820	.2409	.1408	.2369	0980	.3296	.2792
P	NEWSTR	6107	.1238	0612	5911	2400	1626	2214	.0279	3045	2721
₽	NEW	4903	.0910	1395	4398	2406	1853	2136	0018	2361	1313
Ρ	MULTI	.3926	1096	2115	.1131	1246	2255	1592	2473	0156	.0890
P	MFG	.0290	2148	2794	.4145	2914	3055	3910	1087	2130	.3655

Table E.2	Correlation Among Selected Variables for 140 Entitlement Cities,
	Population Between 50,000 and 75,000

,

у. Э

T	ь 1	•	C	2
۱a	וט	e	۲.	2

٠

.

L

÷ ,

.

٠

.2 Correlation Among Selected Variables for 140 Entitlement Cities, Population Between 50,000 and 75,000

	PAGE 1939	DENSITY	POWNOCCH	PCINC73	MEDINC	PAGE1949	PNEWSTR	PNEW	PMULTI	PMFG	
P65AGED	.6767	.2284	3273	0104	2996	.6878	6107	4903	.3926	.0290	
PCRIMF	2403	0191	2068	0001	1005	1722	.1238	.0910	1096	2148	
PNW	1346	0573	2114	4230	5655	.0047	0612	1395	2115	2794	
PWOHSED	.5019	.2761	1823	5941	5951	.5820	5911	4398	.1131	.4145	
PFEMALHP	.1197	0955	2804	6414	7839	.2409	2400	2406	1246	2914	
PYUTHPOV	.0120	1164	1629	6734	7778	.1408	1626	1853	2255	3055	
PPOORPER	.1078	1038	2538	7030	8562	.2369	2214	2136	1592	3910	
POCRWD	1869	0581	.0238	5879	5114	0980	.0279	0018	2473	1087	
PWOPI UMB	.2514	0206	2110	5884	6583	.3296	3045	2361	0156	2130	
PUNEMP75	.2619	.1663	0669	3503	2464	.2792	2721	1313	.0890	.3655	
PAGE1939	1.0000	.3730	3979	2245	2827	.9628	8221	6200	.5642	.2590	
DENSITY	.3730	1.0000	4732	.1170	.0612	.3311	2987	2966	.5607	.2513	
POWNOCCH	3979	4732	1.0000	.0041	.2569	4133	.2968	.2746	7874	.1084	
PCINC7A	2245	.1170	.0041	1.0000	.8433	2811	.2250	.1607	.1902	.0652	
MEDINC	2827	.0612	.2569	.8433	1.0000	3946	.3493	.2910	.0761	.2626	
PAGE1949	.9628	.3311	4133	2811	3946	1.0000	9022	6913	•4832	.2288	
PNEWSTR	8221	2987	.2968	.2250	.3493	9022	1.0000	.8451	3186	2284	
PNEW	0500	2966	.2746	.1007	.2910	6913	.8451	1.0000	2098	1130	
PMULTT	.5642	.5607	7874	.1902	.0761	.4832	3186	2098	1.0000	.1386	
PMFG	.2590	.2513	.1084	.0652	.2626	.2288	2284	1130	.1386	1.0000	

٠.

1

1

1

۲

			1							
	P65AGED	PCRIME	PNW 4	PWOHSED	PFEMALHP	PYUTHPOV	PPOORPER	POCRWD	PWOPLUMB	PUNEMP75
P65AGFD	1.0000	0050	0710	.3763	.2810	.1218	.3806	3617	.4877	.2471
PCRIME	0050	1.0000	.7020	.1118	•5267	.4708	.3869	.4533	1356	.4757
PNW	0710	.7020	1.0000	.2364	.7256	.7401	.6034	.5979	0577	.1695
PWOHSED	.3763	.1118	.2364	1.0000	.5824	.5690	.5823	.3667	.5902	.3716
PFEMALHP	.2810	.5267	.7256	.5824	1.0000	.9504	.9276	.4687	.3737	.3231
PYUTHPOV	.1218	.4708	.7401	.5690	.9504	1.0000	.9259	.6053	.3010	.2054
PPOORPER	.3806	.3869	.6034	.5823	.9276	.9259	1.0000	.3814	.4113	.2081
POCRWD	3617	.4533	.5979	.3667	.4687	.6053	.3814	1.0000	.0859	.1513
PWOPLUMB	.4877	1356	0577	.5902	.3737	.3010	.4113	.0859	1.0000	.1296
PUNEMP75	.2471	.4757	.1695	.3716	.3231	.2054	.2081	.1513	.1296	1.0000
PAGE1939	.8340	0774	1370	•5413	.2932	.1298	.3062	2055	.6516	.3698
DENSITY	.3763	.1786	.1374	.0998	.0531	1003	0554	1084	0901	.2554
POWNOCCH	5368	- 2884	- 1911	- 1863	- 2614	1037	2680	.2436	- 1143	- 1823
PCINC7A	- 0484	1374	- 2680	- 6985	- 6225	- 6821	6514	- 5588	- 4591	- 1567
HEDING							- • • • • • • • • • • • • • • • • • • •	5500		1307
MEDINC	3951	10/3	-,3417	/123	(224	/040	8591	3322	2124	0970
PAGE1949	.8555	.0366	0093	•5691	.3930	.2291	.4015	1188	.6353	.4109
PNEWSTR	7303	1060	1101	5845	4290	3270	4533	1013	5009	4144
PNEW	6292	1021	1688	3728	3277	2403	3443	0689	2751	2908
PMULTI	•5953	.0635	1073	.2462	.0431	1341	.0180	3258	.2191	.2917
PMFG	0200	.0357	-,1182	.4384	1102	1728	2366	.1375	.1511	.3519

Table E.3Correlations Among Selected Variables for 72 Entitlement Cities,
Population Between 75,000 and 100,000

...

,

T

. •

1

.

.

١

۰ ،

1

.

.

	PAGE 1939	DENSITY	POWNOCCH	PCINC73	MEDINC	PAGE1949	PNEWSTR	PNEW	PMULTI	PMFG
P65AGFD	.8340	.3763	5368	0484	3951	.85 55	7303	6292	•5953	0200
PCRIME	0774	.1786	2884	1374	1673	.0366	1060	1021	.0635	.0357
PNW	1370	.1374	1911	2680	3417	0093	1101	1688	1073	1182
PWOHSED	.5413	.0998	1863	6985	7123	•5691	5845	3728	.2462	•4384
PFEMALHP	.2932	.0531	2614	6225	7559	.3930	4290	3277	.0431	1102
PYUTHPOV	.1298	1003	1037	6821	7646	.2291	3270	2403	1341	1728
PPOORPER	.3062	0554	2680	6514	8597	.4015	4533	3443	.0180	2366
POCRWD	2055	1084	.2436	5588	3322	1188	1013	0689	3258	.1375
PWOPLUMB	.6516	0901	1143	4591	5159	.6353	5009	2751	.2191	. 1511
PUNEMP75	.3698	.2554	1823	1567	0970	.4109	4144	2908	.2917	.3519
PAGE1939	1.0000	.3645	3931	2578	3940	.9646	8044	-,5822	.6159	.1987
DENSITY	.3645	1.0000	5777	.2133	.0923	•3762	3828	4129	.6474	.1562
POWNOCCH	3931	5777	1.0000	0853	.2241	4147	.2725	.2888	8483	.0021
PCINC72	2578	.2133	0853	1.0000	.8412	2689	.2972	.1347	.1122	1587
MEDINC	3940	.0923	.2241	.8412	1.0000	4523	.4402	.3029	0676	.0735
PAGE 1949	.9646	.3762	4147	2689	4523	1.0000	8538	6815	.5649	.1709
PNEWSTR	8044	3828	.2725	.2972	.4402	8538	1.0000	.7819	4261	0926
PNEW	5822	4129	.2888	.1347	.3029	6815	.7819	1.0000	2939	0793
PMULTT	.6159	.6474	8483	.1122	0676	.5649	4261	2939	1.0000	.1940
PMFG	.1987	.1562	.0021	1587	.0735	.1709	0926	0793	.1940	1.0000

Table E.3Correlations Among Selected Variables for 72 Entitlement Cities,
Population Between 75,000 and 100,000

< ° 4

187

.

			•					a		
	P65AGED	PCRIME	PNW	PWOHSED	PFEMALHP	PYUTHPOV	PPOORPER	POCRWD	PWOPLUMB	PUNEMP75
P65AGED	1.0000	.1902	1204	.3044	.0569	0099	.2021	-,3057	.2891	.2827
PCRIME	.1902	1.0000	.4242	.2118	.3234	.2562	.2879	.1690	.1213	.4141
PNW	1204	.424?	1.0000	.4389	.7623	.7924	.6982	.7239	.1635	.0880
PWOHSFD	.3044	.2118	.4389	1.0000	.5644	.5303	.4598	.3996	.4194	.3822
PFEMALHP	.0569	.3234	.7623	•5644	1.0000	.9389	.9142	.4155	.4446	.1715
PYUTHPOV	0099	.2562	.7924	.5303	.9389	1.0000	.9270	.5472	.3334	.0598
PPOORPER	.2021	.2879	.6982	.4598	.9142	.9270	1.0000	.4039	.4600	.0887
POCRWD	3057	.1690	.7239	• 3 9 9 6	.4155	.5472	.4039	1.0000	.0894	0058
PWOPLUMB	.2891	.1213	.1635	.4194	.4446	.3334	.4600	.0894	1.0000	.1272
PUNEMP75	.2827	•4141	.0880	.3822	.1715	.0598	.0887	0058	.1272	1.0000
PAGE 1939	.5178	.2163	1004	.4854	.2099	.0569	.2059	2464	.5699	.3804
DENSITY	.2280	.4208	.0581	.2906	.0529	0551	.0049	0251	.1299	•4433
POWNOCCH	2270	4300	2278	2100	3279	2125	3410	.0052	3373	1642
PCINC73	.0002	0451	4035	5874	5954	6024	5748	4092	4030	1503
MEDINC	3926	1841	5071	5682	7528	7513	8451	2783	4611	0788
PAGE1949	.5113	.2515	.0348	•5405	.3314	.1928	.3361	1511	.6207	.3391
PNEWSTR	5323	2269	1187	5590	3532	2553	3812	.0198	5826	2683
PNEW	3171	1438	0876	4121	3040	2166	2972	.0092	3896	1910
PMULTI	.3587	.3309	0765	.2424	.0439	0772	.0487	1242	.3231	.3199

-.1302

Table E.4 Correlations Among Selected Variables for 94 Entitlement Cities, Population Between 100,000 and 250,000

PMFG

.

,

-.0367

١

٢

· ·

-.1001

.

.4754

-.0347

5

. Herens

. . .

-.3081

-.1903

•

۲.

.0211

.3473

٢

.

.0994

.

				10 						
	PAGE1939	DENSITY	POWNOCCH	PCINC73	MEDINC	PAGE1949	PNEWSTR	PNEW	PMULTI	PMFG
P65AGED	.5178	.2280	2270	.0002	3926	.5113	5323	3171	.3587	0367
PCRIME	.2163	.4208	4300	0451	1841	.2515	2269	1438	.3309	0347
PNW	1004	.0581	-,2278	4035	5071	.0348	1187	0876	0765	1001
PWOHSED	.4854	.2906	2100	5874	5682	.5405	5590	4121	.2424	.4754
PFEMALHP	.2099	.0529	3279	5954	7528	.3314	3532	3040	.0439	1302
PYUTHPOV	.0569	0551	2125	6024	7513	.1928	2553	2166	0772	1903
PPOORPER	.2059	.0049	3410	5748	8451	.3361	3812	2972	.0487	3081
POCRWD	2464	0251	.0052	4092	2783	1511	.0198	.0092	1242	.0994
PWOPLUMB	.5699	.1299	3373	4030	4611	.6207	5826	3896	.3231	.0211
PUNEMP75	.3804	.4433	1642	1503	0788	.3391	2683	1910	.3199	.3473
PAGE1939	1.0000	.5049	4749	3250	3273	.9665	8383	-,6504	.5981	.3501
DENSITY	.5049	1.0000	5806	.0443	.0169	.4415	3419	3083	.6745	.3068
POWNOCCH	4749	5806	1.0000	0450	.2684	4804	.3526	.2893	-,8686	.1044
PCINC7A	3250	.0443	0450	1.0000	.7002	3578	.3872	.3261	.1117	1394
MEDINC	3273	.0169	.2684	.7002	1.0000	4215	.4662	.3119	0696	.2431
PAGE1949	.9665	•4415	4804	3578	4215	1.0000	9161	7216	.5303	.2973
PNEWSTR	8383	3419	.3526	.3872	.4662	9161	1.0000	.8172	3769	-,2599
PNEW	6504	3083	.2893	.3261	.3119	7216	.8172	1.0000	2716	2289
PMULTI	.5981	.6745	8686	.1117	0696	.5303	-,3769	2716	1.0000	.1502
PMFG	.3501	.3068	.1044	1394	.2431	.2973	2599	2289	.1502	1.0000

Table E.4Correlations Among Selected Variables for 94 Entitlement Cities,
Population Between 100,000 and 250,000

.

.

÷

.

٠

.

,

;

۰.

\$

· · ·	P65AGED	PCRIME	PNW	PWOHSED	PFEMALHP	PYUTHPOV	PPOORPER	POCRWD	PWOPLUMB	PUNEMP75
P65AGED	1.0000	.3326	2472	.1821	1434	3754	1384	2710	.2684	.1975
PCRIMF	.3326	1.0000	.4226	.2848	.5308	.3079	.3988	.2096	.2286	.4743
PNW	2472	.4226	1.0000	.4962	.6804	.8304	.8443	.8780	.3335	.4135
PWOHSED	.1821	.2848	.4962	1.0000	.6653	.5690	•5537	.4014	.4506	.5268
PFEMALHP	1434	.5308	.6804	.6653	1.0000	.8751	.8306	.4379	.1969	.4526
PYUTHPOV	3754	.3079	.8304	.5690	.8751	1.0000	.9227	.6771	.2959	.3063
PPOORPER	1384	.3988	.8443	.5537	.8306	.9227	1.0000	.6994	.3154	.2628
POCRWD	2710	.2096	.8780	.4014	.4379	.6771	.6994	1.0000	.4424	.1641
PWOPLUMB	.2684	.2286	.3335	.4506	.1969	.2959	•3154	.4424	1.0000	.2683
PUNEMP75	.1975	.4743	•4135	.5268	.4526	.3063	.2628	.1641	.2683	1.0000
PAGE1939	.6067	.2366	1841	.5595	.1599	1047	0997	2434	.4399	.4916
DENSITY	.3160	.3680	.2499	.6374	.3930	.1849	.1818	.2386	.4373	.5843
POWNOCCH	2001	4815	4669	6259	6056	4112	4294	3845	3469	5562
PCINC7A	.3170	.0357	6074	6134	5598	7224	6765	6231	4115	1744
MEDINC	.0283	2904	7100	5734	7351	8058	8960	6466	3545	1381
PAGE 1949	.6586	.3318	1505	.5914	.2487	0526	0153	2229	.3903	.4470
PNEWSTR	6630	3427	.0797	5886	3058	0440	0860	.1372	3782	3643
PNEW	6356	2376	.0469	4941	2579	0362	0302	.1266	3643	3657
PMULTI	.3132	.3450	.2703	.6650	.4502	.2305	.2172	.2141	.4369	.6406
PMFG	.2241	.0976	0914	.5144	.0479	0944	2051	1031	.1757	.3630

Table E.5 Correlations Among Selected Variables for 31 Entitlement Cities, Population Between 250,000 and 500,000

.

.

.

2

.

١

- '

						·				
	PAGE1939	DENSITY	POWNOCCH	PCINC73	MEDINC	PAGE1949	PNEWSTR	PNEW	PMULTI	PMFG
P65AGED	.6067	.3160	2001	.3170	.0283	.6586	6630	6356	.3132	.2241
PCRIMF	.2366	.3680	4815	.0357	2904	.3318	3427	2376	.3450	.0976
PNW	1841	.2499	4669	6074	7100	1505	.0797	.0469	.2703	0914
PWOHSED	.5595	.6374	6259	6134	5734	.5914	5886	4941	.6650	.5144
PFEMALHP	.1599	.3930	6056	5598	7351	.2487	3058	2579	.4502	.0479
PYUTHPOV	1047	.1849	4112	7224	8058	0526	0440	0362	.2305	0944
PPOORPER	0997	.1818	4294	6765	8960	0153	0860	0302	.2172	2051
POCRWD	2434	.2386	3845	6231	6466	2229	•1372	.1266	.2141	1031
PWOPLUMB	•4399	.4373	3469	4115	3545	.3903	3782	3643	.4369	.1757
PUNEMP75	.4916	.5843	5562	1744	1381	.4470	3643	3657	.6406	.3630
PAGE1939	1.0000	.7087	4860	0947	.0693	.9694	8440	7119	.7138	.6283
DENSITY	.7087	1.0000	8330	2417	1885	.7131	6202	5314	.9230	.4727
POWNOCCH	4860	8330	1.0000	.1996	.3624	5319	•4404	.3891	9142	2244
PCINC73	0947	2417	.1996	1.0000	.6626	0792	.1440	.0943	2166	1522
MEDINC	.0693	1885	.3624	.6626	1.0000	0353	.2246	.2178	2000	.2400
PAGE1949	.9694	.7131	5319	0792	0353	1.0000	9278	7628	.7022	.5884
PNEWSTR	8440	6205	•4404	.1440	.2246	9278	1.0000	.8635	5700	5029
PNEW	7119	5314	.3891	.0943	.2178	7628	.8635	1.0000	5331	4075
PMULTI	.7138	.4230	9142	2166	2000	.7022	5700	5331	1.0000	.4318
PMFG	.6243	.4727	2244	1522	2400	•5884	-,5029	4075	.4318	1.0000

Correlations Among Selected Variables for 31 Entitlement Cities, Population Between 250,000 and 500,000 Table E.5

٠

٠

.

* .

٠

1 5

4

.

							ar 140 - 14			
	P65AGED	PCRIME	PNW	PWOHSED	PFEMALHP	PYUTHPOV	PPOORPER	POCRWD	PWOPLUMB	PUNEMP75
P65AGED	1.0000	.5258	1931	•1171	.0967	2016	.0133	2989	.6426	.6529
PCRIMF	•5258	1.0000	.3493	•1113	.2686	.0313	.2015	0338	.1787	.1646
PNW	1931	.3493	1.0000	.5182	.6668	.7313	.6978	.7917	1828	1687
PWOHSED	.1171	.1113	.5182	1.0000	.7097	.7102	.6909	.5225	.0978	.1651
PFEMALHP	.0967	.2686	.6668	.7097	1.0000	.8543	.9031	.5922	.0458	.1499
PYUTHPOV	2016	.0313	.7313	•7102	.8543	1.0000	.9648	.8437	0193	0550
PPOORPER	.0133	.2015	.6978	.6909	.9031	.9648	1.0000	.7696	.1391	.0492
POCRWD	2989	0338	.7917	•5225	.5922	.8437	.7696	1.0000	0192	0086
PWOPLUMB	.6426	.1787	1828	.0978	.0458	0193	.1391	0192	1.0000	•4633
PUNEMP75	.6529	.1646	1687	.1651	.1499	0550	.0492	0086	.4633	1.0000
PAGE1939	.8435	.4721	.0002	.4020	.3425	0377	.1394	2170	.5166	.5408
DENSITY	.6638	.6305	.1989	•5559	.2747	0860	.0757	1138	.3944	.4507
POWNOCCH	5185	6003	3228	1321	4500	0759	2259	0554	1522	3905
PCINC72	.0737	.3496	1945	7625	5395	6659	6102	4463	1388	1524
MEDINC	0059	0997	5869	7375	8469	9222	9360	7164	2247	-,1330
PAGE1949	.8337	.5253	.1021	.4161	.4021	.0272	.2110	1481	.5092	.4975
PNEWSTR	8394	5271	1590	4662	4477	0999	2780	.0944	5064	4902
PNEW	7768	4999	2264	5179	5114	1990	3717	0246	4945	4872
PMULTI	.6568	.4778	.0740	.1776	.3404	0398	.1161	0889	.3236	.4675
PMFG	.1248	3320	3380	.3985	1241	1697	2344	2971	1453	.0711
							x	-	•	• •

Table E.6 Correlations Annung Selected Variables for 21 Entitlement Cities, Population Between 500,000 and 1,250,000 ----- -----

*

.

.

.

.

1 1

,

٠

1

Table E.6Correlations Among Selected Variables for 21 Entitlement Cities,
Population Between 500,000 and 1,250,000

. ... -

	-						and the second sec			
	PAGE1939	DENSITY	POWNOCCH	PCINC73	MEDINC	PAGE1949	PNEWSTR	PNFW	PMULTI	PMFG
P65AGED	.8435	.6638	5185	.0737	0059	.8337	8394	7768	.6568	.1248
PCRIME	.4721	.6305	6003	.3496	0997	•5253	5271	4999	.4778	3320
PNW	.0002	.1989	3228	1945	5869	.1021	1590	2264	.0740	3380
PWOHSED	.4020	.2228	1321	7625	7375	•4161	4662	5179	.1776	.3985
PFEMALHP	.3425	.2747	4500	-,5395	8469	.4021	4477	5114	.3404	1241
PYUTHPOV	0377	0860	0759	-,6659	9222	.0272	0999	1990	0398	1697
PPOORPER	.1394	.0757	2259	6102	9360	.2110	2780	3717	.1161	2344
POCRWD	2170	1138	0554	4463	7164	1481	.0944	0246	0889	2971
PWOPLUMB	.5166	.3944	1522	1388	2247	.5092	5064	4945	.3236	1453
PUNEMP75	.5408	.4507	3905	1524	1330	.4975	4902	4872	.4675	.0711
PAGE1939	1.0000	.7689	6614	1539	1395	.9887	9643	8763	.8054	.3031
DENSITY	.7889	1.0000	8227	.1677	0067	.8082	7892	-,7555	.8020	.0198
POWNOCCH	6614	8227	1.0000	2024	.0907	6925	.6532	.5742	8960	.1580
PCINC78	1539	.1677	2024	1.0000	.7532	1295	.1678	.1897	.0613	3943
MEDINC	1395	0067	.0907	•7532	1.0000	1751	.2468	.3140	0436	.1597
PAGE 1949	.9887	.8082	6925	1295	1751	1.0000	9827	9093	,7985	.2221
PNEWSTR	9643	-,7892	°6535	.1678	.2468	9827	1.0000	.9470	7524	2153
PNEW	8763	7555	.5742	.1897	.3140	9093	.9470	1.0000	6676	1751
PMULTI	.8054	.8020	8960	.0613	0436	.7985	7524	6676	1.0000	.1138
PMFG	.3031	.0198	.1580	3943	•1597	•2221	2153	1751	.1138	1.0000

	P65AGED	PCRIME	PNW	PWOHSED	PFEMALHP	PYUTHPOV	PPOORPER	POCRWD	PWOPLUMB	PUNEMP75
P65AGFD	1.0000	.4226	1637	.1748	.1062	1986	.0079	2974	.5528	.4859
PCRIMF	.4220	1.0000	.3104	.0216	.2159	.0100	.1483	.0098	.1271	.3363
PNW	1637	.3104	1.0000	•5034	.6580	.7021	.6598	.7347	1998	.0483
PWOHSED	.1748	.0216	.5034	1.0000	.6806	.6584	.6303	.4192	.0694	.2564
PFEMALHP	.1062	.2159	.6580	.6806	1.0000	.8504	.8960	.5568	.0469	.1440
PYUTHPOV	1986	.0100	.7021	.6584	.8504	1.0000	.9635	.8166	.0142	0553
PPOORPER	.0079	.1483	.6598	.6303	.8960	.9635	1.0000	.7404	.1606	0065
POCRWD	2974	.0098	.7347	•4192	.5568	.8166	•7404	1.0000	.0194	0859
PWOPL UMB	.5528	.1271	1998	.0694	.0469	.0142	.1606	.0194	1.0000	.1332
PUNEMP75	•4859	• 3363	.0483	.2564	.1440	0553	0065	0859	.1332	1.0000
PAGE 1939	.8288	.2900	.0478	• 4940	.3432	0259	.1235	2189	.4132	•4462
DENSITY	.5788	.3138	.1798	.3270	.1971	0737	.0189	0548	.1414	.3619
POWNOCCH	4432	4269	2472	0595	3325	0416	1538	1483	1089	0776
PCINC73	.0682	.3286	1803	7295	5405	6614	6089	3814	1683	0983
MEDINC	.0057	0295	4924	6392	8071	8948	9189	6533	2583	.0432
PAGE1949	.8198	.3831	.1551	.5022	.3995	.0290	.1828	1610	.3960	.4940
PNEWSTR	8194	4069	-,2152	5377	4402	0915	2385	.1186	3834	5285
PNEW	7680	3894	2725	5531	4824	1638	3066	.0071	3357	5185
PMULTI	.5782	.3631	.0807	.1792	.2617	0415	.0652	.0232	.2414	.2422
PMFG	.1646	2174	1777	.4517	0740	1562	2325	2972	1952	.3555

Table E.7Correlations Among Selected Variables for 26 Entitlement Cities,
Population greater than 500,000

.....

•

/

.

*

. .

7

3 I

٠

κ.

1

x

	PAGE1939	DENSITY	POWNOCCH	PCINC73	MEDINC	PAGE1949	PNEWSTR	PNEW	PMULTI	PMFG
P65AGED	.8288	•5788	4432	.0682	.0057	.8198	8194	7680	.5782	.1646
PCRIME	.2900	.3138	4269	.3286	0295	.3831	4069	3894	.3631	2174
PNW	.0478	.1798	2472	1803	4924	.1551	2152	2725	.0807	1777
PWOHSED	.4940	.3270	0595	7295	6392	.5022	5377	5531	.1792	.4517
PFEMALHP	.3432	.1971	-,3325	5405	8071	.3995	4402	4824	.2617	0740
PYUTHPOV	0259	0737	0416	6614	8948	.0290	0915	1638	0415	1562
PPOORPER	.1235	.0189	-,1538	6089	9189	.1828	2385	3066	.0652	2325
POCRWD	2189	0548	1483	3814	6533	1610	.1186	.0071	.0232	2972
PWOPL UMB	.4132	.1414	1089	1683	2583	.3960	3834	3357	.2414	1952
PUNEMP75	.4462	.3619	0776	0983	.0432	.4940	5285	5185	.2422	•3555
PAGE 1939	1.0000	.7186	5270	1679	0988	.9843	9543	8710	.7010	.3830
DENSITY	.7186	1.0000	7030	.1626	.0684	.7167	6848	7099	.7673	.1743
POWNOCCH	5270	7030	1.0000	2798	.0020	5339	.4841	.4752	9021	.1437
PCINC72	1679	.1626	2798	1.0000	.7437	1407	.1715	.1505	.1367	3366
MEDINC	0988	.0684	.0020	.7437	1.0000	1116	.1616	.1935	.0467	.2367
PAGE 1949	.9843	.7167	5339	1407	1116	1.0000	9831	9112	.6879	.3454
PNEWSTR	9543	6848	.4841	.1715	.1616	9831	1.0000	.9445	6361	3563
PNEW	8710	7099	.4752	.1505	.1935	9112	.9445	1.0000	6061	3197
PMULTI	.7010	.7673	9021	.1367	.0467	.6879	6361	6061	1.0000	.1371
PMFG	.3830	.1743	.1437	3366	.2367	.3454	3563	3197	.1371	1.0000

Table E.7	Correlations Among Selected Variables for 26 Entitlement Cities, Population greater than 500,000	

•

Appendix F

PER CAPITA NEED SCORES FOR THE 435 ENTITLEMENT CITIES

The factor scores presented below were calculated from the factor score coefficients in Table 4.6. Since the need variables were input into the factor analysis in percentage terms, we interpret these scores as per capita need scores. The following table defines each factor (dimension) in terms of need indicators with high loadings. In general, a city will receive a high score on a particular factor if the city has a high percentage for each of the need variables that define the particular factor. For example, Charleston (case 355) receives a high score on the poverty factor because 26.31 percent of its population is below the low income level. The following table defines each factor in terms of need indicators with high loadings.

D •

	Dimension	Dimension
FACTOR 1	Poverty	Poverty variables (PYUTHPOV, PPOORPER, PFEMALHP, PNW), percent of overcrowded houses, percent of houses without plumbing.
FACTOR 2	Age of Housing Stock	Percent of houses built be- fore 1939, percent of pop- ulation aged over 65
FACTOR 3	Density	Percent of owner-occupied houses (negative), pop- ulation per square mile.
FACTOR 4	Crime and Unemployment	Crime rate, percent un- employed
FACTOR 5	Lack of Economic Opportunity	Percent of population without a high school ed- ucation

			2)	£	2	.2	
	, ,		1	, t.				,	•	•	l	,	
Y.		67 + 7 6 V D C			C . 07 (1)	6							
	CASE-NO	STATCODE	NAME		FACTORI	FACTOR2	FACTOP3	FACIUR4	FACTORS				
	1	1.	BIRMINGH	AM	1.830	.472	674	209	627				
	2	1.	FLOKENCE		.827	.128	-1.448	832	512	1			
	3	1.	GAUSDEN		1.210	.726	-1.3-2	519	718				
	4	1.	HUNTSVIL	LE	341	-1.247	942	046	614				
	5	1.	MOBILE		2.145	411	-1.1+5	294	452				
	0	1.	MONTGOME	RY	2.104	362	837	902	603				
	7	1.	TUSCALUO	SA	1.337	016	488	608	-1.802				
	8	2.	ANCHORAG	ε	-1.104	-2.089	1.114	709	967				
	9	4.	MESA		773	-1.261	698	409	.554				
	10	4.	PHOENIX		243	-1.135	637	.191	223				
	11	4.	SCOTTSDA	LE	-1.669	-1.672	-1.118	.109	437				
	12	4.	TEMPE	-	850	-1.212	291	331	-1.748				
	13	4.	TUCSON		.053	- 952	561	409	517				
	14	5.	FAYETTEV	TLLE	.225	1.002	225	-2.091	-2.965				
	15	5.	FORT SMI	TH	.621	.509	-1.187	-1.340	274				
	16	5.	LITTLE R	OCK	.779	186	- 612	029	-1-438				
	17	5.	NORTH LI	TTLE HOC	.929	.077	964	910	-1.116				
	16	5.	PINE HLU	FF	2.676	.047	-1-124	-1.129	714				
	19	6.	ALAMEDA		565	- 306	- 673	-1.085	161				
	20	6.	ALHAMHRA		-1.381	079	-523	209	816				
	21	6.	ANAHETM		-1.354	-1.734	.112	. 070	507				
	22	6.	HAKERSET	FLU	. 365		- 750	.150	938				10
	23	6.	HERKELEY		.132	1.823	- 676	188	-4,191		•		97
	24	6.	HUENA PA	PK	-1.505	-2.129	- 276	-,118	034				
	25	6.	HIGHANK		-1.453	- 415	270	- 118	- 425				
	26	6.	CHULA VI	STA	- 827	-1 689	- 331	- 056	- 146				
	27	6.	COMPTON	314	1.619	-2 917	- 1331	3.572	1 662				
	28	6.	CONCORD		=].564		- 123	3.312	- 303				
	20	6.	COSTA ME	C A	-1.105	-1.670	5/8	- 111	-1 320				
	20		DALY CTT	SA SA	-1-524	-1 +26	•192		-1.220				
	21	6	DALT CIT	1	-1.475	-1.677	100	- 140	- 475				
	22	6.	EL CA ION		- 479		- 103	- 101	- 472				
	27	6	EL MONTE		.218	-1 634	183	- 602					
	33	6	FATRETEL	'n	- 414	-2 282	-075	-1 011	- 124				
	55	6.	FREMONT	U	=1.496	-2.203	- 414	-1.011	123				
	.10	6	FRESNO	3		- 190		214	-1 034				
	10 - 7	6	FULLEDTO	N	-1-468	-1 473		- 1.17	-1.030				
	31	6	GADDEN G	POVE	-1.400	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	-+13/	131	07/				
	.10	6	GI ENDALE	RUTE	-1 354	-1.901	310	- 642	-1 000				
	· · ·	0 .	HAWTHODALE	5	-1-61	-1 930	• 7.17	- 072	-1.099				
	40	u • ∡		C .	-1.0741	-1 750	1.048	022	- 000				
	41	0.	HUNTINGT	ON HEACH	-1 619	-1.758	058	.519	- 090				
	42	○ •	TNGL E-00	ON BEACH	-1 336	-1.000	0(10	.001	201				
	43	D •	LONDOG	D	-1.330	-1.192	1.226	.475	-1.240				
	44	D •	LOMPUC		- 104	-1.0/3	.250	0//	59/				
	45	0.	LUNG BEA	CH	/54	080	. 352	.019	-1.296				
	46	0.	LUS ANGE	LES	102	134	• 557	.099	923				
	47	6.	MODESTO		690	634	659	./81	677				
	48	6.	MONTEREY		-1.224	044	· D 14	.211	-1.904				
	49	6.	MOUNTAIN	ATEM	-1.244	-1.712	1.370	753	-1.774				
	50	6.	NAPA		-1.096	390	572	545	816				

×	CASE-110	STATCUDE	NAME		FACTORI	FACTUR2	FACTOR3	FACTUR4	FACTORS	
	51	6.	UAKLAND		.332	.257	•145	1.6+2	-1.042	
	52	6.	ONTARIO		.023	915	552	015	.327	
	53	6.	OHANGE		-1.405	-1.503	236	100	433	٢
	54	6.	OXNARD		.298	-2.178	121	. 356	.717	
	55	6.	PALO ALI	0	-1.457	530	.020	238	-1.994	
	56	ь.	PASADENA		013	.188	.248	.048	-1.447	
	57	6.	POMONA		.025	-1.202	224	. 0 . 4	.018	
	58	6.	REDUNDO	BEACH	-1.077	-1.448	.764	.171	408	
	59	6.	REDWOOD	CITY	-1.469	-1.264	.373	217	805	
	60	6.	HICHMOND		.006	-1.424	527	1.146	.115	
	61	6.	RIVERSID	E	602	806	622	.619	964	
	54	6.	SACHAMEN	TO	.196	307	534	.047	759	
	53	6.	SALINAS		406	-1.384	068	.301	.480	
	04	6.	SAN BERN	ARUINO	.467	793	711	1.135	272	
	65	6.	SAN DIEG	0	538	979	050	016	750	
	60	6.	SAN FRAN	CISCO	432	.908	1.118	.700	-1.317	
	h7	6.	SAN JOSE		807	-1.520	354	.051	034	
	68	6.	SAN LEAN	DRU	-1.537	-1.191	429	.546	.094	
	6.9	6.	SAN MATE	0	-1.504	-1.185	.320	086	871	
	70	6.	SANTA AN	Α	442	-1.629	.088	le1	.797	
	71	6.	SANTA BA	RBARA	403	.289	.207	307	-1.941	
	72	6.	SANTA CL	ARA	-1.369	-1.839	.210	019	274	
	73	6.	SANTA CH	υZ	094	1.905	714	.132	-2.988	
86	74	6.	SANTA MA	RIA	187	-1.295	119	4cl	.093	
Ē	75	6.	SANTA MU	NICA	809	051	1.602	.091	-2.842	
	76	6.	SANTA RO	SA	788	.173	731	.153	-1.952	
	77	6.	SEASIDE		•484	-2.422	.765	546	.063	
	78	6.	SOUTH GA	ΤE	-1.033	389	.305	.1.9	447	
	79	6.	STOCKTUN		.575	172	522	.750	347	
	H 0	6.	SUNNYVAL	F	-1.639	-2.103	.142	JY3	275	
	81	6.	TORRANCE		-1.814	-1.965	.272	023	492	
	24	6.	VALLEJO		574	614	426	.431	398	
	нЗ	6.	VENTURA	TSAN BUE	-1.166	-1.022	2×3	.108	714	
	L 4	6.	WEST COV	INA	-1.671	-2.019	877	.371	.164	
	~ 5	6.	WESTMINS	TER	-1.330	-1.945	539	071	.558	
	20	6.	WHITTIER		-1.573	-1.069	208	078	573	
	н7	8.	AUROKA		-1.418	-1.896	242	344	629	
	88	8.	ROULDER		678	.264	.180	919	-3.464	
	49	в.	COLOHADU	SPRINGS	363	463	341	406	-1.124	
	90	8.	DENVER		080	.084	072	.506	-1.329	
	G]	8.	PUEBLO		.056	.005	973	421	.936	
	02	У.	BRIDGEPO	RT	392	.273	.612	.536	.776	
	6.5	9.	BHISTOL		-1.600	287	615	438	1.664	
	4	۶.	DANBURY		-1.238	.052	678	409	1.118	
	15	9.	HARTFORU		•583	.401	1.200	.230	.124	
	96	9.	MERIDEN		-1.256	.163	4+2	350	1.518	
	47	9.	MILFORU		-1.547	415	-1.204	070	1.174	
	48	۷.	NEW BRIT	AIN	-1.033	.392	. 3 44	304	.854	
	4 9	9.	NEW HAVE	t -	.529	. 993	• 551	. 364	558	
	100	9.	NEW LOND	0N	374	.814	.166	307	213	

.

.

، **د**

,

ł . ^c , . .

.

.

X	, ,											
		5										
	CASE-+0	STATCODE	NAME		FACTORI	FACTUR2	FACTOR3	FACT0×4	FACTORS			
	1 - 1	9.	NORWALK		-1.259	410	240	209	.815			
	11.2	9.	NURWICH		715	1.173	652	026	.827			
	103	9.	STAMFORD		-1.114	578	.115	404	.443			
	104	9.	WATERBUR	Y	715	.065	147	208	1.237			
	105	9.	WEST HAV	EN	-1.228	013	244	672	.589			
	116	10.	WILMINGT	ON	1.592	1.287	845	1.548	031			
	167	11.	WASHINGT	0N	•529	-1.040	1.499	1.516	4/0			
	100	12.	CLEADWAT	00	-1.907	-1.082	-1.082	.000	414			
	109	12	DAYTONA	FR	960	072	-1.059	.570	/80			
	110	12	FORT I ALL	DENDALE	1.405	1,159	-1.027	1 0 19	-2.650			
	112	12.	FORT MYF	DENDALL	.745	- 490	- 480	204	1.071			
	113	12.	GATNESVI	LIF	.948			- 554	-3.462			
	114	12.	HIALFAH		- 492	-2.334		- 472	1.710			
	115	12.	HOLLYWOO	n	-1.207	477	-1.049	.978	- 604			
	116	12.	JACKSONV	TLLE	.715	614	-1-220	.039	330			
	117	12.	LAKELAND		.751	.499	-1.211	205	-1.182			
	118	12.	MELBOURN	Ε	237	-1.192	-1.340	110	.009			
	119	12.	MIAMI		1.065	722	1.044	.815	257			
	120	12.	ORLANDO		1.066	346	752	.559	-1.100			
	121	12.	PENSACOL	Δ	1.537	041	-1.296	040	437			99
	172	12.	ST PETER	SHUKG	424	.891	-1.429	.748	-1.345			
	123	12.	TALLAHAS	SEL	.469	012	163	711	-2.499			
	124	12.	TAMPA		•771	.041	-1.231	.677	765			
	125	12.	TITUSVIL	LE	-1.274	-1.610	-1.064	.523	225			
	126	12.	WEST PAL	M BEACH	.255	.423	580	.502	-1.144			
	127	13.	ALBANY		2.371	-1.361	206	-1.408	.231			
	126	13.	ATLANTA		1.337	000	•135	.719	707			
	129	13.	AUGUSTA		3.111	1.037	546	950	757			
r.	130	13.	COLOMBOS		1.273	585	677	181	414			
i i	131	13.	MACUN		1.853	102	674	296	185			
	112	13.	SAVANNAR	TV	2.441	.057	573	089	/12			
	133	10.	BUISE CI	11	911	.158	874	028	-1.027			
	1.44	17	HEDWYN		-1.907	1114	186	100	1.403	-		
	135	17	HLOOMING	TON	- 704	1.114	102	023	1.213			
	1.7	17.	CHAMPAIG	N N	- 404	1.240	480	-1 302	-2 207			
	138	17.	CHICAGO		-260	. 480	1.072	-1.502	1.027			
	134	17.	DECATUR		803	.459	-1.109	040	1.021			
	140	17.	DES PLAT	NES	-1.993	-1.335	- 757	- 463	.612			
	141	17.	EAST ST	IOUTS	3.953	.131	-1.227	1.7.15	.739			
	142	17.	ELGIN		-1.726	.322	267	434	.999			
	143	17.	EVANSTON		-1.494	.379	.845	727	593			
	144	17.	JOLIET		-1.030	.279	458	233	1.152			
	145	17.	MOLINE		-1.238	.648	758	541	.371			
	140	17.	PEORIA		543	.717	751	102	074			
	147	17.	ROCKFORD		856	.100	567	212	.398			
-	140	17.	SPRINGFI	ELD	637	.857	522	758	.251			
· · ·	149	17.	URBANA		406	.380	• 4115	-2.032	-1.795			
	1 - 0	17.	WAUKEGAN		418	591	106	423	.945			

CASE-NO	STATCUDE	NAME		FACTURI	FACTURE	FACTOH3	FACTU#4	FACTORS
151	18.	ANDERSON		054	. 301	-1.053	- 4 (8	.999
152	18.	EAST CHI	CAGO	.224	119	.539	.512	1.783
153	18.	EVANSVIL	I E	457	.923	437	240	.168
154	18.	FORT WAY	NE		. 322	413	.156	.463
155	18.	GARY		.470	-1.095	318	1.358	1.642
156	18.	HAMMOND		-1.284	054	519	317	1.476
157	18.	INDIANAP	0115	030	- 193	- 519	309	-692
158	18.	LAFAYETT	F	-1.224	498	- 669	709	.354
154	18.	MUNCIE	-	196	1.036	752	547	.010
160	18.	SOUTH HE	ND	863	.536	-1-149	.332	.757
101	18.	TERRE HA	UTE	374	1.901	-1.193	823	.059
162	19.	CEDAR FA	115	-1.141	.354	- 829	-1.566	-1.115
163	19.	CEDAR RA	PIUS	-1.302	.378	837	-1.156	003
164	19.	COUNCIL	RLUFFS	355	.814	-1.249	058	1.019
165	19.	DAVENPOR	T	035	.531		853	.585
166	19.	DES MOIN	ES	805	.008	862	023	220
167	19.	DUBUQUE		-1.083	1.009	867	-1.248	1.079
168	19.	SIOUX CI	ΤY	695	1.440	-1.155	-1.078	.368
169	19.	WATERLOO		569	.467	-1.212	870	.552
170	20.	KANSAS C	ITY	.152	. 316	-1.059	.137	.599
171	20.	OVERLAND	PARK	-2.043	-1.847	674	435	602
172	20.	TOPEKA		697	.120	062	329	300
173	20.	WICHITA		428	413	564	408	422
174	21.	ASHLAND		. 098	1.564	-1.145	-1.020	316
175	21.	COVINGTO	N	.438	2.080	457	882	1.535
176	21.	LOUISVIL	LE	.618	.693	480	017	.229
177	21.	OWENSHOR	0	077	.262	770	-1.256	.126
178	22.	ALEXANDR	IA	3.377	.054	-1.001	991	903
179	22.	BATON RU	UGE	.919	320	585	1/7	-1.334
1+0	22.	LAFAYETT	F	1.860	394	454	-1.348	443
181	22.	LAKE CHA	RLES	1.712	634	-1.040	736	.053
1:42	22.	MONROE		3.172	205	-1.107	-1.322	488
1+3	22.	NEW ORLE	ANS	2.750	.305	136	148	422
184	22.	SHREVEPO	RT	1.037	102	-1.073	699	345
185	23.	LEWISTON		153	1.640	318	-1.496	.504
1+6	23.	PORTLAND		.050	1.808	213	-1.544	441
187	24.	BALTIMOR	F	. 920	.311	.093	1.223	.478
148	25.	BOSTON		.098	1.241	1.018	.100	493
149	25.	BROCKTON		434	.668	457	059	.958
190	25.	CAMBRIDG	Ε	518	1.836	1.640	246	-1.940
141	25.	CHICOPEE		-1.182	.066	233	705	1.418
195	25.	FALL RIV	FR	.045	2.242	.206	802	.560
143	25.	FITCHBUR	6	705	1.061	410	907	.543
144	25.	HAVERHIL	L	850	1.873	018	dc3	.794
145	25.	HOLYOKE		.105	1.771	. 127	320	105
196	25.	LAWRENCE		014	1.544	.045	756	.640
147	25.	LEUMINST	ER	-1.179	.706	669	713	1.329
108	25.	LOWELL		440	1.315	• 044	773	.890
1.4.7	25.	LYNN	1	627	1.524	• 0 0 9	1/7	.515
200	25.	MALDEN		-1.188	1.313	.270	-1.116	.847

. . .

,

- · ·

7

.

1 · · ·

, ,

CASE-NO	STATCUDE	NAME		FACTOR1	FACTOR2	FACTOR3	FACTUR4	FACTORS				
201	25.	MEDFORD		-1.441	1.433	342	-1.001	1.104				
212	25.	NEW BEDF	ORD	.308	2.179	172	946	.480				
203	25.	NEWTON		-1.787	1.040	986	.203	.116				
204	25.	PITTSFIE	LD	-1.151	1.012	716	078	.765				
205	25.	QUINCY		-1.283	1.136	312	448	.608				
200	25.	SOMERVIL	LE	963	1.593	1.181	458	1.250				
207	25.	SPRINGFI	ELU	251	.924	378	.315	.305	÷			
208	25.	WALTHAM		-1.300	.456	.276	-1.300	.509				
209	25.	WORCESTE	P	768	1.552	110	.076	.098	<			
210	26.	ANN ARBU	R	741	.153	.427	400	-3.107				8
211	26.	BATTLE C	RELK	.129	1.568	-1.479	1.109	155				
212	20.	BAY CITY		627	1.500	-1.516	149	1.462				
513	26.	DEARBORN		-1.692	.070	-1.229	.230	.775				
214	26.	DEARBORN	HEIGHTS	1.983	-1.712	-1.268	.187	1.825				
215	26.	DETROIT		.075	.445	721	2.941	.652				
216	26.	EAST LAN	SING	777	226	1.130	-1.833	-3.758				
217	26.	FLINT		249	220	-1.136	1.047	1.168				
218	26.	GRAND RA	PIUS	238	1.034	-1.095	.100	.449				
219	26.	JACKSON		210	1.740	-1.070	251	.804				
220	26.	KALAMAZU	0	395	1.368	084	.092	-1.253				
221	26.	LANSING	0	640	.100	- 954	.703	.311				
222	26.	LINCOLN	PARK	-1.668	471	-1.190	.533	2.003				
223	26.	LIVONIA	1 A. K	-2.195	-1.737		.3.12	1.306				N
224	26.	MUSKEGON		430	1.250	-1-330	1.049	. 84 M				0
225	26.	PUNTIAC		027	- 074	-1.139	2.752	1 635				-
226	26.	ROSEVILI	F	-1.627	-1 502	-1-137	20102	2 214				
227	<u></u>	HOYAL DA	ĸ	-1.995	- 455	-1-137	002	608				× .
228	26.	SAGINAW	R.	.126		-1.172		1 351				
229	26.	ST CLAIR	SHORES	-6.100	-1.570	-1.202	.142	1 992				
230	26.	STERLING	HEIGHTS	-1.930	-1 872	-1.261	356	1.07L				
201	26.	TAYLOP	ne ronn 3	-1.470	-1.636	-1.281		- 2 2 4 3				
232	26	MADUEN		-2.003	-1.650	-1.472	460	1 727				
233	26.	WYUMING		-1-443	-1.034	-1.202	- 400	1.468				
234	27	HLOOMING	TON	-1.948		-1-552	- 000	1.000				
235	27	DULUTH	1011	- 742	-2.004	0.35	- 4.6	- 267				
235	. 27	MINNEADO	1.15	- 749	1.527	-1.190	- 160	- 773				
207	27	MOORHEAD		-1 063	212	111	-1 110	113				
2.11	27	HOCHESTE	0	-1 203	215	242	-1.117	-1.100				
204	27	ST CLOUD	R	-1 015	1 0 2 4	341	-1.312	951				
217	27	ST DALL			1.020	000	-1.321	104				
240	29	ST FAUL		-1.000	.703	358	072	.040				
241	20.			•057	030	•271	-1.721	132				
242	20.	LACKSON		. 305	247	0.32	-1.043	055				
243	20.	COLUMBIA		2.390	-,512	/85	-1.44/	501				
244	27.	CULUMBIA EL OUICEA	N.T.	- 421	.209	•140	-1.032	-2.909				
245	29.	THOSERAN	NI	-2.000	-2.057	948	001	1.692				
240	20	INUEPENU	ENCE	-1.409	- 438	951	001	.510				
241	27.	NANSAS C	111	~.099	.414	644	. 348	309				
248	29.	ST JUSEP	н	109	1.995	-1.177	-1.104	.323				
249	29.	SI LOUIS		1.174	1.097	•143	.818	.748				
250	30.	BILLINGS		523	.091	565	650	979				
,	3	• •		. ,			•	s / T		,	r	

i.

CASE-NU	STATCUDE	NAME		FALIURI	FACIURZ	FACIORS	FACIUR4	FACIORS
251	30.	GREAT FA	ILS	716	.040	404	421	200
252	31.	LINCOLN		-1.101	.610	41.4	-1.1/5	-1.104
253	31.	OMAHA		575	.160	471	509	.139
254	32.	LAS VEGA	S	769	-1.603	175	.002	638
255	33.	MANCHEST	ER	710	1.461	267	-1.402	.506
256	33.	NASHUA		-1.289	.110	3:16	-1.5+5	1.058
257	34.	ATLANTIC	CITY	1.086	1.993	063	2.000	-2.273
258	34.	BAYONNE		482	. 902	.877	-1.645	1.183
259	. 4 .	BLOOMFIL	LD	-1.684	.084	.116	408	1.012
260	34.	CAMDEN		1.527	.839	-1.000	1.747	1.315
261	34.	CLIFTON		-1.914	.126	367	683	1.065
262	34.	EAST ORA	NGL	715	051	1.483	.834	050
243	34.	ELIZAHET	н	319	.564	.948	102	.713
264	34.	INVINGTO	N	-1.322	1.083	1.341	724	.462
265	34.	JERSEY C	ITY	.047	.692	1.450	-1.034	1.556
266	34.	LONG BRA	NCH	091	.387	•433	417	462
267	34.	NEWARK		1.925	277	1.335	1.377	1.081
268	34.	PASSAIC		.343	.786	1.165	114	1.158
269	34.	PATERSON		.674	.463	1.046	004	1.549
270	34.	PERTH AM	BOY	120	.808	.349	-1.002	1.103
271	34.	SAYREVIL	LE	-2.050	-1.223	939	412	1.470
272	34 .	TRENTON		• 485	1.183	256	1.209	.985
273	34.	UNION CI	ΤY	682	1.108	2.805	-1.390	1.897
274	34.	VINELAND		563	115	-1.042	051	1.494
275	35.	ALBUQUER	QUE	.278	-1.415	607	.496	890
276	36.	ALBANY		165	1.685	.146	-1.124	520
277	36.	BINGHAMT	ON	590	2.216	239	-1.053	275
278	36.	BUFFALO		.030	1.939	On5	.338	.355
279	36.	ELMIRA		.370	2.526	714	-1.442	059
540	. ot	MOUNT VE	RNÚN	902	.266	1.444	247	.935
241	36.	NEW ROCH	ELLE	-1.185	.255	• 4 9 8	073	.086
242	30.	NEW YORK	CITY	.037	.133	1.443	.202	.321
243	36.	NIAGARA	FALLS	582	. 699	731	.419	.934
244	36.	POUGHKEE	PSIE	383	1.613	.308	901	103
285	36.	ROCHESTE	R	335	1.435	0~9	259	.659
546	36.	RUME		850	.319	500	-1.191	1.106
241	36.	SCHENECT	ADY	881	1.984	142	-1.203	.120
288	36.	SYRACUSE		147	1.519	•035	704	436
249	36.	TROY		122	2.185	.126	-1.009	202
290	36.	UTICA		209	1.986	372	-1.313	.475
241	36.	WHILE PL	AINS	-1.391	.088	•818	746	319
242	36.	YONKERS	12	-1.295	.000	1.154	843	.211
563	37.	ASHEVILL	E	• 4 4 8	1.316	-1.232	.070	814
244	37.	BURLINGT	ON	642	516	646	910	.987
245	31.	CHARLOTT	E	•462	-1.002	232	• 410	533
246	31.	DURHAM		1.187	220	114	317	883
247	31.	PATEILEV	ILLE	2.041	971	762	154	885
298	31.	GASTUNIA		• 1 4 7	306	674	347	1.055
249	37.	GREENSBU	HO	196	-1.055	348	. 044	134
300	31.	HIGH POI	NT	.107	369	465	578	.897

t.

202

ł

ł
CASEO	STATCODE	NAME		FALIURI	FACIORS	FACTORS	FACTUr4	FACTORS			
3 - 1	37.	RALEIGH		001	592	033	537	-1.083			
3-2	37.	WILMINGT	ON	2.374	.560	408	019	-1.317			
303	37.	WINSTON-	SALEM	•677	332	655	.650	570			
3 4	38.	FARGO		-1.178	.437	030	-1.043	540			
3.5	37.	CANTON		4/0	•/18	908	.510	.282	L		
3.0	37.	CINCINNA	T I	351	1.210	191	- 541	.017			
3.1	39.	CLEVELAN	11	.705	940	- 015	462	.012			
3.9	39.	CLEVELAN	D HETGHT	-1.077	1.358	015	- 459	.108			
310	39.	COLUMBUS	Unerom	- 020	.055	070		- 745			
311	39.	DAYTON		110	.310	217	1.046	- 059			
312	39.	ELYRIA		-1.169	315	823	- 464	1.188			
313	39.	EUCLID		-1.851	-1.166	.144	-1.027	.310			
314	39.	KETTERIN	G	-2.002	-1.581	594	630	089			
315	39.	LAKEWOOD		-1.778	1.104	.750	-1.517	.220			
316	39.	LIMA		212	.979	999	.159	.920			
317	39.	LORAIN		454	333	781	1/4	1.550			
310	39.	MANSFIEL	D	483	.584	875	129	.327			
319	39.	MIDDLETO	WN	536	.333	741	173	.500			•
320	39.	PARMA	~	-2.020	-1.179	-1.197	254	.920			20
321	39.	SPRINGFI	ELD	299	1.031	538	813	.523		•	ω
322	39.	STEUBENV	ILLE	149	1.557	856	508	548			
323	39.	TOLEDO		600	./28	939	.160	.563			
324	39.	VOUNCETO		- 828	.137	/7/	.109	.102			
325	37	LANTON	WIN	140	1.219	-1.281	- 716	- 764			
327	40.	NORMAN		- 165	007	- 390	-1.676	-2.354			
328	40.	OKLAHOMA	CITY	.171	093	930	781	-2.572			
324	40.	TULSA		247	381	904	461	- 628			
330	41.	LUGENE		443	406	244	533	-2.881			
331	41.	PORTLAND		519	1.406	649	SUL.	-1.366			
332	41.	SALEM		928	. 561	627	312	-1.424			
373	41.	SPHINGFI	ELD	731	760	655	235	031			
334	42.	ALLENTOW	N	-1.035	1.425	733	028	.486			
335	42.	ALTUONA		029	2.492	-1.360	-1.320	.681			
336	42.	BETHLEHE	M	980	.739	743	807	.605			
337	42.	CHESTER		1.215	.708	449	1.344	.728			
336	42.	LASTON		.003	2.181	024	-1.013	.249			
335	42.	ERIE	6. C	5/5	1.237	657	-1.000	.489			
Ust	42.	MARKISBU	R0	1.100	1.050	300		880			
341	42.	HAZLETUN	•.	/60	2.193	639	-1.501	.507			
342	42.	JUHNSTUN	N C	.030	2.100	148	-1.004	• J D 4			
343	42	PHILADEL		-144	C.134			1 101			
344	42	PITTSHIP	GH	047	• 700	341		02H			
340	42	READING	011	- 443	1 . 404	74					
340	42.	SCRANTON		513	2 100		-1.250	.455			
34 H	42.	WTIKESH	ARKE	244	2 6(1)		-]_445	.405			
340	42	WILLTAMS	PORT	-091	2.782		-1.610	-,512			
360	42-	YORK		- 223	1.902	407	- 242	. 325			
5.0					10002	• • • • •		I JEU			

CASE-NO	STATCUDE	NAME	́.,	FACFORI	FACTUR2	FACIORS	FACIUR4	FACIORS
351	44.	CHANSTUN		-1.010	.378	-1.148	034	1.218
352	44.	PAWTUCKE	T	598	1.543	146	007	.823
353	44.	PROVIDEN	CF	.629	2.306	. U148	.096	778
354	44.	WAHWICK		-1.541	224	-1.543	. 346	1.328
355	45.	CHARLEST	ON	2.515	.063	2+2	103	-1.103
356	45.	CULUMBIA		.603	387	313	.309	-1.128
357	45.	GREENVIL	LE	1.200	106	468	. 333	833
358	45.	SPARTANB	URG	1.623	.191	633	115	543
359	46.	SIOUX FA	LLS	-1.052	.458	648	-1.222	220
360	47.	CHATTANU	OGA	2.027	1.086	762	387	-1.064
361	47.	KINGSPOR	т	.310	.309	-1.143	-1.627	571
362	47.	KNOXVILL	ε	.754	.812	019	-1.004	-1.285
363	47.	MEMPHIS		1.714	799	555	794	.011
364	47.	NASHVILL	E-DAVIDS	031	508	618	306	310
365	48.	ABILENE		.342	490	768	-1.479	178
366	48.	AMARILLU		252	516		874	346
367	48.	ARLINGTO	N	-1.471	-1.587	151	659	683
3+8	48.	AUSTIN		•559	572	.036	-1.418	-1.503
369	48.	BEAUMONT		.998	300	842	6J8	022
370	48.	BHOWNSVI	LLE	7.519	-1.489	-1.2H2	-2.790	2.158
371	48.	BRYAN		1.577	554	762	-1.519	533
372	48.	CORPUS C	HRISTI	1.80%	-1.418	563	807	.346
373	48.	DALLAS		.264	-1.223	041	.107	342
374	48.	EL PASO		2.053	-1.720	381	904	1.372
375	48.	FORT WOR	тн	.145	755	567	334	.168
376	48.	GALVESTO	N	1.482	.282	220	.294	482
377	48.	GARLAND		-1.586	-2.007	701	400	.986
378	48.	GRAND PR	AIRIE	761	-1.788	422	048	.921
379	48.	HARLINGE	N	0.601	846	-1.441	-3.129	.697
31.0	48.	HOUSTON		.447	-1.378	.024	278	064
3+1	48.	INVING		-1.317	-1.893	126	-1.025	.279
3+2	48.	KILLEEN		1.396	-1.414	.574	-2.228	-1.356
343	48.	LAREDO		7.758	723	-1.086	-3.444	2.472
3+4	48.	LUBHOCK		1.065	-1.021	489	-1.431	337
3×5	48.	MC ALLEN		6.240	085	-1.194	-3.233	1.394
346	48.	MESQUITE		-1.540	-1.915	974	669	1.342
38 7	48.	MIDLAND		.192	-1.553	895	-1.401	018
388	48.	UDESSA		.276	-1.460	745	-1.528	1.028
349	48.	PASADENA		-1.164	-1.906	189	-1.247	.849
340	48.	PORT ANT	HUK	1.348	053	-1.282	.005	.785
341	48.	SAN ANGE	LO	1.150	018	-1.059	-1.403	078
342	48.	SAN ANTO	NIU	2.156	-1.277	634	418	1.289
393	48.	SHERMAN		780	.281	895	605	071
344	48.	TEMPLE		.860	.140	943	-1.249	126
395	40.	TEXARKAN	Α	.815	.500	-1.076	247	820
346	48.	TEXAS CI	ΤY	313	-1.670	7-1	J00	1.150
347	48.	TYLER		139	310	708	475	540
348	40.	WACU		1.361	.643	474	017	-1.360
344	48.	WICHITA	FALLS	.033	127	710	-1.277	230
400	49.	UGDEN		231	.356	746	537	003

. .

1

* *

,

j

1, *

. .

CASE-HO	STATCUDE	NAME		FACTUR1	FACTOR2	FACTORS	FACTUR4	FACTORS
401	49.	OREM		066	-1.231	994	-1.638	.289
402	49.	PROVO		.743	1.197	013	-3.017	-3.126
413	49.	SALT LAK	F CITY	051	1.121	372	343	-1.407
404	51.	ALEXANDR	IA	876	-1.359	1.687	853	-1.700
4.15	51.	CHESAPEA	ĸE	.376	-1,289	-1.100	836	1.414
406	51.	HAMPTON		344	-1.430	528	377	.475
4 G 7	51.	LYNCHBUR	G	079	.940	781	617	.012
408	51.	NEWPORT	NEWS	• 338	-1.322	355	240	.164
409	51.	NURFOLK		•725	722	.078	.106	392
410	51.	PETERSBU	RG	1.845	164	262	648	.911
411	51.	PORTSMOU	тн	1.199	832	560	.000	.521
412	51.	KICHMOND		•734	.012	257	.603	385
413	51.	ROANOKE		.134	.925	884	149	393
414	51.	VIRGINIA	BLACH	647	-1.749	846	307	.051
415	53.	BELLEVUE		-1.881	-1.917	586	296	943
416	53.	EVERETT		660	.640	829	151	480
417	53.	KICHLAND		-1.378	-1.748	685	-1.041	533
4]8	53.	SEATTLE.		-1.006	.652	216	.327	-1.295
419	53.	SPOKANE		30U	1.474	-1.160	581	-1.069
420	53.	TACOMA		367	.821	-1.055	101	360
421	53.	YAKIMA		•406	1.643	-1.093	.133	-1.631
422	54.	CHARLEST	ON	•534	1.755	602	-1.004	-1.845
423	54.	HUNTINGT	ON	•701	2.445	849	-1.175	-1.452
424	54.	WEIRTON		-1.271	099	-1.271	574	1.200
425	54.	WHEELING		109	2.453	921	-1.144	452
426	55.	APPLETON		-1.606	.119	824	-1.027	.982
427	55.	GREEN BA	Y	-1.122	.141	733	-1.314	1.003
428	55.	KENUSHA		-1.082	.316	651	907	1.627
429	55.	LA CROSS	Ε	574	1.900	872	-1.499	733
430	55.	MADISON		791	.364	.222	-1.675	-2.113
431	55.	MILWAUKE	Ε	450	.267	.168	616	.599
472	55.	OSHKOSH		-1.138	1.611	750	-1.148	084
433	55.	RACINE		872	.151	542	258	1.444
4-14	55.	SUPERIOR		261	2.075	-1.277	-1.096	149
435	55.	WEST ALL	15	-1.805	072	451	836	1.284

L.

205

• .

r

Appendix G

PHASE-IN AND PHASE-DOWN CITIES

A phase-in city or "gainer" is defined as an entitlement city that has a present formula amount greater than its hold harmless amount. Phase-in cities are divided into two groups. First, of the 435 entitlement cities being considered, 35 did not participate in the categorical programs. Second, there were 192 other cities that did participate but, in each case, the hold harmless amount is less than the formula amount. The remaining 208 cities are the phase-down cities or "losers"; these are entitlement cities each with a formula amount less than its hold harmless amount. In this appendix, we list for each city in the three categories, five need variables (DENSITY, POCRWD, PPOORPER, PUNEMP75, PAGE1939), one measure of tax effort (TAX1INC), and per capita aid under hold harmless, the existing formula and one alternative formula. The definitions of the variables used in this appendix follows:

DENCITY						
	DODU	ation	ner	square	mi	P
	popul		PCI	Jyuure		-

- POCRWD percent of occupied houses with 1.01 or more persons per room
- PPOORPER percent of population with incomes below the poverty level

PUNEMP75 unemployment rate, 1975

PAGE1939 percent of housing units built before 1939

TAX1INC non-education taxes (1974) as a percentage of personal income (1972)

HH hold harmless

PRESENT present formula

ALT5 Alternative 5 (.3 POORPER, .2 OCRWD, .5 AGE1939)

CASE-NO	NAME 1	NAME2	DENSITY	POCRWD	PPOORPER	PUNEMP75	PAGE1939	TAXIINC	нн	PRESENT	ALT5
1	ALHANBRA		8283.	4.00	7.92	6.1	38.39	2.14	0	10.59	13.61
2	BUENA PA	RK	6365.	9.10	5.16	9.0	4.35	2.30	Ő	10.60	5.51
3	COSTA ME	SA	4780.	4.50	7.60	8.4	4.54	3.13	Ő	10.49	5.40
•	DOWNEY		6910.	4.90	5.88	6.8	5.48	1.54	0	9.63	5.10
5	EL CAJON		4393.	6.10	9.31	9.7	4.55	2.46	0	12.26	6.67
6	FULLERTO	N	3891.	4.90	5.98	8.3	9.19	1.92	0	9.69	5.72
7	GLENDALE		4512.	3.70	7.94	7.0	38.73	1.89	0	10.67	13.92
8	ORANGE		4472.	5.50	6.08	7.0	10.29	2.44	0	9.57	5.72
9	SOUTH GA	TE	7588.	6.10	9.27	8.3	28.01	1.89	0	12.75	12.69
10	WEST COV	INA	4660.	6.10	4.58	8.2	1.27	1.55	0	9.22	3.99
11	PESTHINS	TER	5544.	8.40	6.23	6.8	2.48	1.70	0	10.77	5.33
12	H HITTIER		6336.	3.60	6.17	6.1	17.37	1.71	0	9.33	7.21
13	REPORN		13462.	2.70	5.19	5.5	67.09	1.56	0	8.39	17.71
1 • 1	DES PLAI	NES	5349.	5.20	3.20	5.4	15.93	2.37	0	7.87	5.52
15	ELGIN		3814.	5.10	5.04	8.0	56.25	2.22	0	9.36	14.34
16	LECHINST	ER	1156.	8.40	7.19	11.3	59.90	4.28	0	11.40	15.86
17	DEARBORN		4253.	4.70	5.53	11.0	39.47	4.28	0	9.39	11.37
19	POSEVILL	ε	6176.	12.40	4.97	15.1	11.68	1.65	0	11.66	7.50
19	STEPLING	HEIGHTS	1668.	5.60	2.82	13.2	3.40		0	7.83	3.47
20	WYOWING		2318.	7.60	5.96	11.1	26.72	1.91	0	10.77	9.42
51	CLEVELAN	D HEIGHT	7411.	1.20	5.52	9.5	72.75	1.66	0	7.74	16.42
22	FUCLID		6880.	3.80	4.20	6.5	17.34	3.50	0	8.28	6.53
23	LAFENOOD		12759.	2.40	5.40	7.1	73.45	1.56	0	8.40	19.18
24	LIMA		4593.	7.40	12.22	16.5	64.12	1.88	0	14.28	19.47
25	PARPA		4818.	4.30	3.66	5.7	13.16	1.37	0	8.03	5.17
26	SPRINGFI	ELD	2609.	6.20	9.98	12.5	13.50	2.13	0	12.90	8.85
27	BRYAN		2007.	9.90	20.86	4.5	19.40	1.75	0	20.38	14.91
28	MESQUITE		2137.	9.20	4.59	5.0	2.59	2.46	0	9.99	4.80
29	MIDLAND		2036.	8.30	12.40	3.5	5.78	2.22	0	14.53	A.45
30	OCESSA		4260.	11.40	12.61	4.3	10.19	1.94	0	15.92	10.30
31	SHERMAN		1522.	4.90	10.19	12.4	36.92	2.79	0	12.45	13.42
32	TEMPLE		1479.	8.50	17.11	5.0	29.94	2.38	0	17.73	15.40
33	OREM		1639.	13.10	11.47	8.2	9.23	1.75	0	14.78	8.91
34	VIRGINIA	BEACH	782.	5.40	9.62	6.0	6.89	4.13	0	11.48	6.21
35	RICHLAND		1138.	3.80	5.87	6.9	- 85	1 67	•	0 12	3 75

Table G.1 Need Variables, Tax Effort, and Per Capita Amounts for 35 New Phase-In Cities

.

.

• ,

× "

1

\$

CASE-NO	NAME 1	NAME2	DENSITY	POCRWD	PPOORPER	PUNEMP75	PAGE 1939	TAXIINC	нн	PRESENT	ALT5
1	RIRMINGH	AM	3785.	9.70	22.56	7.6	42.67	4.85	16.75	21.50	20.34
2	GADSDEN		1664.	7.20	20.24	15.1	35.03		.26	18.A3	16.91
3	MORILE		1630.	10.60	23.17	7.3	23.78	3.39	10.60	21.79	16.45
4	MONTGOME	RY	2875.	9.60	22.77	7.3	27.22	3.18	17.73	21.01	16.51
5	ANCHORAG	ε	2968.	10.50	6.47	8.5	3.65	3.63	9.90	10.04	4.92
6	MESA		3022.	10.90	9.18	7.8	9.11	1.54	.35	14.02	8.69
7	PHOENIX		2346.	8.90	11.61	10.3	11.24	2.56	2.24	14.65	9.59
8	FORT SMI	ТН	1396.	6.70	15.95	10.1	34.66	.86	11.72	16.19	15.43
9	ALAMEDA		7097.	5.00	10.02	8.2	47.49	1.71	.06	12.18	14.96
10	ANAHFIM		4997.	6.00	6.36	8.5	6.00	2.51	.20	10.22	5.56
11	HAKERSFI	ELD	2684.	6.40	15.01	6.8	23.30	4.39	4.70	15.83	12.74
12	BURBANK		5197.	5.00	6.56	9.0	22.50	3.86	1.10	10.24	9.55
13	CHULA VI	STA	4782.	7.10	9.47	10.3	5.76	2.55	.37	12.66	7.18
14	CONCORD		3301.	5.00	4.69	8.2	3.15	1.89	.20	8.71	3.94
15	DALY CIT	Y	9699.	5.90	5.75	7.6	13.^8	1.72	1.46	10.30	6.97
16	EL MONTE		7680.	12.70	13.39	8.8	16.68	2.43	.21	17.48	12.74
17	FAIRFIEL	D	2867.	9.50	9.87	8,5	3.04	2.17	2.13	12.98	6.76
18	FREMONT		1197.	7.20	4.79	8.1	5.04	1.88	2.05	9.52	4.78
19	GARDEN G	ROVE	6975.	7.20	5.56	8.5	2.16	1.59	.16	10.08	4.74
50	HAWTHORN	ε	9692.	7.00	5.75	9.4	9.33	2.00	.26	10.94	6.98
21	HAYWARD		2455.	8.00	8.02	10.7	8.40	2.87	1.29	15.03	7.17
55	HUNTINGT	ON BEACH	4359.	4.80	5.17	7.8	3.74	2.61	3.97	8.93	4.16
23	LOMPOC		2554.	7.50	10.84	7.5	6.90	1.45	.99	13.03	7.49
24	LONG BEA	Сн	7369.	4.70	11.23	9.6	31.61	2.80	4.22	12.96	13.61
25	LOS ANGE	LES	6060.	8.40	12.98	10.7	32.18	3.84	13.73	15.87	15.25
26	MODESTO		6496.	5.40	10.53	12.4	19.31	2.58	1.68	12.72	9.59
27	MONTEREY		3329.	3.80	7.45	11.1	23.46	1.47	1.18	10.38	9.29
28	MOUNTAIN	VIEW	4982.	4.90	6.78	6.9	6.57	2.57	2.07	10.14	5.82
29	ONTAPIO		2862.	9.50	12.53	12.8	18.20	1.98	4.60	15.40	11.32
30	PALC ALT	0	2216.	2.50	6.69	6.5	24.08	1.89	.15	9.19	A.75
31	POMONA		3867.	8.80	12.34	9.6	18.15	3.47	.51	15.05	11.10
32	PEDWOOD	CITY	2716.	4.70	5.96	6.9	15.54	2.73	1.42	9.88	7.51
33	RIVERSID	ε	1959.	6.30	10.48	9.7	18.73	2.06	11.48	12.80	9.56
34	SACRAMEN	то	2741.	6.70	14.23	9.7	27.06	3.33	14.74	15.33	13.64
35	SALINAS		4428.	10.50	10.73	12.2	20.47	3.11	1.48	14.90	11.45
36	SAN DIEG	0	2200.	6.70	11.03	10.4	21.72	2.41	13.12	13.29	10.68
37	SAN LEAN	DRO	5409.	4.20	5.90	8.1	18.18	2.86	.41	9.36	7.42
38	SAN MATE	0	6990.	3.50	6.19	6.8	17.90	2.32	.77	9.36	7.51
39	SANTA AN	A	5769.	11.30	10.13	9.1	16.49	2.49	.72	14.72	10.72
40	SANTA BA	RBARA	3344.	5.20	13.21	7.0	34.66	2.84	7.56	14.55	15.47
41	SANTA CL	ARA	5316.	6.30	6.19	9.7	6.29	2.43	4.15	10.42	5.73
42	SANTA CR	UZ	2629.	3.50	16.57	13.2	41.76	3.18	5.11	15.52	17.61
43	SANIA MO	NICA	10637.	4.40	11.73	9.4	27.74	5.38	3.00	13.63	14.01
44	STUCKTON	-	3678.	8.90	16.76	12.2	36.76	3.88	16.40	17.39	16.34
45	SUNNYVAL	Ł	4458.	4.90	4.66	8.3	3.59	1.87	.30	8,85	4.15
46	TORRANCE		6584.	5.10	4.07	7.2	5.11	2.68	7.87	8.56	4.28
47	AUNCHA		2150.	4.90	5.49	4.8	3.87	2.43	.29	9.12	4.30 .
48	BUEDLOER		5144.	3.80	11.55	7.1	21.98	2.70	2.89	12.18	9.53
49	PUEBLU		4331.	10.50	13.30	6.2	45.40	2.73	10.43	16.17	16.64
50	HERIDEN		2301.	6.90	6.58	11.9	52.67	3.21	7.29	10.84	14.65

Table G.2 Need Variables, Tax Effort, and Per Capita Amounts for 192 Other Phase-In Cities

.

A

-

۰ I

.

.

)

1

. .

.

*

-

1

1

.

.......

Table G.2Need Variables, Tax Effort, and Per Capita Amounts for 192Other Phase-In Cities

4

. .

.

.

CASE-NO	NAMEL	NAME2	DENSITY	POCRWD	PPOORPER	PUNEHP75	PAGE1939	TAXIINC	нн	PRESENT	ALT5
51	NOPWALK		3596.	7.10	6.55	8.4	42.33	4.50	10.24	10.87	12.60
52	CLEAPAAT	FR	3591.	4.80	12.00	7.8	13.+2	2.39	3.71	13.40	9.80
53	DAYTONA	BEACH	1988.	6.60	23.19	10.8	33.75	3.05	14.89	20.70	19.25
54	FORT LAU	DERDALE	4716.	6,50	11.99	11.8	7.+2	2.90	3.72	14.60	9.27
55	GAINESVI	LLE	2472.	6.40	19.71	7.7	14.24	2.18	1.36	17.96	11.91
56	HIALEAH		5123.	18.60	8.67	8.3	3.56	1.96	.77	16.64	9.91
57	HOLLYHOO	D	4258.	5.80	9.82	13.5	5.23	2.45	2.05	12.70	7.26
58	JACKSONV	ILLE	690.	8.10	16.84	7.0	20.43	2.72	9.82	17.13	12.86
59	LAKELAND		3397.	5.30	18.59	8.0	33.14	1.79	3.78	16.92	15.56
60	MIAWI		9763.	20.60	20.39	10.3	29.48	3.99	8.70	26.11	22.03
61	ORLANDO		3600.	7.70	19.16	11.0	20.46	3.56	9.45	18.51	14.27
62	PENSACOL	A	2479.	9.20	21.79	8.9	36.49	1.86	2.72	20.53	18.51
63	ST PETER	SRURG	3902.	4.20	15.75	9.5	22.37	2.15	1.69	15.55	13.38
64	TALLAHAS	SEE	2783.	7.20	17.73	6.7	14.41	1.24	10.42	17.03	11.52
65	WEST PAL	N BEACH	1494.	7.70	16.60	12.1	34.47	3.36	2.28	17.80	17.76
66	ALPANY		2470.	14.50	24.42	10.1	16.43	1.79	9.50	23.90	16.51
67	AUGUSTA		3938.	13.00	30.05	9.7	51.48	3.34	17.41	27.08	25.94
68	MACON		2498.	11.70	22.34	9.0	33.71	2.99	8.36	21.81	18.58
69	AUROPA		5261.	8.10	6.01	6.9	56.04	3.40	.73	10.93	15.31
70	CHAMPAIG	N	6811.	4.10	12.87	4.0	35.59	2.10	6.60	13.14	12.35
71	CHICAGO		15136.	9.50	14.33	9.1	66.56	4.69	11.62	16.80	22.35
72	DECATUR		2954.	6.40	10.36	11.3	50.10	2.09	5.70	12.91	16.22
73	EVANSTON		10692.	3.40	6.41	7.6	60.10	2.52	.76	9.22	15.40
74	JOLIET		4781.	7.80	8.37	9.1	55.96	2.90	1.89	12.47	16.46
75	MOLINE		4128.	5.00	7.83	6.1	54.77	3.14	.09	10.86	15.88
76	UPBANA		6431.	6.20	12.14	4.7	41.74	2.02	.83	13.11	13.00
77	WAUFFGAN		4054.	9.20	7.87	8.1	41.02	2,86	4.11	12.76	14.02
78	ANDERSON		1908.	6.70	9.75	14.7	46.58	1.84	10.76	12.80	15.54
79	FORT WAY	NE	3457.	5.80	9.14	11.3	48.15	1.85	11.69	11.99	14.93
80	LAFAYETT	E	5167.	5.50	7.66	6.6	51.44	1.75	.11	11.06	15.28
81	MUNCIE		5397.	7.20	13.44	12.9	53.50	2.43	.65	14.29	15.70
82	TERRE HA	UTE	2695.	6.60	13.20	6.7	70.78	2.55	4.59	14.57	21.33
83	CEDAR FA	LLS	1838.	4.80	8.32	5.2	36.25	1.37	1.94	10.79	9.74
84	COUNCIL	BLUFFS	1494.	9.90	11.26	9.2	54.73	1.87	4.16	14.71	17.56
85	DAVENPOR	T	1666.	6.80	9.50	5.1	54.07	2.11	9.39	12.67	16.43
86	DUBUQUE		3799.	10.20	8.68	6.9	61.45	2.32	3.71	12.90	16.41
87	OVERLAND	PARK	1711.	2.10	2.50	7.2	4.35	.85	1.62	6.34	2.42
88	TOPERA		2632.	5.00	9.86	7.0	41.52	2.50	8.77	12.09	13.31
89	ASHLAND		3656.	5.40	14.33	6.7	54.80	2.18	.21	14.86	18.76
90	OWENSBOP	0	5921.	8.80	13.78	7.7	34.58	2.17	1.51	15.76	14.71
91	ALEXANDA	IA	3463.	11.00	29.79	10.5	32.04	2.06	1.88	26.45	20.70
92	HATCH HO	UGE	4107.	9.80	18.53	6.4	20.74	4.28	7.46	18.41	12.35
93	LAFAYEII	t.	3445.	13.30	22.11	5.6	19.44	2.60	•46	21.90	15.58
94	LAKE CHA	PLES	3391.	11.40	21.21	9.2	20.49	3.02	18.95	20.77	15.25
95	MONPOL		2539.	12.60	29.48	8.9	26.43	2.72	25.10	26.09	19.79
96	NEW ORLE	ANS	3011.	14.00	26.28	9.5	49.44	4.32	24.95	25.41	24.46
97	SHHEVEPO	RT .	3200.	10.20	21.51	8.9	30.02	3.32	2.60	20.87	17.51
98	HRUCKTON		4200.	6.80	8.59	12.1	61.49	8.71	11.59	11.93	16.76
99	CHICOPEE		2813.	8.50	0.94	12.7	46.77	4.72	5.47	11.51	13.44
100	HEOPORD		8050.		6.12	9.5	80.91	5.69	.06	9,34	17.79

4

.

۰,

*

۲

.

Table G.2	Need Variables, Tax Effort, and Per Capita Amounts for	or 192
	Other Phase-In Cities	

• •

-

111 NFWTOW 550% 2.40 4.70 16.0 67.22 5.31 7.18 7.74 14.06 102 SOFFWILL 21551 4.30 6.70 122 66.91 6.31 2.74 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.75 14.75 14.75 14.75 14.75 14.75 14.75 14.75 14.77 12.46 14.67 12.52 14.75 14.77 12.46 14.67 12.52 14.75 14.77 14.47 14.67	CASE-NO	NAME 1	NAME 2	DENSITY	POCRWD	PPOORPER	PUNEMP75	PAGE 1939	TAXIINC	нн	PRESENT	ALT5
112 SOPERVIL LE 21693. 6.80 9.58 12.9 90.10 6.31 2.78 12.45 13.0 103 MAITLEC RFFK 3299. 4.00 15.76 12.2 6.691 4.16 .23 15.19 22.09 105 DEARDORN MFIGHTS 672.9 4.00 15.76 12.2 6.691 4.16 .23 15.19 22.0 106 DEARDORN MFIGHTS 672.9 4.40 12.27 18.78 1.27 1.30 11.46 7.53 107 KALAHAZO 0 3492.4 4.60 12.29 11.7 57.74 2.65 .15 1.33 16.64 110 LINCOLN PARK RA31 9.60 5.30 12.7 18.46 1.51 8.67 7.69 112 TAYLOR PARK RA31 2.40 1.52 1.64 4.00 112 MARPEN 5242.8 8.70 3.3 3.77 1.62 1.63 1.64 4.00 113 MARPEN 5242.8 8.70	101	NEWTON		5098.	2.40	4.79	16.0	67.52	5.53	7.18	7 79	14 04
109 wLTHAM 4927. 6.30 6.70 52 55.4. 6.55 1.4. 10.45 14.0.45	102	SOMERVIL	LE	21653.	6.80	9.58	12.9	90.10	6.31	2.78	12 65	23 04
104 BATTLE C RFFK 3299. 4.00 15.76 12.2 6.01 4.16 1.37 10.4 7.88 1.17 1.09 9.63 5.34 106 DEARARON NFIGHTS 5782. 4.60 10.89 12.7 18.78 1.27 1.30 11.46 7.53 1.33 16.64 107 KALAMAZO 0 3492. 4.60 12.7 18.76 1.66 1.62 R.61 11.01 R.41 109 LIVMAIA 350.8 8.10 2.14 8.9 6.4.7 1.44 1.51 8.74 4.00 110 ROTAL OA K 7371. 5.50 3.45 10.0 2.22 1.55 1.4 8.53 7.40 113 MARPEN 2242. 12.70 3.20 11.7 9.70 1.60 1.65 1.45 4.15 1.6.73 11.75 113 MARPEN 2242. 12.70 3.76 2.71 1.52 3.77 1.60 1.71 1.75 1.60 1.6.73 11.75 114 <td>103</td> <td>WALTHAM</td> <td></td> <td>4927.</td> <td>6.30</td> <td>6.70</td> <td>9.2</td> <td>55.04</td> <td>6.55</td> <td></td> <td>10 45</td> <td>14 01</td>	103	WALTHAM		4927.	6.30	6.70	9.2	55.04	6.55		10 45	14 01
105 DEARBORN HEIGHTS 6672 9.40 13.37 10.4 7.48 1.17 100 13.42 25.33 106 RAST LAN STNAG 5782. 4.60 10.692 12.7 18.76 1.27 13.33 16.64 107 KALAMZO 0 3492. 4.60 12.92 11.7 18.46 1.52 7.51 13.33 16.64 108 LIVONIA 3050. 8.10 2.14 8.9 6.47 1.84 1.51 8.64 4.00 110 ROVAL 0A K 7371. 5.50 3.85 10.0 22.92 1.55 5.14 8.65 5.94 111 ST CLAIP SHORES 7403. 10.30 3.22 11.7 1.60 1.85 9.65 5.94 111 ST CLAIP SHORES 7403. 3.23 1.77 1.52 1.63 3.749 112 TAUDR TAUDR 5245. 8.70 3.28 1.64	104	BATTLE C	REEK	3299.	4.00	15.76	12.2	68.91	4 16	27	15 10	33.00
106 EAST LAW STNA 5282. 4.80 10.82 12.7 14.78 11.27 11.30 11.64 77.20 107 KALAHAZO 0 392. 4.60 12.92 11.7 57.74 2.65 .75 11.33 16.64 109 LIVORIA 3050. 8.10 2.14 8.9 6.47 1.84 1.51 8.46 1.00 110 RIVORIA 3050. 8.10 2.14 8.9 6.47 1.84 1.51 8.63 7.40 111 ST CLATP SHORES 7.00.30 3.23 11.7 9.70 1.60 1.43 11.37 6.83 7.43 112 TAVLOR 2918. 12.30 4.91 15.6 9.12 1.43 11.37 6.83 3.43 112 TAVLOR 2203.7 7.60 2.71 5.3 3.77 1.86 10.30 3.177 1.63 3.377 1.88 19.03 3.433 11.64 13.77	105	DEARBORN	HEIGHTS	6672.	9.40	3.37	10 4	7.68	1 17	• 2 3	0.43	5 34
107 KALAM20 0 3492. 4.60 12.69 11.77 12.65 13.93 11.69 14.20 109 LIVAOLA 3050. 8.10 5.30 12.7 16.44 1.44 1.51 11.61 14.61 100 ROYAL 0A X 3771. 5.50 3.85 10.0 22.92 1.65 14.45 7.40 1.45 9.45 7.40 112 TATLOR SHORES 7403. 10.30 3.23 11.7 9.70 1.40 1.85 9.45 5.40 112 TATLOR SHORES 7403. 10.30 3.22 11.7 9.70 1.40 1.85 9.45 5.40 113 MARPEN 5242. 8.70 3.28 12.3 3.77 15.23 3.77 15.23 1.63 3.84 115 MORPHEAD 4567. 8.50 9.63 6.7 21.48 1.42 4.86 13.27 13.23 116 MARPEN 5263. 9.40 9.79 6.3 4.47 2.19 4.86 13.27	106	FAST LAN	SING	5282	A 80	10.82	12.7	18 78	1 27	.09	7.03	7.34
108 L1xCOLN PARK 18.1 0.60 12.7 16.6 1.2.0 1.75 13.33 10.60 109 L1YONIA 3050. 8.10 2.14 6.0 2.42 1.46 1.51 8.67 400 110 ST CLATR SHORES 2918. 12.30 3.23 11.7 6.72 1.55 1.46 8.55 7.46 111 ST CLATR SHORES 2918. 12.30 3.21 11.7 6.8.6 9.42 5.43 113 MAPRN 2242. 6.70 3.28 12.3 3.77 1.52 1.66 9.43 5.43 114 RLOMUNG TON 2203. 7.60 2.71 12.3 3.77 1.52 1.66 3.64 116 ROCHESTE R 4012. 4.80 7.94 4.84 10.5 3.73 11.75 117 ST CLOUD 3675. 9.40 9.73 6.3 48.7 2.19 4.64 3.73 1.83 14.21 14.21 11.67 11.67 12.42 11.67 <td>107</td> <td>KALAMAZO</td> <td>0</td> <td>3492</td> <td>4 60</td> <td>12.02</td> <td>12.7</td> <td>57 74</td> <td>2.45</td> <td>1.30</td> <td>11.40</td> <td>1.52</td>	107	KALAMAZO	0	3492	4 60	12.02	12.7	57 74	2.45	1.30	11.40	1.52
100 Livonit A 100 2.10	108	ITNCOLN	PARK	8831	9 60	5 30	12.7	10 44	1.62		13.33	10.04
110 DOYAL DA K 7771. 5.50 2.48 10.0 22.02 1.65 1.65 1.65 7.431 111 ST CLAIR 2018. 12.30 3.23 11.7 9.70 1.65 1.65 1.65 7.440 113 WARFKN 2018. 12.30 3.23 11.7 9.70 1.65 1.64 11.44 11.14	109	LIVONIA		3050	9.00	2 14	12.1	6 47	1.52	1.61	11.01	H.41
111 ST CLATP SHORES 7403 16.30 3.03 11.7 9.10 1.23 1.43 11.37 6.84 112 TAYLOR 2018 12.30 4.01 15.6 9.12 1.43 11.17 6.84 113 MAREN 2018 12.30 4.01 15.6 9.12 1.43 11.17 6.84 114 MAREN 2008 7.60 2.71 5.3 3.77 1.52 1.63 6.61 2.90 7.78 115 MODHEAD 2015 9.40 7.66 2.9 37.79 1.88 .19 10.73 11.73 13.23 116 JACKSON 3067 9.20 2.33 5.3 22.49 2.57 13.87 21.92 16.63 11.072 120 COUMBIA 3067 5.00 12.60 4.1 25.21 2.00 1.16 13.11 10.72 120 COUBSA NT 3235 5.10 6.61 1.66 2.83 1.48 1.92 1.44 14.42 121 INDEPEND <td>110</td> <td>ROYAL DA</td> <td>ĸ</td> <td>7371</td> <td>5 50</td> <td>2.14</td> <td>10.9</td> <td>22 42</td> <td>1.65</td> <td>1.01</td> <td>0.53</td> <td>4.00</td>	110	ROYAL DA	ĸ	7371	5 50	2.14	10.9	22 42	1.65	1.01	0.53	4.00
112 TAYLOR 2018 12.30 34.31 11.5 7.00 14.00 14.33 11.77 6.84 113 MAREN 524.2 6.70 3.28 12.3 8.48 2.44 8.45 9.41 5.43 114 HLOMING TON 2203. 7.60 2.71 5.3 3.77 1.52 1.63 8.48 115 MODHEAD 4567. 6.50 9.63 6.7 21.48 1.02 6.80 12.40 9.73 117 ST CLOUD 3675. 9.40 9.79 6.3 48.47 2.19 4.86 13.27 13.23 118 GUCHESTE A012. 4.80 9.29 3.53 22.49 2.16 3.16 1.6 2.18 .85 1.6.21 13.27 13.23 112 GUCHESTE A189. 5.60 11.64 8.5 33.49 2.04 2.97 13.29 12.86 122 GUCHSTE A189. 5.60 11.64 8.6 3.44.24 2.79 1.48 16.21 13.25	111	ST CLAIR	SHORES	7403	10 30	3.07	10.0	0 70	1.55	.14	n.53	1.49
113 MARDEN 2242 12.3 6.76 12.3 6.76 2.44 8.475 9.41 5.43 114 MLOOMING TON 2260. 7.60 2.71 5.3 3.77 1.52 1.63 8.48 9.41 5.43 115 MCOMING TON 2260. 7.60 2.71 5.3 3.77 1.52 1.63 8.36 3.64 116 MCCHSTE R 4002. 4.00 7.60 2.9 37.90 1.88 .19 10.73 11.73 116 ACCSON 3675. 9.40 7.90 6.3 4.64 7.10 11.61 13.11 10.72 119 COLUMUIA 3067. 12.20 23.53 5.2.18 .45 1.03 4.62 121 INDEPEND ENCE 23.33 5.10 6.61 26.43 1.85 1.62 27.3 3.39 1.22 2.01 1.16 13.41 1.42 1.42 124 INCOLNA 30.33 4.10 8.61 3.46.6 3.44.74 2.79 1.44 1.42 </td <td>112</td> <td>TAYLOR</td> <td>310123</td> <td>2018</td> <td>12 30</td> <td>3.23</td> <td>11.1</td> <td>9.70</td> <td>1.00</td> <td>1.65</td> <td>9.45</td> <td>5.94</td>	112	TAYLOR	310123	2018	12 30	3.23	11.1	9.70	1.00	1.65	9.45	5.94
111 HLOPHING TON 2283. 0.10 3.85 12.3 0.75 2.45 R.75 9.41 5.43 115 MODHEAD 4567. 8.50 9.63 6.7 21.86 1.02 6.80 12.90 0.75 116 ROCHESTE R 4.012. 4.80 7.96 2.9 37.99 1.88 1.10 10.73 11.75 117 ST CLOUD 3675. 9.40 9.79 6.3 46.47 2.19 4.86 13.27 13.23 118 JACKSON 3067. 12.20 73.53 5.3 22.49 2.57 13.87 21.42 10.21 13.10 17.72 120 FLOPISAS NT 732.3 5.10 6.11 6.6 26.37 1.48 9.62 9.73 6.30 122 RILLINGS 4189. 5.60 11.64 8.5 33.69 2.64 2.97 13.49 14.42 121 INCOLN 3033. 4.10 8.64 6.3 44.74 2.79 1.84 16.6 12.4	113	WARDEN		5242	8 70	4.41	15.0	9.12	2	1.43	11.37	6.84
115 MADDHEGO 4667. 8.50 9.63 6.71 9.2.9 37.79 1.83 8.430 9.78 116 ROCHESTE R 4012. 4.80 7.96 2.9 37.79 1.88 19 10.73 11.75 117 ST CLOUD 3675. 9.40 9.79 6.3 46.47 2.19 1.88 1.9 10.73 11.75 117 ST CLOUD 3675. 9.40 9.79 6.3 46.47 2.17 13.87 21.92 16.21 119 COLUMHIA 1410. 5.00 12.69 4.1 25.21 2.00 1.16 13.81 10.77 14.81 10.3 9.50 4.46 121 INOPEND ENCE 2335. 5.10 6.11 6.6 24.37 1.82 1.89 4.67 14.42 123 GREAT FA LLS 4088 7.30 10.47 8.8 39.97 1.92 1.95 13.49 14.42 124 LINCOLN 3033. 4.10 8.68 6.3.749 3.91 6.67	114	BLOOMING	TON	2203	7 60	3.20	12.3	0.00	C. • •	H.H5	9.41	5.43
116 ROCHESTE R 4012. 4.60 7.66 2.9 37.29 1.88 1.9 1.02 6.80 12.40 9.78 117 ST CLOUD 3675. 9.40 9.79 6.3 44.47 2.19 4.86 13.27 13.23 118 JACKSON 3067. 12.20 23.53 5.3 22.49 2.57 13.87 21.92 16.21 1.00 1.6 13.31 10.72 120 FLORISSA NT 7323. 10.90 3.03 6.5 2.18 A.85 10.3 9.50 4.46 121 INDEPEND ENCE 2335. 5.10 6.11 6.6 24.37 1.48 9.62 9.73 9.39 122 FLURISS 4088. 7.30 10.47 8.8 39.97 1.92 1.95 13.49 14.42 124 LINCOL 3033. 4.10 8.48 6.3 44.74 2.79 1.84 10.82 12.25 124 LINCOL 3033. 4.10 10.48 6.3 3.02 4.05 <t< td=""><td>115</td><td>MOORHEAD</td><td>104</td><td>4547</td><td>9.60</td><td>2.11</td><td>5.3</td><td>3.77</td><td>1.52</td><td>1.63</td><td>H. 36</td><td>3.84</td></t<>	115	MOORHEAD	104	4547	9.60	2.11	5.3	3.77	1.52	1.63	H. 36	3.84
110 NUCH DIE 1.00 7.00 2.0 37.90 1.48 .19 10.73 11.75 111 ST CLOUD 3675. 9.40 9.79 6.3 48.47 2.19 4.66 13.23 118 JACKSON 3067. 12.20 23.53 5.3 22.49 2.57 13.87 21.62 16.21 119 CULUMBIA 1410. 5.00 12.69 4.1 25.21 2.00 1.16 13.10 17.72 120 FLORISSA NT 7323. 10.90 3.03 6.5 2.18 .45 1.03 9.50 4.42 121 INOPEND ENCE 2335. 5.10 6.11 6.6 28.37 1.48 10.42 13.29 12.48 123 GRAT FA LLS 4086. 7.30 10.47 8.6 33.49 2.04 2.97 13.29 12.46 124 LINCOLN 3033. 4.10 8.6 3.49 2.06 4.6.7 3.00 2.4.05 13.07 7.14 127 NASHUA 1776.	115	POCHESTE	D	4507.	6.50	9.03	6.7	21.48	1.02	6.80	12.90	9.78
111 JACKSON 3067. 12.00 9.79 6.3 6.77 21.97 4.86 13.77 11.22 119 CALUMBIA 1410. 5.00 12.69 4.1 25.21 2.00 1.16 13.31 10.72 120 FLORISSA NT 7323. 10.90 30.3 6.5 2.14 A65 1.03 9.50 4.46 121 INDEPEND ENCE 2335. 5.10 6.11 6.6 28.37 1.48 9.62 9.73 0.39 17.86 122 ATLLINGS 4088. 7.30 10.47 8.8 39.97 1.92 1.95 13.49 14.42 124 LINCOLN 3033. 4.10 8.6 6.3 44.74 2.77 1.84 10.62 13.25 124 LINCOLN 3033. 4.10 8.6 6.3 42.77 1.84 10.62 13.25 124 LAS VEGA 5 24.88 7.60 9.36 8.6 3.02 4.05 13.66 13.62 127 MASMUA 1776	117	ST CLOUD	n	3675	9.60	1.30	2.9	37.29	1.48	.19	10.73	11.75
110 JALS JON 3007. 12.20 23.53 5.3 22.49 2.57 13.87 21.92 16.21 119 CULUMBIA 1410. 5.00 12.69 4.1 25.21 2.00 1.16 13.31 10.72 120 FLORISSA NT 7323. 10.90 3.03 6.5 2.18 .85 1.03 5.50 4.46 121 INDEPEND ENCE 2335. 5.10 6.11 6.6 28.37 1.88 9.62 9.73 9.39 122 RILLINGS 4189. 5.60 11.68 8.5 33.69 2.04 2.97 13.29 12.86 124 LINCOLN 3033. 4.10 8.68 6.3 44.74 2.79 1.84 10.82 13.25 125 MAHA 4529. 7.10 10.40 8.5 46.6 3.02 4.05 13.07 7.14 127 MASHUA 1778. 7.20 6.40 6.4 49.12 2.28 5.80 10.66 13.62 126 PAYOUNE 13471.	110	JACKSON		3015.	12 20	9.79	0.3	48.47	2.19	4.86	13.27	13.23
119 CHCONSIA NT 7232 10.00 3.03 6.5 2.18 2.60 1.16 13.31 10.72 121 INDEPEND ENCE 2335 5.10 6.11 6.6 26.37 1.48 9.62 9.73 9.39 122 RILINKS 4189 5.60 11.68 85 33.69 2.04 2.97 13.29 12.84 123 GREAT FA LLS 4088 7.30 10.47 8.8 39.97 1.92 1.84 10.82 13.25 124 LINCOLN 3033 4.10 8.88 6.3 44.74 2.79 1.84 10.82 13.25 125 OMAHA 4529 7.10 10.40 8.5 4.06 10.56 13.07 7.14 126 LAS VEGA S 2438 7.60 9.36 12.3 3.78 3.02 4.05 13.07 7.14 127 MASHUA 1778 7.20 6.40 6.43 12.28 5.80 10.56 13.69 2.64 13.29 1.61 13.65 <td>110</td> <td>COLUMNIA</td> <td></td> <td>3007.</td> <td>12.20</td> <td>23.51</td> <td>5.3</td> <td>22.49</td> <td>2.57</td> <td>13.87</td> <td>21.92</td> <td>16.21</td>	110	COLUMNIA		3007.	12.20	23.51	5.3	22.49	2.57	13.87	21.92	16.21
1100 FLUMIDIA 1323 10.00 3.03 6.5 2.18 AS 1.03 6.50 4.46 121 INDEPEND EMCE 2335 5.10 6.11 6.6 26.37 1.86 9.62 9.73 9.39 123 GERAT FA LLS 4088 7.30 10.47 8.8 39.97 1.92 1.92 13.49 14.42 124 LINCOLN 3033. 4.10 8.66 6.3 44.74 2.79 1.84 10.82 13.25 125 OMAHA 4529. 7.10 10.40 8.54 46.06 3.02 2.24 13.06 14.96 127 LAS VEGA S 2438. 7.00 6.40 6.4 44.12 2.28 5.80 10.56 13.62 129 RLOWFIE 13471. 6.80 9.06 8.3 7.99 3.91 6.67 12.91 17.71 8.59 15.61 100 CLIFTON 4963.3 4.92 1.27 9.30 1.68 1.27 9.30 1.6.9 2.6.2 <td>120</td> <td>FLOPISSA</td> <td>NT</td> <td>7333</td> <td>5.00</td> <td>12.09</td> <td>• • 1</td> <td>25.21</td> <td>2.00</td> <td>1.16</td> <td>13.31</td> <td>10.72</td>	120	FLOPISSA	NT	7333	5.00	12.09	• • 1	25.21	2.00	1.16	13.31	10.72
121 FAULTINGS 41.39 5.40 6.41 6.6 24.37 1.48 9.62 9.73 9.73 9.73 123 GREAT FA LLS 4088 7.30 10.47 8.8 39.97 1.92 1.95 13.49 14.42 124 LINCOLN 3033 4.10 8.68 6.3 44.74 2.79 1.84 10.82 13.25 125 OMAMA 4529 7.10 10.40 8.5 46.06 3.02 2.24 13.06 14.96 127 MASHUA 1778 7.20 6.40 6.4 412.2 2.86 13.07 7.14 129 RLONFTE LD 9635 3.90 5.03 8.8 63.29 3.22 1.27 8.59 15.61 130 CLIFTON 6986 3.40 4.25 7.9 44.64 2.37 1.73 7.94 11.30 131 ELIZABET H 9629 9.20 11.41 10.2 64.92 3.50 1.51 13.00 12.71 19.73 13.31	121	TNDEDEND	ENCE	7323.	10.90	3.03	0.5	2.18	.85	1.03	9.50	4.46
122 NILLINGS 10,07 10,07 13,79 2,10 2,77 13,79 12,86 124 LINCOLN 3033. 4,10 8,8 39,97 1,92 1,95 13.49 14.42 124 LINCOLN 3033. 4,10 8,8 6,3 44,74 2,79 1,84 10,82 13,25 125 DMAHA 4529. 7,10 10,40 8,5 46,66 3,02 2,24 13,06 14.96 127 MASHUA 1778. 7,20 6,40 6.4 49,12 2,28 5,80 10.66 13.62 129 RUOMFIE LD 9635. 3,90 5,03 8,8 63,29 3,22 1,27 8,59 15,61 130 CLIFTON 6966. 3,40 4,25 7,9 44,44 2,37 1,27 19,73 19,79 11,30 15,10 16,00 131 FLIZABET H 9629. 9,20 11,41 10.2 264,42 3,50 1,30 15,00 20,62 132 LNF	121	DILLINGS	ENCE	£335.	5.10	0.11	0.0	28.37	1.88	9.62	9.73	9.39
173 046.1 17.30 10.47 8.8 39.97 1.92 1.95 13.40 14.42 174 LINCOLN 33.3. 4.10 8.68 6.3 34.74 2.79 1.84 10.62 13.25 175 OMAHA 4529. 7.10 10.40 8.5 46.66 3.02 2.24 13.06 14.96 174 LAS VEGA 5 24.38. 7.60 9.36 12.3 3.78 3.02 4.05 13.07 7.14 127 NASHUA 1778. 7.20 6.40 6.4 49.12 2.28 5.60 10.66 13.62 128 PAYONNE 13471. 6.80 9.06 8.3 72.99 3.22 1.27 8.59 15.61 130 CLIFTON 6965. 3.40 4.25 7.9 44.44 2.37 1.73 7.94 11.30 15.61 131 ELIZABET H 9629. 9.20 11.41 10.2 64.92 3.50 1.31 15.61 16.60 132 IPVINGTO<	122	CREAT EA		4107.	3.60	11.08	8.5	33.69	2.04	2.97	13.29	12.86
1/2 C1MOUN 3033. 4.10 8.88 6.3 44.74 2.79 1.84 10.82 13.85 125 DAAHA 4520. 7.10 10.40 8.5 46.66 3.02 2.24 13.66 14.96 127 MASHUA 1778. 7.20 6.40 6.4 49.12 2.28 5.80 10.66 13.62 127 MASHUA 13471. 6.80 9.06 8.3 72.99 3.91 6.87 12.34 2.16 129 RUOWFIE LD 9635. 3.90 5.03 8.8 63.29 3.22 1.27 8.59 15.61 130 CLIFTON 6986. 3.40 4.25 7.9 44.64 2.350 1.30 15.09 20.62 131 FLIZABET H 9629. 9.20 11.41 10.2 64.92 3.50 1.30 15.15 16.61 134 PASSAIC 17226. 9.10 14.80 14.6 75.49 2.88 2.96 17.11 24.40 135 SAYREVI	175	LINCOLN	LLS	4000.	1.30	10.47	8.8	39.91	1.92	1.95	13.49	14.42
175 0.404 4.5 48.06 3.02 2.24 13.06 14.66 126 LAS VEGA S 2438. 7.60 9.36 12.3 3.78 3.02 4.05 13.07 7.14 127 MASHUA 1778. 7.20 6.40 6.4 40.12 2.28 5.80 10.56 13.62 128 PAYONNE 13471. 6.80 9.06 8.3 72.99 3.91 6.87 12.34 20.16 130 CLIFTON 6986. 3.40 4.25 7.9 44.04 2.37 1.73 7.94 11.30 131 ELIZABET H 9629. 9.20 11.41 10.2 64.92 3.50 1.30 15.09 20.62 132 IRVINGTO N 20601. 3.90 8.80 9.4 65.35 3.30 4.97 11.27 19.73 133 LONG EPA NCH 6730. 7.70 13.17 8.4 50.36 10.41 1.73 15.15 18.66 136 UNION CI TY 40.01 14.80	125	ONAHA		4530	7.10	8.88	6.3	44.74	2.19	1.84	10.82	13.25
127 LAS VENA 5 2430. 7400 9236 1223 3.78 3.02 4.05 13.07 7.14 127 MASHUA 13771. 6.80 9.06 8.3 72.99 3.91 6.87 12.34 20.16 128 PAYONNE 13471. 6.80 9.06 8.3 72.99 3.91 6.87 12.34 20.16 129 PLOMFIFE LD 9635. 3.90 5.03 8.8 63.29 3.22 1.27 8.59 15.61 130 CLIFTON 6986. 3.40 4.25 7.9 44.04 2.37 1.73 7.94 11.30 131 ELIZABET H 9629. 9.20 11.41 10.2 64.92 3.50 1.30 15.09 20.62 132 IRVINGTO N 20601. 3.90 8.8 9.4 65.35 3.30 4.97 11.27 19.73 133 LONC BPA NCH 6230. 7.70 13.17 8.4 50.36 10.41 1.73 15.15 18.66 <t< td=""><td>175</td><td>LAS VECA</td><td>c</td><td>4529.</td><td>7.10</td><td>10.40</td><td>8.5</td><td>46.06</td><td>3.02</td><td>2.24</td><td>13.06</td><td>14.96</td></t<>	175	LAS VECA	c	4529.	7.10	10.40	8.5	46.06	3.02	2.24	13.06	14.96
127 MABOA 1778 7.20 6.40 6.4 44.12 2.28 5.80 10.56 13.66 129 RLOOMFIE LD 9635 3.90 5.03 8.8 63.29 3.22 1.27 8.59 15.61 130 CLIFTON 6986 3.40 4.25 7.9 44.04 2.37 1.73 7.94 11.30 131 ELIZABET H 9629 9.20 11.41 10.2 64.92 3.50 1.30 15.09 20.62 132 IRVINGTO N 20601 3.90 8.80 9.4 65.35 3.30 4.97 11.27 19.73 133 LONG @PA NCH 6230 7.70 13.17 8.4 50.36 10.41 1.73 15.15 18.60 134 PASSAIC 17726 9.10 14.80 14.6 75.49 2.88 2.96 17.11 24.86 135 SAYREVIL LE 2007 6.50 2.64 1.54 7.88 6.06 136 MNCH	127	LAS VEGA	5	2430.	7.00	9.10	12.3	3.78	3.02	4.05	13.07	7.14
126 PLOUMFIE 13471. 6.80 9.06 8.3 72.99 3.91 6.87 12.34 20.16 130 CLIFTON 6986. 3.40 4.25 7.9 44.04 2.37 1.73 7.94 11.30 131 FLIZABET H 9629. 9.20 11.41 10.2 64.92 3.50 1.30 15.09 20.62 132 IRVINGTO N 20601 3.90 8.8 9.4 65.35 3.30 4.97 11.27 19.73 133 LONG RPA NCH 6230. 7.70 13.17 8.4 50.36 10.41 1.73 15.15 18.06 134 PASSAIC 17726. 9.10 14.80 14.6 75.69 2.88 2.96 17.11 24.40 135 SAYREVIL LE 2007.6 6.50 2.69 8.3 19.92 2.64 1.54 7.88 6.06 136 UNION CI TY 44081. 11.20 2.47 14.8 81.26 3.43 1.84 17.47	120	BAYONNE		1770.	1.20	6.40	6.4	49.12	2.28	5.80	10.56	13.62
127 HC00FTE LD 4932 3.90 5.03 8.8 63.29 3.22 1.27 8.59 15.61 130 CLIFTON 6986 3.40 4.25 7.9 44.04 2.37 1.73 7.94 11.30 131 FLIZABET H 9629 9.20 11.41 10.2 64.92 3.50 1.30 15.09 20.62 132 IRVINGTO N 20601 3.90 8.80 9.4 65.35 3.30 4.97 11.27 19.73 133 LONG RPA NCH 6230 7.70 13.17 8.4 50.36 10.41 1.73 15.15 16.06 134 PASSAIC 17726 9.10 14.80 14.6 75.49 2.88 2.96 17.11 24.40 135 SAYRFVIL LE 2007 6.50 2.69 8.3 19.92 2.64 1.54 7.88 6.06 136 UNION CI TY 44081 11.20 12.42 14.8 81.26 3.43 1.84 12.44	120	PLOONEIE		134/1.	0.00	9.00	8.3	12.99	3.91	6.87	12.34	20.16
130 CLIPTON PASE. 3.40 4.25 7.9 44.04 2.37 1.73 7.94 11.30 131 FLIZABET H 9620 9.0 11.41 10.2 64.92 3.50 1.30 15.09 20.62 132 IRVINGTO N 20601. 3.90 8.80 9.4 65.35 3.30 4.97 11.27 19.73 133 LONG RPA NCH 6620. 7.70 13.17 8.4 50.36 10.41 1.73 15.15 18.06 134 PASSAIC 17726. 9.10 14.80 14.6 75.49 2.88 2.96 17.11 24.40 135 SAYREVIL LE 2007. 6.50 2.69 8.3 19.92 2.64 1.57 7.68 6.06 136 UNION CI TY 44.081. 11.20 12.42 14.8 81.26 3.43 1.88 17.4 22.34 137 PAEE 107 6.00 7.56 9.5 55.48 3.78 5.84 11.27 16.53 </td <td>129</td> <td>AL UUMP IE</td> <td>20</td> <td>4035.</td> <td>3.90</td> <td>5.03</td> <td>8.8</td> <td>63.29</td> <td>3.22</td> <td>1.27</td> <td>8.59</td> <td>15.61</td>	129	AL UUMP IE	20	4035.	3.90	5.03	8.8	63.29	3.22	1.27	8.59	15.61
131 ELTABLI H 9624. 9.20 11.41 10.2 64.92 3.50 1.30 15.09 20.62 132 IRVINGTO N 20601. 3.90 8.80 9.4 65.35 3.30 4.97 11.27 19.73 133 LONG BPA NCH 6230. 7.70 13.17 8.4 50.36 10.41 1.73 15.15 18.06 134 PASSAIC 17226. 9.10 14.80 14.6 75.69 2.88 2.96 17.11 24.40 135 SAYREVIL LE 2007. 6.50 2.69 8.3 19.92 2.64 1.54 7.88 6.06 136 UNION CI TY 44.081. 11.20 12.47 14.8 81.26 3.43 1.84 17.47 26.44 137 NEW POCH ELLE 7249. 6.00 7.56 9.5 55.48 3.78 5.84 11.28 15.53 138 PEW POCH ELLE 7249. 6.00 7.56 9.5 55.48 3.78 <t< td=""><td>1 10</td><td>CLIFIUN EL 17ADET</td><td>-</td><td>N480.</td><td>3.40</td><td>4.25</td><td>7.9</td><td>44.04</td><td>2.37</td><td>1.73</td><td>7.94</td><td>11.30</td></t<>	1 10	CLIFIUN EL 17ADET	-	N480 .	3.40	4.25	7.9	44.04	2.37	1.73	7.94	11.30
132 INVINUTION 20801. 3.90 H.80 9.4 65.35 3.30 4.97 11.27 19.73 133 LONG PPA NCH 6230. 7.70 13.17 8.4 50.36 10.41 1.73 15.15 18.06 134 PASSAIC 17226. 9.10 14.80 14.6 75.49 2.88 2.96 17.11 24.40 135 SAYREVIL LE 2007. 6.50 2.69 8.3 19.92 2.64 1.54 7.68 6.06 136 UNION CI TY 44081. 11.20 12.47 14.8 81.26 3.43 1.88 17.47 26.44 137 HEW POCH ELLE 7249. 6.00 7.56 9.5 55.48 3.78 58.4 11.28 15.53 138 NEW YOPK CITY 26345. 9.90 14.58 10.5 62.14 10.96 11.63 17.44 22.34 139 PALEIGH 2757. 6.50 13.18 6.1 24.07 3.13 4.02 14.00 </td <td>131</td> <td>TRVINGTO</td> <td></td> <td>30603</td> <td>9.20</td> <td>11.41</td> <td>10.2</td> <td>64.92</td> <td>3.50</td> <td>1.30</td> <td>15.09</td> <td>20.62</td>	131	TRVINGTO		30603	9.20	11.41	10.2	64.92	3.50	1.30	15.09	20.62
133 LONG 674 NCH 6730. 7.70 13.17 8.4 50.36 10.41 1.73 15.15 16.06 134 PASSAIC 17226. 9.10 14.80 14.6 75.49 2.888 2.96 17.11 24.40 135 SAYREVIL LE 2007. 6.50 2.69 8.3 19.92 2.64 1.54 7.88 6.06 136 UNION CI TY 44081. 11.20 12.82 14.8 81.26 3.43 1.88 17.47 24.44 137 NEW ROCH ELLE 7249. 6.00 7.56 9.5 55.48 3.78 5.84 11.28 15.53 138 NEW YOPK CITY 26345. 9.90 14.58 10.5 62.14 10.96 11.43 17.44 22.34 139 PALEIGH 2757. 6.50 13.18 6.1 24.07 3.13 4.02 14.00 11.05 140 WILMINGT N 2638. 7.60 25.29 9.3 66.20 3.43 10.08	132	INVINOTO		20001.	3.90	8.80	9.4	65.35	3.30	4.97	11.27	19.73
13* PASALC 1726. 910 14.60 14.6 75.69 2.88 2.96 17.11 24.40 135 SAYREVIL LE 207. 6.50 2.69 8.3 19.92 2.64 1.54 7.88 6.06 136 UNION CI TY 44081. 11.20 12.82 14.8 81.26 3.43 1.88 17.47 26.44 137 NEW ROCH ELLE 7249. 6.00 7.56 9.5 55.98 3.78 5.84 11.28 15.53 138 NEW YOPK CITY 26345. 9.90 14.58 10.5 62.14 10.96 11.63 17.44 22.34 139 PALFIGH 2757. 6.50 13.18 6.1 24.07 3.13 4.02 14.00 11.05 140 WILMINGT ON 2638. 7.60 25.29 9.3 3.25 20.81 22.05 20.44 141 CANTON 5792. 5.70 12.24 9.3 66.20 3.43 10.08 13.65 19.85 142 K	133	DASSALC	NCH	17226	7.70	13.17	8.4	50.36	10.41	1.73	15.15	18.06
135 MARYIL LE 2007. 6.50 2.69 8.3 19.92 2.64 1.54 7.88 6.06 136 UNION CI TY 44081. 11.20 12.82 14.8 81.26 3.43 1.88 17.47 26.44 137 HEW POCH ELLE 7249. 6.00 7.56 9.5 55.98 3.78 5.84 11.28 15.53 138 NEW YOPK CITY 26345. 9.90 14.58 10.5 62.14 10.96 11.63 17.44 22.34 139 PALEIGH 2757. 6.50 13.18 6.1 24.07 3.13 4.02 14.00 11.05 140 WILMINGT ON 2638. 7.60 25.29 9.9 39.52 3.25 20.81 14.00 11.05 140 WILMINGT ON 5792. 5.70 12.24 9.3 66.20 3.43 10.08 13.65 19.85 142 KETTEHIN G 3927. 3.20 3.26 4.8 7.14 1.57 10	1.34	PASSAIC CANOFULI	1.5	11220.	9.10	14.80	14.6	15.59	2.88	2.96	17.11	24.40
136 NEW POCH ELE 7749. 6.00 7.56 9.5 55.98 3.78 5.84 11.28 15.53 138 NEW YOPK CITY 26345. 9.90 14.58 10.5 62.14 10.96 11.63 17.44 22.34 139 PALFIGH 2757. 6.50 13.18 6.1 24.07 3.13 4.02 14.00 11.05 140 WILMINGT 0N 2638. 7.60 25.29 9.9 39.52 3.25 20.81 22.05 20.44 141 CANTON 5792. 5.70 12.24 9.3 66.20 3.43 10.08 13.65 19.85 142 KETTEHIN G 3927. 3.20 3.26 4.8 7.14 1.57 .10 7.19 3.58 143 MANSFIEL D 2284. 5.80 11.49 8.3 52.45 2.43 5.85 12.99 16.09 144 SPRINGFI ELD 4907. 6.30 12.55 8.6 62.61 2.63 8.13 1	1 10	SATREVIL		2007.	0.50	2.69	8.3	19.92	2.64	1.54	7.88	6.06
147 HER HOCH ELLE 7249. 6.00 7.56 9.5 55.98 3.78 5.84 11.28 15.53 138 NEW YORK CITY 26345. 9.90 14.58 10.5 62.14 10.96 11.63 17.44 22.34 139 PALEIGH 2757. 6.50 13.18 6.1 24.07 3.13 4.02 14.00 11.05 140 WILMINGT ON 2638. 7.60 25.29 9.9 39.52 3.25 20.81 22.05 20.44 141 CANTON 5792. 5.70 12.24 9.3 66.20 3.43 10.08 13.65 19.85 142 KETTEHIN G 3927. 3.20 3.26 4.8 7.14 1.57 .10 7.19 3.58 143 MANSFIEL D 2284. 5.80 11.49 8.3 52.45 2.43 5.85 12.99 16.09 144 SPRINGFI ELD 4007. 6.30 12.55 8.6 62.61 2.63 8.13 14.04	1 10	NEW DOCH	5115	4001.	11.20	12.82	14.8	81.26	3.43	1.88	17.47	26.44
130 PALFIGH 2111 20343. 9.00 14.58 10.5 62.14 10.96 11.63 17.44 22.34 139 PALFIGH 2757. 6.50 13.18 6.1 24.07 3.13 4.02 14.00 11.05 140 WILMINGT 0N 2638. 7.60 25.29 9.9 39.52 3.25 20.81 22.05 20.44 141 CANTON 5792. 5.70 12.24 9.3 66.20 3.43 10.08 13.65 19.85 142 KETTEHIN G 3927. 3.20 3.26 4.8 7.14 1.57 .10 7.19 3.58 143 MANSFIEL D 2284. 5.80 11.49 8.3 52.+5 2.43 5.85 12.99 16.09 144 SPRINGFI ELD 4907. 6.30 12.55 8.6 62.61 2.63 8.13 14.04 18.95 144 SPRINGFI ELD 4907. 6.30 12.55 8.6 62.61 2.63 8.13 1	128	NEW YORK		36345	0.00	1.50	9.5	55.98	3.78	5.84	11.28	15.53
140 WILLFINGT 0N 2771. 6.50 13.18 6.1 24.07 3.13 4.02 14.00 11.05 140 WILMINGT 0N 2638. 7.60 25.29 9.9 39.52 3.25 20.81 22.05 20.44 141 CANTON 5792. 5.70 12.24 9.3 66.20 3.43 10.08 13.65 19.85 142 KETTEHIN G 3927. 3.20 3.26 4.8 7.14 1.57 .10 7.19 3.58 143 MANSFIEL D 2244. 5.80 11.49 8.3 52.*5 2.43 5.85 12.99 16.09 144 SPRINGFI ELD 4907. 6.30 12.55 8.6 62.61 2.63 8.13 14.04 18.95 145 NORMAN 300. 4.60 13.10 7.3 21.32 1.25 .08 13.18 10.05 146 EUGENE 3028. 3.50 12.88 10.2 82.19 1.67 .23 11.63 21.70 <td>130</td> <td>PALETCH</td> <td>CIT</td> <td>20345.</td> <td>9.90</td> <td>14.58</td> <td>10.5</td> <td>62.14</td> <td>10.96</td> <td>11.63</td> <td>17.44</td> <td>22.34</td>	130	PALETCH	CIT	20345.	9.90	14.58	10.5	62.14	10.96	11.63	17.44	22.34
140 CANTON 2038. 7.00 25.69 9.9 39.52 3.25 20.81 22.05 20.44 141 CANTON 5792. 5.70 12.24 9.3 66.20 3.43 10.08 13.65 19.85 142 KETTEHIN G 3927. 3.20 3.26 4.8 7.14 1.57 .10 7.19 3.58 143 MANSFIEL D 22.44 5.80 11.49 8.3 52.+5 2.43 5.85 12.99 16.09 144 SPRINGFI ELD 4907. 6.30 12.55 8.6 62.61 2.63 8.13 14.04 18.95 145 NORMAN 300. 4.60 13.10 7.3 21.32 1.25 .08 13.18 10.05 146 EUGENE 3028. 3.50 12.88 10.22 82.19 1.67 .23 11.63 21.70 147 HAZLETON 5157. 3.70 10.28 10.22 82.19 1.67 .23 11.63 21.70 148 </td <td>140</td> <td>WILMINGT</td> <td>ON</td> <td>2171.</td> <td>7 40</td> <td>13.18</td> <td>0.1</td> <td>24.07</td> <td>3.13</td> <td>4.02</td> <td>14.00</td> <td>11.05</td>	140	WILMINGT	ON	2171.	7 40	13.18	0.1	24.07	3.13	4.02	14.00	11.05
142 KETTEHIN G 3927. 3.20 3.26 4.8 7.14 1.57 .10 7.19 3.58 143 MANSFIEL D 2284. 5.80 11.49 8.3 52.+5 2.43 5.85 12.99 16.09 144 SPRINGFI ELD 4907. 6.30 12.55 8.6 62.61 2.63 8.13 14.04 18.95 145 NORMAN 300. 4.60 13.10 7.3 21.42 1.25 .08 13.18 10.05 146 EUGENE 3028. 3.50 12.88 10.7 22.31 2.49 5.33 12.79 10.19 147 HAZLETON 5157. 3.70 10.28 10.2 82.19 1.67 .23 11.63 21.70 148 CRANSTON 2597. 4.60 5.68 12.5 48.38 2.21 6.21 8.95 11.75 149 WARWICK 2398. 6.20 5.69 14.3 34.20 1.76 4.59 9.75 10.05 149 <td>141</td> <td>CANTON</td> <td></td> <td>5702</td> <td>5 70</td> <td>12.24</td> <td>9.9</td> <td>39.52</td> <td>3.25</td> <td>20.81</td> <td>22.05</td> <td>20.44</td>	141	CANTON		5702	5 70	12.24	9.9	39.52	3.25	20.81	22.05	20.44
142 MANSFIEL 0 3421 340 340 340 141 157 10 719 358 143 MANSFIEL 0 2284 5.80 11.49 8.3 52.45 2.43 5.85 12.99 16.09 144 SPRINGFI ELD 4907. 6.30 12.55 8.6 62.61 2.63 8.13 14.04 18.95 145 NORMAN 300. 4.60 13.10 7.3 21.42 1.25 .08 13.1d 10.05 146 EUGENE 3028. 3.50 12.88 10.7 22.31 2.49 5.33 12.79 10.19 147 HAZLETON 5157. 3.70 10.28 10.2 82.19 1.67 .23 11.63 21.70 148 CRANSTON 2597. 4.60 5.68 12.5 48.38 2.21 6.21 8.95 11.75 149 WARWICK 2398. 6.20 5.69 14.3 34.20 1.76 4.59 9.75 10.05 150 <	142	KETTEHIN	6	3027	3 30	2.24	A. 1	00.70	3.43	10.08	13.65	19.85
143 SPRINGFI ELD 4907. 6.30 12.55 8.6 62.61 2.63 8.13 14.04 18.95 144 SPRINGFI ELD 4907. 6.30 12.55 8.6 62.61 2.63 8.13 14.04 18.95 145 NORMAN 300. 4.60 13.10 7.3 21.32 1.25 .08 13.18 10.05 146 EUGENE 3028. 3.50 12.88 10.7 22.31 2.49 5.33 12.79 10.19 147 HAZLETON 5157. 3.70 10.28 10.2 82.19 1.67 .23 11.63 21.70 148 CRANSTON 2597. 4.60 5.68 12.5 48.38 2.21 6.21 8.95 11.75 149 WARWICK 2398. 6.20 5.69 14.3 34.20 1.76 4.59 9.75 10.05 150 CHARJEST ON 3892 10.20 26.43 7.6 14.43 34.20 1.76 4.59 9.75 10.05 </td <td>143</td> <td>MANSETEL</td> <td>D</td> <td>3721.</td> <td>5.20</td> <td>3.20</td> <td>4.8</td> <td>7.14</td> <td>1.57</td> <td>.10</td> <td>7.19</td> <td>3.58</td>	143	MANSETEL	D	3721.	5.20	3.20	4.8	7.14	1.57	.10	7.19	3.58
145 NORMAN 300. 4.60 13.10 7.3 21.32 1.25 .08 13.10 14.95 145 NORMAN 300. 4.60 13.10 7.3 21.32 1.25 .08 13.10 10.05 146 EUGENE 3028. 3.50 12.88 10.7 22.31 2.49 5.33 12.79 10.19 147 HAZLETON 5157. 3.70 10.28 10.2 82.19 1.67 .23 11.63 21.70 148 CRANSTON 2597. 4.60 5.68 12.5 48.38 2.21 6.21 8.95 11.75 149 WARWICK 2398. 6.20 5.69 14.3 34.20 1.76 4.59 9.75 10.05 150 CHARJEST ON 3082 10.20 24.31 7.0 14.3 34.20 1.76 4.59 9.75 10.05	144	SPRINGET	FLD	4907	5.80	11.49	н.3	52.45	2.43	5.85	12.99	16.09
140 500 4.00 13.10 7.3 21.12 1.25 .08 13.10 10.05 146 EUGENE 3028. 3.50 12.88 10.7 22.31 2.49 5.33 12.79 10.19 147 HAZLETON 5157. 3.70 10.28 10.2 82.19 1.67 .23 11.63 21.70 148 CRANSTON 2597. 4.60 5.68 12.5 48.38 2.21 6.21 8.95 11.75 149 WARWICK 2398. 6.20 5.69 14.3 34.20 1.76 4.59 9.75 10.05 150 CHARJEST ON 3092 10.20 24.31 7.0 14.43 34.20 1.76 4.59 9.75 10.05	145	NORMAN	LLU	300	6.30	12.55	8.6	06.01	2.03	8.13	14.04	18.95
147 HAZLETON 5157. 3.70 10.28 10.7 22.11 2.49 5.33 12.79 10.19 147 HAZLETON 5157. 3.70 10.28 10.2 82.19 1.67 .23 11.63 21.70 148 CRANSTON 2597. 4.60 5.68 12.5 48.38 2.21 6.21 8.95 11.75 149 WARWICK 2398. 6.20 5.69 14.3 34.20 1.76 4.59 9.75 10.05 150 CHARIFEST ON 3892 10.20 24.31 7.0 14.3 34.20 1.76 4.59 9.75 10.05	146	FUGENE		3028	3 60	13.10	1.3	21.12	1.25	.08	13.18	10.05
148 CRANSTON 2597. 4.60 5.68 12.5 48.38 2.21 6.21 8.95 11.75 149 WARWICK 2398. 6.20 5.69 14.3 34.20 1.76 4.59 9.75 10.05 150 CHARIFEST ON 3492 10.20 24.31 7.0 14.7 2.21 6.21 8.95 11.75	147	HATIETON		5167	3.50	16.88	10.7	22.11	2.49	5.33	12.79	10.19
140 WARWICK 2398 6.20 5.69 14.3 34.20 1.76 4.59 9.75 10.05 150 CHARSION 3892 10.20 24.31 34.20 1.76 4.59 9.75 10.05	147	CRANSTON		3137.	3.10	10.28	10.2	82.19	1.67	.23	11.63	21.70
150 CHARTEST ON 3802 10.20 24.03 76 44.3 34.40 14.10 44.59 9.75 10.05	140	WARWICH		2398	4.00	5.08	12.5	48.38	2.21	8.21	8.95	11.75
	150	CHARLEST	ON	3892	10.20	2.09	14.3	39.20	1./0	4.59	9.75	10.05

*

.

,

4 . . --

Table G.2	Need Variables, Tax Effort, and Per Capita Amounts for 192
-----------	--

· · · · · · ·

.

CASE-NO	NAME 1	NAME2	DENSITY	POCRWD	PPOORPER	PUNEMP75	PAGE1939	TAXIINC	нн	PRESENT	ALT5
151	MEMPHIS		2868.	11.80	20.47	6.4	22.48	3.05	9.21	20.41	15.20
152	ABILENE		1197.	8.00	13.95	4.1	21.48	2.39	3.35	15.33	12.02
153	AMAFILLO		2092.	7.20	11.83	3.8	19.24	2.68	.53	14.02	11.08
154	APLINGTO	N	1471.	4.90	5.20	5.4	3.52	2.30	.42	9.26	4.45
155	REAUMONT		1642.	8.30	17.62	6.8	31.18	2.73	.21	17.82	15.47
156	PPOWNSVI	LLE	3455.	31.70	45.45	11.9	20.48	2.89	2.95	40.86	28.34
157	CORPUS C	HRISTI	2033.	14.40	19.08	7.0	11.69	2.79	8.33	20.76	13.70
158	DALLAS		3179.	8.70	13.36	5.6	18.13	3.94	3.19	15.76	11.86
159	EL PASO		2724.	17.90	20.48	10.1	22.68	2.77	2.65	22.67	16.71
160	FORT WOR	тн	1919.	9.20	13.37	5.9	22.41	3.01	3.75	15.90	12.76
161	GALVESTO	N	2943.	9.90	20.62	7.1	46.79	2.95	10.16	20.48	21.10
162	GARLAND		1885.	7.40	4.09	6.5	2.46	2.02	.20	9.33	4.40
163	HAPLINGE	N	1489.	22.40	40.25	11.0	13.13	3.53	5.46	35.27	23.64
164	HOUSTON		2841.	10.00	13.93	5.5	17.32	3,33	10.25	16.44	12.07
165	IRVING		2413.	7.40	5.49	4.6	3.39	2.14	.07	10.05	4.96
166	KILLEEN		1366.	9.60	16.86	5.0	4.92	1.68	1.89	18.14	10.74
167	LAREDO		3367.	31.90	44.72	19.5	32.78	3.35	36.94	40.29	29.75
168	MC ALLEN		2788.	24.40	38.65	10.4	23.22	2.79	3.08	35.25	25.23
149	PASADENA		2522.	8.40	6.00	4.0	4.36	2.03	2.96	10.82	5.74
170	SAN ANGE	LO	1896.	9.50	18.28	5.6	27.43	2.28	.75	18.81	15.57
171	TEXAS CI	ΤY	580.	10.20	10.73	6.0	11.41	2.44	6.50	14.33	9.39
172	TYLER		2501.	7.10	13.11	6.3	27.28	2.20	.10	14.50	12.62
173	WICHITA	FALLS	2281.	6.90	13.23	4.9	29.66	2.57	.12	14.46	12.92
174	OGDEN		3293.	7.40	15.35	10.2	45.34	1.77	9.43	14.96	16.36
175	PROVO		2592.	10.60	18.18	8.3	30.31	1.81	7.06	18.02	13.76
176	CHESAPEA	ĸE	258.	9.20	13.63	5.2	17.05	4.73	7.33	15.34	10.61
177	HAMPTON		2208.	6.80	10.60	7.0	18.11	4.77	11.79	12.82	9.19
178	NEWPORT	NEWS	5000.	7.50	13.81	7.7	19.20	4.77	14.86	14.86	10.71
179	PETERSBU	RG	4513.	13.30	22.59	7.6	54.65	5.86	16.58	20.08	19.41
180	RELLEVUE		2593.	2.20	3.24	5.7	3.38	1.98	2.24	6.62	2.44
141	EVEPETT		1830.	4.40	11.09	9.0	44.32	3.74	4.16	12.70	15.49
195	SPOKANE		3357.	4.30	13.55	10.2	53.42	2.84	3.38	13.79	18.01
183	YAKIMA		3999.	4.60	16.93	12.0	49.26	3.05	5.62	15.88	18.69
184	WEIPTON		1459.	7.10	7.23	8.4	35.56	2.08	1.51	10.85	11.19
195	APPLETON		4439.	6.90	5.85	5.2	46.49	2.20	5.32	10.28	12.53
186	KENOSHA	_	5752.	8.40	7.88	5.6	54.74	1.85	1.02	12.22	15.58
187	LA CROSS	ε	3365.	5.10	12.04	7.5	64.74	2.39	11.83	13.07	18.12
188	MADISON		3542.	6.40	10.94	4.8	34.44	2.64	4.37	13.08	12.69
189	OSHKOSH		5417.	4.50	9.35	8.7	66.00	1.77	1.60	11.21	16.49
190	PACINE		7264.	7.20	8.82	6.6	55.49	2.39	3.45	12.33	16.13
191	SUPERIOR	-	853.	4.70	13.23	7.8	77.09	1.24	.31	13.57	21.22
192	WEST ALL	IS	6230.	5.50	4.35	8.1	44.47	1.97	1.37	9.10	12.09

211

L

2-

Table G.3 Need Variables, Tax Effort, and Per Capita Amounts for 208 Phase-Down Cities

•

٠

• •

*

.

-

¥

.

CASE-NO	NAME 1	NAME2	DENSITY	POCRWD	PPOORPER	PUNEMP75	PAGE1939	TAXIINC	нн	PRESENT	ALT5
1	FLORENCE		2002.	7.10	18.07	11.1	23.99	1.94	30.15	17.04	13.23
2	HUNTSVIL	LE	1277.	5.60	10.63	9.8	10.83	2.15	26.36	12.19	7.54
3	TUSCALOO	SA	2400.	7.40	21.60	7.8	21.97	2.77	22.62	19.11	13.69
4	SCOTTSDA	LE	1312.	4.50	5.11	8.3	1.14	2.15	27.01	8.79	3.61
5	TEMPE		2542.	7.10	9.26	9.0	3.29	1.86	13.42	11.91	6.05
6	TUCSON		3287.	9.80	13.67	7.4	13.11	3.07	19.61	16.30	11.10
7	FAYETTEV	ILLE	1698.	5.10	16.04	10.1	26.96	1.06	27.79	15.28	12.75
8	LITTLE R	0CK	2509.	6.50	17.19	7.1	32.77	1.82	44.32	16 86	15.49
9	NORTH LI	TTLE ROC	2327.	7.90	18.36	6 6	21.44	75	48.28	17 95	13.68
10	PINE BLU	FF	3565.	10.50	26.31	6.8	31.73	1 06	37.78	23 77	19.54
11	BERKELEY	5 M.	11011.	4.10	18.15	13.4	57.09	2 79	24 65	17 06	22 12
12	COMPTON		8268.	22.50	18.82	14 6	13.01	2 79	60.13	23 43	15 81
13	FRESNO		3971	7.10	17.02	97	27.84	A 15	57 46	17 16	14 45
14	INGLEWOO	D	10111.	5.30	7.68	8 7	10 75	2 02	20 57	11 44	10.00
15	NAPA	U	2746	5.00	8.77	5 4	21 44	2 16	50.51	11 24	10.00
16	OAKLAND		6771	7 10	16 09	12 7	67 24	2.10	36.41	17.00	21 17
17	OXNARD		3615	13 40	13.06	12.1	53.70	2 08	37.63	16.00	21.17
18	PASADENA		4976	A 40	11 42	7.6	44 79	2.50	22.44	10.00	10.14
10	REDONDO	REACH	9575	9.00	7 94	1.0	44.10	3.72	22.58	13.25	10.19
20	RICHMOND	of acti	2462	8 00	12 04	12.0	22 00	2.50	20.00	12.34	9.07
21	SAN DEDN	ADDING	2402.	0.70	12.70	12.0	22.44	• • • • • •	•/.•0	15.00	12.51
22	SAN EDAN	CISCO	15764	6 90	13.54	11.9	66.70	3.03	29.17	10.04	13.12
22	SAN JOSE	CISCO	3270	7.40	13.57	10.5	12 03	7.04	40.24	15.70	24.52
24	SANTA MA	DIA	3200	10.20	0.04	10.1	13.93	2.01	13.58	11.75	1.18
25	SANTA PA	S.	2513	10.20	11.32	/.5	17.12	2.33	20.26	14.67	10.69
26	SEASTOF	JA	2003	13.00	11.19	11.3	22.01	2.45	30.42	11.93	10.24
27	VALLENO		4719	6 30	13.07	11.1	כר.כ	1.43	48.03	10.44	9.47
29	VENTURA	SCAN DUE	3013	4.30	10.89	/.1	28.21	2.51	17.56	12.61	11.08
20	COLORADO	SODINCS	3013.	4. 20	1.00	8.0	1//	2.13	22.86	10.40	7.88
30	DENVER	SPRINGS	ELCI.	5.10	11.20	1.5	21.11	2.52	13.28	12.82	11.44
31	PRIDGERO	DT	0722	9.20	13.49	0.2	40.96	5.05	28.09	14.42	15.81
32	PRISTO		3096	7 40	11.52	12.3	60.05	5.31	24.57	14.81	19.40
33	DANBURY		1157	7.10	4.19	14.3	40.09	3.70	21.03	10.24	11.81
33	HARTEORD		1157.	0.20	1.09	12.5	45.10	3.30	23.59	10.98	13.36
35	MILEORD		2281	4.50	10.43	11.9	00.90	8.23	63.73	18.37	23.89
36	NEW BRIT	ATM	4274	7 40	4.90	11.7	34.70	4.45	10.13	9.39	9.70
37	NEW HAVE	N	7494	7 20	16 54	13.5	59.19	3.03	50.12	12.47	10.5/
38	NEW LOND	0N	5185	A 80	10.00	11.4	42 21	2 22	131.49	10.99	22.11
39	NORWICH		1599	5 30	11.5	0.4	03.31	3.32	202.91	13.12	14.00
A 0	STANFORD		2956	6.00	7.79		07.03	6.69	35.41	12.03	17.94
A 1	WATERBUR	¥	3014	9.10	1.05	1.0	40.13	5.03	18.70	11.18	12.53
42	WEST HAV	E M	4710	6.10	7.34	13.0	02.19	3.91	20.02	13.14	18.32
47	WILHINGT		4717.	5.20	2))(9.1	46.46	2.18	14.34	10.40	12.46
	WASHINGT	ON	12321	12 00	21.10	14.5	11.05	5.10	51.00	19.17	25.25
44	BUCA BAT	ON	1602	4 30	10.18	1.4	40.41	14.13	56.03	14.10	20.36
- 5	FORT MYE	BC	2270	9.20	0.18	10.9	3.58	2.41	13.81	9.89	5.00
47	MELBOURN	F	1554	7 4 4	1/.14	12.3	29.41	2.08	18.94	18.28	15.96
44	TAMPA	-	3297	7 10	11.80	13.4	20 55	2.11	14.41	13./3	8.10
40	TITUSVII	1.6	2008	4 60	10.01	10.0	20.75	3.15	21.94	18.17	15.49
50	ATLANTA		3783	10 60	1.03	13.4	A.0/	2.12	31.43	10.19	5.12
					17.0/		30.00	1 68		C (1 4 1	17.16

. here

.

L

*

-

-

Table G.3 Need Variables, Tax Effort, and Per Capita Amounts for 208 Phase-Down Cities

1

,

٢

(

ś

,

٦

, e

.

CASE-NO	NAME 1	NAME2	DENSITY	POCRWD	PPOORPER	PUNEMP75	PAGE 1939	TAXIINC	нн	PRESENT	ALT5
51	COLUMBUS		2231.	9.50	19.95	8.6	22.03	3.72	25.61	19.15	14.29
52	SAVANNAH		4416.	10.30	25.92	8.9	39.94	3.59	60.28	23.31	20.67
53	BOISE CI	TY	3205.	4.60	9.99	7.8	31.01	1.75	61.50	11.58	10.75
54	BLOOMING	TON	3960.	4.60	10.11	6.6	63.92	3.01	54.24	12.24	18.69
55	EAST ST	LOUIS	5036.	16.30	33.68	18.0	54.87	3.99	44.09	30.37	28.41
56	PFORIA		3395.	5.80	11.20	6.6	54.33	2.90	16.66	13.20	17.11
57	ROCKFORD		4309.	5.60	9.36	11.6	44.27	2.61	17.69	12.07	14.30
58	SPRINGFI	ELD	3641.	6.30	10.43	6.3	57.82	2.56	49.19	13.34	18.71
59	FAST CHI	CAGO	3820.	14.80	13.46	7.1	70.71	8.13	46.00	18.15	23.34
60	EVANSVIL	LE	3855.	7.90	12.00	9.5	51.27	2.41	20.74	14.62	17.63
61	GARY		4177.	15.50	14.85	9.2	43.72	3.21	36.71	18.97	18.21
62	HAMMOND		4477.	9.60	6.56	6.5	46.47	2.67	13.23	12.11	14.62
63	INDIANAP	OLIS	1967.	8.00	9.51	8.5	39.73	2.94	17.49	13.00	13.94
64	SOUTH BE	ND	4301.	5.90	9.27	9.1	54.02	2.02	25.86	12.06	16.15
65	CEDAR RA	PIDS	2182.	6.00	7.68	5.2	46.18	2.97	11.24	10 96	13 81
66	DES MOIN	ES	3187.	5.80	10.13	5.8	54.38	2.74	16.28	12.48	16.88
67	STOUX CT	TY	1652.	6.70	10.52	6.7	66.98	2.81	45.73	12.96	19.03
68	WATERLOO		1276.	7.50	10.65	5.6	49.69	2.64	15.65	13.54	16.04
69	KANSAS C	ITY	2961 .	8.20	13.77	9.3	47.42	3.62	34.69	15.51	16.62
70	WICHITA	• • •	3197.	6.30	11.10	5 0	29.04	2.36	41.94	13.26	12 32
71	COVINGTO	N	5416.	13.40	16.21	10.8	82.76	4.33	24 19	19 71	29 25
72	LOUISVIL	LE	6028.	9.20	17.02	7.2	53.26	3.70	23.88	18 34	20 67
73	LEWISTON		1207.	6.30	12.39	12.9	68.13	3.75	63.07	14 06	20.17
74	PORTIAND		3015.	5.80	14.50	9 5	76.14	5.34	75.36	15 13	23 60
75	BAL TIMOR	F	11568	8.20	18.07	10.7	59.06	4 94	34 11	18 15	21.05
76	BOSTON	-	13936.	7.20	15.35	12 8	77.19	10.62	47.65	16 30	24 20
77	CAMBRIDG	F	16187.	5.60	12.86	11 9	79.08	0 13	37 33	14 13	23 77
78	FALL RIV	FR	2936.	6.80	13.62	14 7	83.44	5 29	54 15	15 14	24 24
79	FITCHBUR	G	1559.	6.10	9.82	11.3	74.07	4.95	13.06	12 55	20 20
80	HAVERHIL	Ĺ	1428.	5.00	9.17	11.3	80.36	4.56	42.84	11 80	21.22
A)	HOLYOKE	-	2398.	7.00	14.58	14.8	77.37	5.53	54 04	15 65	24 02
82	LAWRENCE		9840	6.10	11.31	12.6	79.48	5 57	23.58	13.50	23 34
83	LOWELL		6929.	7.00	11.27	13.1	74.20	4.95	35.88	13 55	20 58
84	LYNN		8599.	5.70	10.76	12.5	79.78	9.45	35.74	12.91	22.38
85	MALDEN		11005.	4.50	8.10	10.6	76.03	5.80	80.99	10.93	19.66
86	NEW REDF	ORD	5219.	5.50	15.12	8.5	80.75	4.98	97.54	15.36	24.06
87	PITTSFIE	LD	1411.	4.50	7.39	11.1	66.68	5.73	23.54	10.32	16.83
PB	QUINCY		5464.	5.60	6.83	11.0	71.20	5.61	11.17	10.46	17.80
89	SPRINGFI	ELD	5171.	6.20	12.42	13.4	64.36	5.76	54.22	13.89	19.25
9 0	WORCESTE	R	4721.	5.40	9.96	10.9	74.37	8.53	32.60	12.14	19.51
91	ANN ARBO	R	4578.	4.60	10.54	10.3	28.12	2.44	24.75	12.09	10.68
92	BAY CITY		4945.	5.80	10.51	15.2	72.67	2.66	26.65	12.86	19.90
93	DETROIT		10968.	7.30	14.62	21.6	61.63	5.38	20.87	15.74	20.23
94	FLINT		5894.	8.60	12.16	19.1	45.60	2.86	42.33	14.78	16.05
95	GPAND RA	PIDS	4402.	4.60	12.14	13.1	61.47	2.44	23.32	12.99	18.14
96	JACKSON		4251.	6.00	12.51	10.4	80.75	3.12	23.35	13.71	22.39
97	LANSING		3934.	6.30	9.89	12.5	46.46	2.89	50.09	12.53	14.95
98	MUSKEGON		3433.	6.90	12.36	12.7	67.20	2.64	24.83	14.30	20.61
99	PONTIAC		4329.	11.30	12.83	29.9	47.26	5.09	37.50	16.07	16.85
100	SAGINAW		5309.	8.50	13.77	14.8	64.07	3.59	39.28	15.58	19.71

•

.

· · · · ·

Table G.3 Need Variables, Tax Effort, and Per Capita Amounts for 208 Phase-Down Cities

.

• •

1

 \sim

CASE-NO	NAME 1	NAME2	DENSITY	POCRWD	PPOORPER	PUNEMP75	PAGE1939	TAXIINC	нн	PRESENT	ALT5
101	DULUTH		1494.	5.00	11.45	9.0	72.59	2.42	30.32	12.84	20.14
102	MINNEAPO	LIS	7884.	4.30	11.58	8.2	68.13	3.44	36.70	12.88	20.83
103	ST PAUL		5933.	5.60	9.22	7.8	62.43	3.02	60.78	12.07	17.85
104	BILOXI		4368.	10.60	15.76	8.2	25.97	1.48	81.12	16.58	12.79
105	GULFPORT		1581.	8.80	17.80	6.1	22.97	1.72	57.32	18.14	14.06
106	KANSAS C	ITY	1604.	6.10	12.60	9.5	51.21	5.22	31.77	14.28	18.02
107	ST JOSEP	н	2533.	7.10	13.63	7.5	71.44	2.28	21.92	15.06	21.78
108	ST LOUIS		10167.	12.30	19.74	12.9	73.76	7.86	22.75	21.40	28.01
109	MANCHEST	ER	2734.	6.80	10.14	10.7	67.62	5.17	25.96	12.82	19.19
110	ATLANTIC	CITY	3860.	5.50	22.20	12.1	66.01	13.73	69.79	20.10	28.62
111	CAMDEN		11395.	8.30	20.86	16.6	69.97	4.56	54.16	19.84	24.03
112	EAST ORA	NGE	19352.	5.10	11.10	10.2	67.42	5.33	33.38	13.18	21.18
113	JERSFY C	ITY	17242.	10.40	13.59	10.5	78.42	4.48	24.91	16.88	24.74
114	NEWARK		16252.	14.30	22.15	16.2	68.44	6.12	53.71	23.11	26.09
115	PATERSON		17241.	11.30	16.37	14.5	70.51	3.57	27.87	18.63	23.72
116	PERTH AM	BOY	8255.	8.00	12.26	8.3	67.26	3.07	37.14	15.01	20.80
117	TRENTON		13971.	7.40	16.41	10.1	80.97	5.09	45.45	16.83	24.09
118	VINELAND		682.	7.90	9.82	14.0	40.30	2.58	32.05	12.00	13.23
119	ALBUQUER	QUE	2965.	8.30	13.90	7.8	12.53	1.70	37.04	15.51	10.25
120	ALBANY		5540.	4.10	13.27	8.2	74.67	4.75	18.22	13.65	22.44
151	RINGHAMT	ON	5829.	4.10	11.99	10.3	81.36	5.89	83.51	12.76	22.80
122	RUFFALO		11205.	4.70	14.80	16.5	85.72	5.64	24.67	14.63	24.50
123	FLMIPA		5472.	4.90	15.67	9.5	87.59	4.92	40.31	14.99	24.23
124	MOUNT VE	RNON	16925.	8.30	9.39	10.7	71.08	3.61	35.59	13.70	20.95
125	NIAGARA	FALLS	6389.	6.70	10.94	17.9	61.50	4.35	18.35	13.18	18.06
126	POUGHKEE	PSIE	6673.	5.30	12.40	5.7	78.98		333.79	13.75	23.69
127	ROCHESTE	R	8072.	5.30	11.99	8.7	79.49	5.65	48.94	13.50	22.52
128	ROME		691.	6.30	8.29	11.9	54.27	1.76	30.37	11.25	13.91
129	SCHENECT	ADY	7569.	3.20	10.05	8.8	81.26	2.55	19.09	11.30	22.35
130	SYRACUSE		7647.	4.40	13.51	9.0	70.85	3.07	60.12	13.82	21.15
131	TROY		6230.	4.70	13.52	8.6	81.01	2.82	22.47	13.93	22.40
132	UTICA		5709.	4.30	13.18	12.2	79.00	2.77	16.98	13.62	22.46
133	WHITE PL	AINS	5190.	5.20	6.73	7.4	53.50	6.31	73.73	10.44	15.54
134	YONKERS		11542.	6.20	7.18	9.7	51.41	3.47	25.67	11.27	15.16
135	ASHEVILL	Ε	2587.	6.20	17.71	13.8	51.01	3.60	52.69	17.02	18.80
136	BURL INGT	ON	2364.	7.10	9.54	11.4	30.11	2.80	37.24	12.67	11.91
137	CHARLOTT	E	3173.	7.80	14.74	11.6	19.31	3.48	36.60	14.87	10.69
138	DURHAM		2608.	8.10	19.45	7.5	33.45	3.13	24.9A	18.91	16.46
139	FAYETTEV	ILLE	2287.	9.90	23.50	5.7	18.89	2.32	26.99	21.68	15.55
140	GASTONIA		2369.	10.90	13.69	9.9	32.51	1.98	29.74	16.42	14.61
141	GREENSBO	RO	2648.	6.90	11.72	8.3	20.72	3.23	15.21	13.69	10.39
142	HIGH POI	NT	2054.	9.60	13.66	8.2	33.08	3.41	61.06	16.08	14.43
143	WINSTON-	SALEM	2366.	7.60	17.43	14.4	28.51	3.00	38.31	17.42	14.56
144	FANGO		4640.	6.20	8.63	5.6	48.23	1.62	12.33	11.64	14.27
145	AKRON		5082.	4.90	11.67	9.7	56.99	3.35	38.06	13.04	17.35
146	CINCINNA	11	5780.	9.30	17.05	10.5	59.27	5.41	41.52	18.38	22.65
147	CLEVELAN	U	9893.	7.10	17.06	6.3	73.36	4.24	21.43	17.08	23.45
148	COLUMBUS		4012.	6.20	13.23	7.5	38.97	3.26	15.51	14.32	14.48
149	DATION		6342.	7.30	13.71	10.4	52.13	4.25	25.72	15.34	18.14
150	ELTHIA		3053.	6.90	7.12	9.5	41.19	2.46	25.87	11.10	15.58

.

3

i.

4

Table G.3 Need Variables, Tax Effort, and Per Capita Amounts for 208 Phase-Down Cities

۰,

2

, ,

3

.

r.

.

ę

.

-

L.

1

* , t

CASE-NO	NAME 1	NAME2	DENSITY	PUCRWD	PPOORPER	PUNEMP75	PAGE 1939	TAXIINC	нн	PRESENT	ALT5
151	LORAIN		3506.	9.80	9.99	9.9	42.32	2.51	16.21	13 66	14 18
152	MIDDLETO	WN	2540.	7.10	10.73	13.0	44.95	4.12	109.77	13.44	15.25
153	STEUBENV	ILLE	3578.	4.60	14.85	5.4	61.82	2.84	46.08	14.96	19.75
154	TOLEDO		4718.	5,30	10.77	11.6	56.81	2.78	28.76	12.59	16.79
155	WARREN		5291.	6.10	9.66	10.7	47.06	2.24	14.40	12.35	14.52
156	YOUNGSTO	WN	4194.	6.60	13.93	13.3	67.42	3.64	26.47	14.73	19.88
157	LAWTON		2387.	8.40	17.13	6.5	15.42	1.89	85.28	17.44	12.22
158	OKLAHOMA	CITY	579.	6.30	14.03	5.5	29.12	2.57	22.23	15.15	13.82
159	TULSA		1922.	5.00	11.93	4.7	25.95	2.85	26.25	13.21	11.69
160	PORTLAND		4265.	3.20	12.57	10.0	57.21	2.79	21.90	12.98	18.93
161	SALEM		2784.	3.40	10.68	11.5	34.54	2.79	46.48	11.59	12.03
162	ALLENTOW	N	6173.	3.10	9.32	9.3	66.54	2.33	22.08	10.76	17.97
163	ALTOONA		6936.	3.90	13.82	9.6	84.06	1.85	19.41	13.69	22.91
164	BETHLEHE	M	3727.	3.60	6.69	7.8	55.46	2.45	17.49	10.58	14.88
165	CHESTER		11985.	7.80	19.87	14.2	66.48	3.35	40.88	18.91	22.63
166	EASTON		6544.	3.80	14.95	7.9	84.24	2.33	105.53	14.86	24.47
167	ERIE		6838.	5.60	11.00	7.9	66.79	2.28	32.15	12.77	18.46
168	HARRISBU	RG	8955.	3.30	20.45	8.7	73.65	2.76	36.47	17.47	25.97
169	JOHNSTOW	N	7452.	5.30	14.99	6.9	84.73	2.56	23.00	15.45	25.14
170	LANCASTE	R	8013.	3.80	14.83	12.4	79.15	2.25	64.09	14 39	22.96
171	PHILADEL	PHIA	15175.	5.90	15.07	11.0	69.50	6.57	31,19	15.44	21.31
172	PITTSBUR	GH	9422.	6.30	15.00	10.0	74.37	3.66	31.59	15 59	23 20
173	READING		8853.	3.20	12.43	8.7	86.87	2.18	45.78	12.57	24.65
174	SCRANTON		4030.	4.70	11.38	13.0	86.63	1.96	75.44	12 65	23 11
175	WILKES-B	ARRE	8784	4.30	13.19	10.8	90.03	2.37	136.33	13 58	24.31
176	WILLIAMS	PORT	4167.	5.20	14.95	10.1	88.44	2.64	28.48	14.70	24.43
177	YORK		9497.	3.80	14.53	11.4	81.21	3.00	24.52	14.38	24.35
178	PAWTUCKE	T	8748.	5.90	11.47	16.3	68.93	3.55	71.77	13.38	20.52
179	PROVIDEN	CE	9896.	5.30	17.88	17.1	80.67	3.49	48.53	16.78	25.89
180	COLUMBIA		1069.	7.90	17.84	8.8	30.36	2.15	17.05	17.03	13.35
181	GREENVIL	LE	2968.	9.10	20.02	10.1	35.64	3.08	35.89	19.45	17.48
182	SPARTANB	URG	2733.	10.10	21.63	12.0	39.06	2.47	94.55	20.61	18.74
183	SIOUX FA	LLS	2900.	6.40	9.33	5.3	44.29	3.45	42.27	12.06	13.71
184	CHATTANO	OGA	2284.	9.40	24.21	7.8	48.34	3.64	39.09	18.72	17.17
185	KINGSPOR	т	1836.	5.30	15.28	5.4	293	3.01	21.20	15.09	13.41
186	KNOXVILL	£	2267.	6.60	18.26	6.3	36.98	3.20	23.43	17.44	16.38
187	NASHVILL	E-DAVIDS	882.	7.20	13.16	7.2	24.43	4.13	21.45	14.72	11.99
188	AUSTIN		3492.	8.70	15.94	4.3	16.49	2.62	31.67	16.89	12.12
189	GRAND PR	AIRIE	576.	10.50	7.89	6.6	5.44	2.23	64.77	13.05	7.51
190	LUBBOCK		1970.	10.50	16.21	4.7	11.30	2.84	35.73	17.73	11.60
191	PORT ART	HUR	1190.	10.50	19.26	9.9	39.17	2.88	23.08	19.91	18.68
192	SAN ANTO	NIO	3555.	16.10	21.40	8.4	25.90	2.30	22.63	22.23	16.84
193	TEXARKAN	A	1883.	8.10	19.02	9.8	36.06	2.91	74.24	18.10	16.81
194	WACO		1624.	7.50	20.44	8.3	30.04	2.87	54.29	19.01	16.26
195	SALT LAK	E CITY	2966.	6.00	13.90	8.0	52.09	2.71	23.74	15.04	18.53
196	ALEXANDR	IA	7546.	4.70	8.33	4.2	18.28	4.80	15.64	11.38	9.29
197	LYNCHBUR	G	2155.	6.10	14.26	8.1	55.44	5.01	28.42	15.01	18.14
198	NORFOLK		5855.	7.90	17.32	7.4	30.56	5.77	54.63	17.08	13.98
199	PORTSHOU	тн	3826.	9.10	18.63	8.0	28.78	5.06	41.18	18.62	15.33
200	RICHMOND		4137.	7.30	17.42	6.0	44.85	7.79	40.36	17.46	18.01

215

.1

X

CASE-NO	NAME1	NAME2	DENSITY	POCRWD	PPOORPER	PUNEMP75	PAGE 1939	TAXIINC	нн	PRESENT	ALT5
201	ROANOKE		3463.	5.10	14.74	8.5	50.16	6.03	28.54	14.89	17.70
202	SEATTLE		6350.	3.30	10.03	8.6	47.57	3.35	19.91	11.55	16.35
203	TACOMA		3237.	4.40	12.39	9.5	48.45	3.61	15.93	13.32	16.70
204	CHARLEST	ON	2629.	4.80	17.24	6.4	58.31	3.97	19.37	16.40	20.83
205	HUNTINGT	ON	5055.	4.90	18.59	7.3	67.24	2.88	20.43	16.88	22.74
206	WHEELING		3623.	5.30	15.33	6.9	76.58	2.97	32.10	15.37	23.69
207	GREEN BA	Y	2106.	8.50	7.65	7.2	44.90	2.98	20.01	12.09	13.57
208	MILWAUKE	E	7551.	6.90	11.21	9.4	55.04	2.70	18.66	13.72	17.39

4

Table G.3 Need Variables, Tax Effort, and Per Capita Amounts for 208 Phase-Down Cities

4

• •

٠

1

.

• •

3

Appendix H

FACTOR ANALYSIS AND STATISTICAL RESULTS USING EQUALLY WEIGHTED CASES

In this appendix, we present the factor analysis and statistical results that were obtained when we conducted the analysis giving each city or case an equal weight of one. The tables presented below should be compared with those obtained from the weighted analysis in Chapters 4, 5, 6, 7, and 8.

The varimax rotated factor matrix in Table H.1 differs from that shown in Table 4.5, primarily with respect to the fourth and fifth factors. The following table interprets each factor in terms of need indicators with high loadings.

	Dimension	Need Variables Defining Dimension
FACTOR 1	Poverty	Poverty variables (PYUTHPOV, PPOORPER, PFEMALHP, PNW), percent of overcrowded houses, percent of houses without plumbing.
FACTOR 2	Age of Housing Stock	Percent of houses built before 1939, percent of population aged over 65.
FACTOR 3	Density	Percent of owner-occupied houses (negative), population per square mile.
FACTOR 4	Lack of Economic Opportunity	Percent of population without high school education and un- employment rate.
FACTOR 5	Crime	Crime rate and percentage non- white.

Table H.2, which corresponds to Tables 6.1 and 6.2 in Chapter 6, shows the coefficients of correlation of formula amounts with need scores and need variables. Table H.3, which corresponds to Table 6.3 in Chapter 6, shows the multiple regression coefficients. Table H.4, which corresponds to Table 6.4 in Chapter 6, provides the statistics obtained from regressing per capita dollars on a composite needs index. Table H.5 gives the average per capita amount under hold harmless, the present formula, and the alternative formulas by need score category. Table H.6 lists the 435 cities and their scores on each of the five factors; for each factor (dimension), the average score is zero.

In general, the data in Table H.2 support the conclusions reached in Chapters 5 and 6 concerning the equity advantages of adding age of

Table H.1

Varimax Rotated Factor Matrix

	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5
P65AGED	.06363	.71427	.14721	.16197	.07102
PCRIME	.18674	.00919	.21785	.16838	.72282
PNW	.74455	26287	.15625	.16235	.41530
PWOHSED	.46142	.25952	.13080	.62582	02846
PFEMALHP	.86060	.11708	.06875	.12673	.31284
PYUTHPOV	.96684	07541	03015	.12592	.14076
PPOORPER	.96697	.12980	.01494	.01192	.13977
POCRWD	.67707	54226	.03872	.34441	05643
PWOPLUMB	.69152	.20014	.07515	.14667	23834
PUNEMP75	.07678	.13730	.09548	.51260	.20664
PAGE1939	.06279	.75221	.36250	.37258	16881
DENSITY	08963	.11974	.70431	.25643	.06532
POWNOCCH	21319	22815	74011	.05727	22867

						1		- 1 DOM-		
	нн	PRESENT	ALT1	AL T2	ALT3	AL.T4	ALT5	ALT6	ALT7	ALT8
FACTOR1	.1410	.9708	.8612	.7914	.7976	.7155	•5353	.4257	.4574	.0546
FACTOR 2	.2914	0391	.3488	.5373	.3955	.6075	.6466	.7621	.7512	.8129
FACTOR 3	.1477	.0619	.2553	.2493	.3130	.2925	.4080	.3948	.3869	.4447
FACTOR4	. 153 8	.1453	.2996	.2208	.3688	.2591	.4152	.3499	.3429	.3943
FACTOR 5	.0898	.1402	.0592	.0537	.0284	.0266	0453	0564	0484	1362
P65AGED	.2215	.1051	•4111	.5143	.4576	•5674	.6225	.6746	.6680	.6881
PCRIME	.1570	.3085	.3064	.2698	.3018	.2554	.2346	.1895	.1973	.0915
PNW	.0977	.8026	.6431	.5218	•5945	.4510	.3301	.1998	.2263	0965
PWOHSED	.2872	.5121	.6708	.6341	.7031	.6458	.6857	.6224	.6286	.5051
PFEMALHP	.2476	.8695	.8319	.7924	.7845	.7359	.5866	.5018	.5284	.1787
PYUTHPOV	.1433	.9589	.8258	.7408	.7617	.6621	.4865	.3684	.4002	.0019
PPOORPER	.1704	.9695	.8956	.8488	.8340	.7786	.5951	.4996	.5307	.1292
POCRWD	0341	.7557	.5256	.3283	.4580	.2534	.1826	.0079	.0326	2540
PWOPLUMB	.1482	.6685	.7204	.6925	.7076	.6681	.6010	•5354	.5520	.3149
PUNEMP75	.1474	.1740	.2797	.2685	.3059	.2846	.3290	.3070	.3067	.2852
DENSITY	.0756	0072	.1954	.2026	.2548	.2505	.3704	.3704	.3606	.4427
POWNOCCH	2591	2646	4301	4513	4565	4720	4998	4911	4922	4385
PMULTI	.2506	0524	.2358	.2873	.3066	.3526	.4852	•5149	.5018	.6108
PAGE 1939	.3495	.0594	.5087	.6216	.5979	.7105	.8532	.9111	.8965	.9886
PNEWSTR	3005	-,2322	5770	6440	6421	7034	7984	8171	8107	8164
PCINC72	1755	6360	6316	5883	6096	5544	4757	4037	4214	1838
MEDINC	2324	8089	8207	8005	7843	7569	6287	5594	5827	2665

.

у I

1 1

1

.

Table H.2 Coefficients of Correlation Between (1) Per Capita Amounts and (2) Per Capita Need Scores and Need Variables, 435 Entitlement Cities

*

.

219

i.

L.

i.

۲

• •

housing stock to the formula. Again, hold harmless is only weakly related to need and the present formula exhibits a strong correlation only with the poverty dimension of CD need. Compared to the present formula, the alternatives show much higher correlations with aged housing and density, and for three of the alternatives (ALT1, ALT2, and ALT3), at a rather small cost in terms of a lower correlation with poverty. However, there are two minor differences between Table H.2 and Tables 6.1 and 6.2. First, the coefficients for FACTOR 2, PAGE1939, PNEWSTR, FACTOR 3, DENSITY, PMULTI, PUNEMP75, PCRIME, and POWNOCCH in Table H.2 range from about .05 to .15 less, in an absolute sense, than those reported in Tables 6.1 and 6.2 for the same variables. On the other hand, the coefficients for FACTOR 1, PPOORPER, PWOPLUMB, PCINC72, and MEDINC range from .05 to .10 more, in an absolute sense, than those reported in Tables 6.1 and 6.2 for the same variables.

The regression results for hold harmless, the present formula, and four of the alternatives are shown in Table H.3. A comparison of the relative magnitudes of the regression coefficients indicates that (1) hold harmless emphasizes the age-of-housing dimension of need, (2) the present formula shows a response greater than \$.50 only on the poverty dimension, and (3) increasing the weight of pre-1939 housing in the formula increases the emphasis on the age-of-housing dimension. The regression results are therefore consistent with those given in Tables 5.11 and 6.3 and discussed in Chapters 5 and 6. The main difference is that the regression coefficients in Table H.3 for the poverty dimension for hold harmless are higher than the corresponding coefficients given in Table 6.3. The goodness-of-fit statistics (R^2 , standard error of estimate) again show that hold harmless is only weakly related to the five need indexes.

A comprehensive needs index (NEED) is constructed by weighting the five dimensions as follows:

NEED = .35 FACTOR 1 + .25 FACTOR 2 + .20 FACTOR 3 + .10 FACTOR 4 + .10 FACTOR 5

The correlation results using this needs index are as follows:

НН	.3831
PRESENT	.7457
ALT1	.9393
ALT2	.9649
ALT3	.9442
ALT4	.9625
ALT5	.9081
ALT6	.8675
ALT7	8824

NEED

		(1) Hold <u>Harmless</u>	(2) Present Formula	(3) ALT1	(4) ALT2	(5) ALT3	(6) ALT7
Regres Dimens	ssion Coefficients for sions of CD Need:						
(1)	Poverty	4.69	4.29	3.68	3.69	4.10	3.13
(2)	Age of Housing	9.01	21	1.49	2.55	2.03	5.30
(3)	Density	3.74	. 32	1.06	1.07	1.56	2.47
(4)	Lack of Economic Opportunity	4.84	.50	1.20	.93	1.84	2.36
(5)	Crime	3.49	.46	.11	.13	16	44
<u>Other</u>	Statistics:						
(6)	Coefficient of Multiple Determination (R ²)	.17	.96	.97	. 98	.97	.97
(7)	Standard Error of Estimate	25.72	.79	.66	.53	.89	1.15
. (8)	Standard Deviation of Per Capita Amounts	28.18	4.41	4.29	4.67	5.16	6.94

5 F 5 5

.

.

.

Table H.3: Regression of Per Capita Amounts Under Hold Harmless, the Present Formula, and Four Alternative Formulas on Per Capita Need Scores

221

r

٠

· · · · · ·

The simple regression results using the comprehensive needs index are given in Table H.4.

Next, we examined the formula alternatives using a comprehensive evaluation index which considers a city's need requirements, its tax effort, and its fiscal capacity. Both a linear index and multiplicative index are considered. Each is defined in Chapter 7. We obtained the following simple correlation results:

Evaluation Index

Multiplicative Linear

НН	.3502	.3909
PRESENT	.4251	.6284
ALT1	.6194	.8325
ALT2	.6335	.8495
ALT3	.6480	.8510
ALT4	.6523	.8578
ALT5	.6744	.8428
ALT6	.6488	.8046
ALT7	.6533	.8149

	(1) Intercept ^b	(2) Regression Co- efficient for NEED	(3) Coefficient Determination R ²	(4) Standard Error of Estimate
Hold Harmless	\$20.87	\$22.19	.14	\$26.07
Present	14.38	6.78	.55	2.93
ALT1	14.60	8.31	.88	1.46
ALT2	14.90	9.29	.93	1.22
ALT3	14.72	10.05	.89	1.69
ALT4	15.28	12.45	.92	1.70
ALT5	15.01	11.00	.82	2.45
ALT6	15.11	10.12	.75	2.80
ALT7	15.40	12.63	.78	3.25
ALT8	15.65	13.00	.41	7.57

Table H.4: Simple Regression of Per Capita Amounts Under Hold Harmless, the Present Formula, and the Alternative Formulas on Total Need (NEED)^a

a. The statistics reported in this table resulted from regressions of the following form: Per Capita \$ = a + b NEED, where a is the intercept and b is a measure of slope, or the change in per capita dollars associated with a unit change in NEED. All statistics are defined in the last section in Chapter 3.

b. The intercept equals the average per capita amount for the formula being considered.

HELD SCOLE Category												
Hold Harmless	Less than 97 \$2.81	97 to485 \$3.83	485 to 0.0 \$13.94	0.0 to +.485 \$29.24	+.485 to +.97 \$23.92	Greater than +.97 \$43.00						
Present	8.77	10.36	12.75	15.56	18.32	29.13						
ALT1	7.04	8.95	12.74	16.45	19.81	27.55						
ALT2	5.75	8.32	12.88	17.22	20.66	27.47						
ALT3	5.66	7.75	12.51	16.99	21.20	29.43						
ALT4	2.91	6.25	12.61	18.49	23.15	30.67	224					
ALT5	4.41	6.72	12.71	17.87	22.41	26.53						
ALT6	4.74	7.20	13.04	17.98	21.91	23.73						
ALT7	2.50	5.62	12.81	18.95	23.83	26.69						

Table H.5: Average Per Capita Amounts for Hold Harmless, the Present Formula, and Seven Alternative Formulas By NEED Score; 435 Entitlement Cities

NEED Score Categorya

The construction of the NEED index is defined in Appendix H. The average score of the a. 435 cities is zero. Cities with scores greater (less) than zero have above (below) average per capita need. The categories are defined by standard deviations above and below the mean; 68 percent of the cities are between -.485 and +.485.

,

۲ r

CASE-+0	STATCUDE	NAMEL	NAME2	FACTORI	FACTUR2	FACTON3	FACTUR4	FACTORS
1	1.	BIRMINGH	AM	1.533	.388	1-3	6 13	7 01
2	1.	FLORENCE		.768	.274	-1-246	-,538	- 201
3	1.	GADSDEN		1.011	.897	-1-1-0	604	057
4	1.	HUNTSVIL	1 F	- 190	644	-1.022	759	.571
5	1.	MOBILE	~~	1.811	- 232	-10072	- 301	.563
6	1.	MONTGOME	РY	1.830	- 188	- 568		078
7	1.	TUSCALOO	SA	1.256	397	- 300	-1.345	423
	2.	ANCHORAG	5	786	-2 157	1.049	- 6/2	150
9	4.	MESA	t.	- 468	=1.411	1.009		- 336
16	4	PHOENTX		154	- 873	- 627	.053	590
11	4	SCOTTSDA	I F	-1.120	- 918	-1.249	- 770	- 334
12	4	TEMPE		635	- 946	-1.249	-1 303	• 3 3 7
13	4	TUCSON		.169	- 879	- 322	-1.505	105
14	5.	FAYETTEN	THE	.202	019	- 075	-2 140	- 704
15	5.	FORT SMT	TH	.677	447	1 0 4	-2.170	- 662
15	5	I ITTIE D	000		- +03	-1.084	- 505	002
10	5			•052	.352	004	-030	.901
10	5		TILE NUC	-030	.1-20	013	029	• 041
10	5.	FINE BLU	<u>r</u> r	2.404	.300	/0/	012	450
17	0.	ALAMEDA		- 005	240	1.105	0/3	221
20	0 .	ALMAMBRA		865	.222	•950	094	.404
21	0.	ANAHEIM	5 1 ()	941	-1.138	•092	570	.607
22	••	BAKERSFI	ELU	•3/1	081	035	698	1.001
23	0.	BERKELET	2.52	.068	1.483	1.771	-2.089	1.563
54	0.	BUENA PA	RK	984	-1.839	047	.218	171
25	6.	BURBANK		962	498	•331	506	.181
26	6.	CHULA VI	STA	467	-1.119	233	303	•422
27	6.	COMPTON		1.098	-3.430	•749	3.009	3.336
28	6.	CONCORD		-1.151	-1.137	645	598	.593
25	6.	COSTA ME	SA	633	763	•076	-1.106	.697
30	6.	DALY CIT	Y	988	-1.166	•577	509	.500
31	6 .	DOWNEY		-1.014	938	.203	805	.409
32	6.	EL CAJON		529	859	245	603	.196
33	6.	EL MONTE		• 330	-1.703	. 949	.557	062
34	6.	FAIRFIEL	D	063	-2.018	.350	733	139
35	6.	FREMONT		984	-1.436	844	125	.085
30	6.	FRESNO		.596	.067	442	4/2	1.113
-7	6.	FULLERTO	N	-1.010	855	139	871	.420
38	6.	GARDEN G	POVE	-1.054	-1.468	170	070	.377
39	6.	GLENDALE		012	.245	.6+6	917	.204
40	6.	HAWTHORN	E	-1.065	-1.419	1.325	413	.536
41	6.	HAYWARD		655	-1.243	129	.UJ8	.992
42	ь.	HUNTINGT	ON BEACH	-1.010	-1.118	610	701	.373
43	6.	INGLEWOO	Ð	967	018	1.502	707	1.340
44	Ó.	LUMPUC		.015	-1.390	.169	-1.055	.217
~ 5	6.	LONG BEA	СН	478	.185	.633	652	.808
46	6.	LOS ANGE	LES	041	587	.971	1/9	1.490
47	٥.	MODESTO		536	219	477	012	1.135
48	6.	MONTEREY		980	185	• 5×8	-1.008	1.228
49	6.	MOUNTAIN	VIEW	865	-1.054	1.243	-1.032	.440
50	6.	NAPA		667	113	478	805	.033

`.

Table H.6 Per Capita Need Scores for 435 Entitlement Cities

.

-

And the second constraints were set and

Table H.6	Per	Capita	Need	Score

۲ E

eed Scores for 435 Entitlement Cities

.

× .

CASE-NO	STATCODE	NAME 1	NAME2	FACTURI	FACTOR2	FACTOR3	FACTUR4	FACTOR5
51	6.	UAKLAND		.295	.426	.744	.103	2.200
52	6.	ONTARIO		.007	835	469	.508	.405
53	6.	ORANGE		931	960	176	700	.289
54	6.	OXNARD		.290	-2.079	.112	.067	.767
55	6.	PALU ALT	0	995	.011	.021	-1.009	.673
56	6.	PASADENA		382	.496	.542	014	1.499
57	6.	POMONA		.076	901	049	.005	.647
58	6.	REDONDO	HEACH	770	-1.263	1.075	071	.721
59	6.	REDWOOD	CITY	-1.010	626	.269	075	-548
60	6.	RICHMONU		.071	- 806	- 245	.497	1.954
61	6.	RIVERSTO	F	- 427	- 422	- 569	416	1,153
62	6.	SACRAMEN	TO	.203	- 017	- 406	342	.803
63	6.	SAL INAS		- 214	-1.309	-245	. 544	-507
64	6.	SAN BERN	ARUTNO	.360	472	- 549	. 344	1.651
65	6.	SAN DIEG	0	- 248	- 589	.072	600	.604
66	6.	SAN ERAN	01500	= 167	- 611	2.248	- 0 18	1,123
67	6.	SAN JOSE		505	-1.075	- 104	313	.416
68	6.	SAN LEAN	DRO	-1.055	- 391	- 346	- (12	.756
69	6.	SAN MATE	0	- 998	- 487		-1.004	601
70	6.	SANTA AN	Δ	- 207	-1 609	.477	.510	175
71	6.	SANTA HA	LBARA	- 169	461	• • • • •	-1.249	682
72	6.	SANTA CI	APA	955	-1 189	275		.002
73	6.	SANTA CR	117	- 168	1 790	- 477	-1 017	1 128
74	6.	SANTA MA	DIA	- 035	-1 245		- 0.53	214
75	6.	SANTA MO	NICA	- 635	-1.245	• 0 4 1	-1 370	1 403
76	6.	SANTA PO	CA	- 691	• 212	1.714	-1.048	1.473
70	6	SLASIDE	D A	504	-2 272	140	-1.040	.070
74	6	SUUTH GA	TE	- 728	-6.612	.744	220	.437
70	6	STOCKTON		120	140	• 5 / 8	004	• • • • • • •
0	6	SUNNYVAL	E.	-1.075	-1 261	-•13/	-1 013	1.121
ر ب د ا	6	TOUDANCE	Ľ		-1.201	• 1 2 1	-1.013	.140
- 1 - 2	6	VALLEIO		-1.240	-1.201	.240	020	.441
63	6	VENTION	SCAN HUE	- 770	244	143	7:0	.905
5	6	WEST COV	TNA	-) 144	303	269	120	•/1/
0 7	6	WESTMINS		-10144	-1.335	/80	3/1	.390
	6	WESTMINS	120		-1.392	346	.030	005
.7		AUDODA		-1.010	3/8	062		. 392
	Н			- 616	-1.104	361	-1.102	.285
	Ц	COLORADO	CONTNEC	- 134	.358	• 4 4 4	-2.430	.440
- 3	С. Ц	DEALVED	SERTINGS	130	122	285	-1.001	• 344
40	0.	DUENVER		•053	. 444	• 242	044	1.320
91	0	FUEBLU	.	•207	354	219	.507	413
	7.	BRIDGEPU	RI	194	.078	1.286	1.239	.590
43	7.	DRISIUL		- 704	485	392	1.223	812
9 4	7.	HADTEOLIS		/84	121	413	.825	589
45	7 .	MEDIDEN		•012	.114	1.972	./13	.866
40	9.	MERIDEN		/99	003	187	1.110	570
47	9.			-1.075	417	-1.001	. 184	442
48	7 .	NEW BRII	AIN	0/0	.110	• / H3	. 771	348
100	7.	NEW MAVE	N	.507	.673	1.265	. 272	1.077
100	У.	NEW LOND	ON	050	.770	.640	004	.224

226

. 1

4

د بر ۲

----1

:-

•

*

. . .

.

.

Table H.6 Per Capita Need Scores for 435 Entitlement Cities

1

4

CASE-1.0	STATCODE	NAME 1	NAME2	FACTURI	FACTOR2	FACTORS	FACTUR4	FACTORS
1 - 1	9.	NÜRWALK		770	402	• 0 5 4	.423	216
1 (2	9.	NORWICH		334	.908	353	.017	532
1:3	9.	STAMFORD		030	528	.353	.045	147
104	9.	WATERBUR	Y	451	.186	•358	1.324	305
105	9.	WEST HAV	EN	779	.032	.025	.105	415
1.6	10.	WILMINGT	ON	1.172	1.304	161	.921	2.153
1 7	11.	WASHINGT	ON	.530	-1.104	2.603	.219	2.368
108	12.	BOCA RAT	ON	-1.279	235	-1.283	179	. 398
109	12.	CLEARWAT	ER	547	.566	-1.154	068	.719
110	12.	DAYTONA	REACH	1.082	1.306	835	719	1.995
111	12.	FORT LAU	DEHDALE	484	222	556	.020	1.475
112	12.	FORT MYE	RS	.807	.092	780	.201	. 322
113	12.	GAINESVI	LLE	.746	.346	065	-2.251	1.028
11+	12.	HIALEAH		548	-2.927	.653	1.739	.040
115	12.	HOLLYWOO	Ð	962	.050	-1.154	. 370	1.009
116	12.	JACKSONV	ILLE	.768	160	-1.148	309	.467
117	12.	LAKELAND		.775	.908	954	844	.469
110	12.	MELBOURN	E	094	747	-1.332	158	.111
119	12.	MIAMI		.901	-1.628	2.215	1.339	1.104
126	12.	OKLANDO		.838	.055	611	320	1.441
121	12.	PENSACOL	Α	1.538	.218	800	307	.243
122	12.	ST PETER	SBURG	208	1.394	-1.3+3	132	1.016
123	12.	TALLAHAS	SEL	.690	091	.165	-2.131	.200
124	12.	TAMPA		.724	.545	937	231	1.070
125	12.	TITUSVIL	LE	898	-1.065	-1.014	237	.528
126	12.	WEST PAL	M BEACH	.261	.515	343	025	1.113
127	13.	ALBANY		2.238	-1.283	.141	240	769
128	13.	ATLANTA		1.042	449	.525	.020	1.690
129	13.	AUGUSTA		2.638	.459	.287	221	.157
130	13.	COLUMBUS		1.226	429	400	505	.064
131	13.	MACON		1.635	186	243	.107	.296
132	13.	SAVANNAH		2.147	.238	026	302	.775
133	16.	BOISE CI	ΤY	506	.203	599	899	183
134	17.	AURORA		753	316	•418	.751	-1.054
135	17.	BERWYN		-1.184	.982	.649	.517	947
136	17.	BLOOMING	TON	347	.964	.024	307	750
137	17.	CHAMPAIG	N	095	.571	.557	-2.144	224
1.0	17.	CHICAGO		.455	237	2.223	.604	.045
1 - 9	17.	DECATUR		355	.429	649	.551	371
140	17.	DES PLAI	NES	-1.272	917	578	309	548
1-1	17.	EAST ST	LOUIS	3.289	158	180	1.735	1.823
1-2	17.	ELGIN		-1.060	.291	.117	.508	577
143	17.	EVANSTON		940	. 306	1.645	700	045
144	17.	JULIET		527	.051	.114	.856	560
145	17.	MOLINE		074	.488	286	.051	597
1+6	17.	PEORIA		197	. 606	320	.051	.013
1 - 7	17.	HOCKFORD		498	-258	240	.219	213
1+0	17.	SPRINGFI	ELD	237	.511	067	.076	719
1.49	17.	URBANA		030	.054	1.072	-1.860	977
150	17.	WAUKEGAN		495	78H	.324	. 544	391

227

1

1

.

• ~ •

Table	H.6	Per	Capit

4

2

1

٠

.

ta Need Scores for 435 Entitlement Cities

.

,

,

L

.

1

CASE-NO	STATCODE	NAME 1	NAME2	FACTORI	FACTOR2	FACTORS	FACTUR4	FACTORS
151	18.	ANDERSON		390	.192	734	.706	592
152	18.	EAST CHI	CAGO	.472	015	1.451	1.040	.341
153	18.	EVANSVIL	LE	213	.426	440	.018	236
154	18.	FORT WAY	NE	547	.285	543	.508	.153
155	18.	GARY		.580	-1.445	.521	1.759	1.036
156	18.	HAMMOND		769	575	026	1.176	714
157	18.	INDIANAP	OLIS	279	380	244	.361	219
158	18.	LAFAYETT	ε	685	.274	174	.049	708
159	18.	MUNCIE		023	.657	142	.347	433
160	18.	SOUTH BE	ND	494	.469	697	.671	.099
161	18.	TERRE HA	UTE	.036	1.318	521	.245	984
162	19.	CEDAR FA	LLS	633	.184	442	-1.308	-1.018
163	19.	CEDAR RA	PIUS	654	.107	387	448	-1.119
164	19.	COUNCIL	BLUFFS	085	.016	835	1.14	949
165	19.	DAVENPOR	T	287	.280	418	.160	916
166	19.	DES MOIN	ES	349	.500	353	231	469
167	19.	DUBUQUE		490	089	084	.901	-1.714
168	19.	SIOUX CI	ΤY	233	.766	576	.255	-1.164
169	19.	WATERLOO		113	.147	777	.127	923
170	20.	KANSAS C	ITY	.250	.213	651	.607	.240
171	20.	UVERLAND	PARK	-1.362	870	851	-1.407	010
172	20.	TOPEKA		362	.267	434	371	.093
173	20.	WICHITA		126	236	388	550	.104
174	21.	ASHLAND		.232	1.120	723	408	-1.029
175	21.	COVINGTO	N	.531	.418	.491	2.207	-1.160
176	21.	LOUISVIL	LE	•661	.354	.109	.629	.338
177	21.	OWENSBOR	0	.194	060	2+2	030	-1.079
178	22.	ALEXANDR	IA	2.909	.419	001	805	161
179	22.	BATON RU	UGE	.801	392	200	715	.777
160	22.	LAFAYETT	E	1.670	739	533	408	676
181	22.	LAKE CHA	RLLS	1.525	651	654	244	262
182	22.	MONROE		2.907	116	647	676	685
183	22.	NEW ORLE	ANS	2.205	260	.476	.431	.980
184	22.	SHREVEPU	RT	1.489	091	625	304	062
185	23.	LEWISTON		.002	1.149	067	. 542	-1.196
146	23.	PORTLAND		.371	1.178	.356	227	-1.128
187	24.	BALTIMOR	E	.776	.370	. 967	.915	1.717
188	25.	BUSTON		.262	.677	2.129	.419	.525
149	25.	BROCKTON		509	.213	.0.6	.700	782
140	25.	CAMBRIDG	E	349	1.037	2.859	304	.562
141	25.	CHICOPEE		789	385	.072	1.145	868
192	25.	FALL RIV	FR	.042	1.467	.561	1.354	426
143	25.	FITCHBUR	6	418	1.017	008	.704	778
144	25.	HAVERHIL	L	497	1.289	144	.008	809
145	25.	HOLYOKE		•191	1.102	. 4 14	.802	.015
196	25.	LAWRENCE		231	1.008	1.471	.810	860
197	25.	LEOMINST	ER	722	.049	248	1.190	-1.042
148	25.	LOWELL		140	.682	.756	. 733	967
149	25.	LYNN		320	.908	.777	. 708	136
200	25.	MALDEN		060	.005	1.129	.402	-1.046

228

.

ġ.

Ň

Table H.6 Per Capita Need Scores for 435 Entitlement Cities

ĩ

.

,

,

•

7

r .

CASE-~0	STATCUDE	NAMEL	NAME 2	FACTURI	FACTOR2	FACTURE	FACTUR4	FACTORS
211	25.	MEDFORD		680	.860	• 4 4 3	.532	-1.056
202	25.	NEW HEDF	ORU	.375	1.683	.267	.104	469
21:3	25.	NEWTON		-1.298	.821	341	.256	050
214	25.	PITTSFIE	LD	605	.727	339	.3/3	915
205	25.	QUINCY		849	.502	·2H8	.752	466
27.6	25.	SOMERVIL	LE	538	.530	2.098	1.202	925
2.7	25.	SPRINGFI	ELD	102	.665	.163	.709	.497
208	25.	WALTHAM		784	.102	.690	.173	-1.101
209	25.	WORCESTE	R	508	1.065	. 344	.808	.241
510	26.	ANN ARBO	R	634	.132	.706	-1.007	.769
211	26.	BATTLE C	RELK	.252	1.614	900	.534	1.129
515	26.	BAY CITY		335	1.014	d05	1.335	686
213	26.	DEARBORN		-1.150	.219	942	.621	192
214	26.	DEARBORN	HEIGHTS	-1.346	-1.046	943	1.153	603
215	26.	DETROIT		064	.589	.235	1.806	2.542
216	26.	EAST LAN	SING	564	247	1.472	-2.912	274
217	26.	FLINT		171	171	508	1.621	1.122
218	26.	GRAND RA	PIUS	090	.972	626	.551	.185
219	26.	JACKSON		.051	1.247	328	.826	429
220	26.	KALAMAZO	0	247	1.182	177	333	.515
221	26.	LANSING		421	.130	578	.079	.664
525	26.	LINCOLN	PAKK	-1.209	-1.102	735	1.777	305
223	26.	LIVONIA		-1.493	-1.556	-1.430	.067	380
224	26.	MUSKEGON		202	.913	720	1.407	.632
225	26.	PONTIAC		306	327	579	3.046	1.904
226	26.	ROSEVILL	F	-1.167	-1.904	712	1.966	682
227	26.	ROYAL OA	ĸ	-1.348	703	297	.202	260
558	26.	SAGINAW		.221	.293	342	1.454	.556
229	26.	ST CLAIR	SHORES	-1.437	-1.736	746	1.375	721
230	26.	STERLING	HEIGHTS	-1.390	-1.182	-1.394	.280	009
231	26.	TAYLOR		-1.107	-1.901	-1.242	2.131	429
232	26.	WARKEN		-1.399	-1.483	-1.027	1.210	321
233	26.	WYOMING		937	612	-1.346	1.073	638
234	27.	BLOOMING	TON	-1.202	-1.779	570	505	642
275	27.	DULUTH		268	1.437	550	007	-1.079
236	27.	MINNEAPO	LIS	356	1.243	•563	080	.094
237	27.	MOORHEAD		618	643	·1H3	026	670
238	27.	ROCHESTE	R	659	.140	• 058	-1.327	-1.080
239	27.	ST CLOUD		557	.019	117	.115	-1.312
240	27.	ST PAUL		582	.669	.228	.306	121
241	28.	BILOXI		.722	923	•5H1	515	967
242	28.	GULFPORT		.998	185	647	-1.013	794
243	28.	JACKSON		2.003	826	345	030	105
244	29.	CULUMBIA		138	.276	.338	-2.527	458
245	29.	FLORISSA	NIT	-1.261	-2.231	512	.053	-1.242
246	29.	INDEPEND	ENCE	866	211	857	103	713
247	29.	KANSAS C	ΙΤΥ	.004	.550	3+6	.113	.768
248	29.	ST JUSEP	н	.151	1.227	549	.412	-1.124
249	29.	ST LOUIS		1.000	.346	1.205	1.757	.885
250	30.	BILLINGS		195	.101	246	706	173

229

.

.

.

· . .

1

CASE-NO	STATCODE	NAME 1	NAME2	FACTORI	FACTORS	FACTOR3	FACTUR4	FACTORS
251	30.	GREAT EA	115	- 250	197	.013	(35	771
252	31.	LINCOLN		623	484	- 110	-1.140	599
253	31.	OMAHA		235	025	023	.046	369
254	32.	LAS VEGA	S	- 544	-1.139	- 209	472	.555
255	33.	MANCHEST	FR	369	.760	-208	.406	-1.274
256	33.	NASHUA		072	267	- 064	.235	-1.510
257	34.	ATLANTIC	CITY	.690	2,110	-308	. 206	3.800
258	34.	BAYONNE		376	.261	1.841	.533	-1.443
254	34.	BLOOMFIE	I D	-1.093	480	.728	.467	832
260	34.	CAMDEN	2-	1.190	805	.003	1.814	1.786
261	34.	CI IFTON		-1.271	.344	071	.327	715
262	34.	EAST ORA	NGE	355	.237	3-163	023	1.452
263	34.	ELIZAHET	н	094	- 448	1.719	. 8+6	397
264	34.	INVINGTO	N	863	.856	2.379	.474	335
265	34.	JERSEY C	TTY	. 339	063	2.704	1.187	927
260	34.	LONG BRA	NCH	.050	.086	.917	4	.330
267	34.	NEWARK		1.584	- 756	2.674	1.853	1.719
268	34.	PASSAIC		.347	.204	2.352	1.341	.145
269	34.	PATERSON		.023	- 206	2.279	1.717	.184
270	34.	PERTH AM	BOY	.128	.486	1.054	.644	845
271	34.	SAYREVIL	IE	-1.328	896	886	.507	849
272	34.	TRENTON		.519	. 906	.958	1.304	1.284
273	34.	UNION CI	TY	247	285	5.404	1.796	-1.851
274	34.	VINELAND		347	091	914	1.101	239
275	35.	ALBUQUER	QUE	.295	920	412	730	1.248
276	36.	ALBANY		.087	1.402	•751	3/3	408
277	36.	BINGHAMT	ON	250	1.575	.483	.043	684
278	36.	BUFFALO		.085	1.554	.949	.912	.538
279	36.	ELMIRA		.475	1.730	.099	.004	910
280	36.	MOUNT VE	RNUN	477	211	2.744	.713	050
281	36.	NEW ROCH	ELLE	724	.006	1.089	016	298
282	. dt	NEW YORK	CITY	.155	460	3.554	.849	.675
283	36.	NIAGARA	FALLS	415	.537	103	1.305	.165
284	36.	POUGHKEE	PSIE	006	1.239	1.038	071	432
285	36.	ROCHESTE	R	059	1.110	.725	.654	025
286	36.	ROME		420	.148	253	.452	-1.165
242	36.	SCHENECT	ADY	453	1.502	.613	028	853
288	36.	SYRACUSE		.064	1.194	.708	213	135
5+3	36.	TROY		.121	1.604	•750	178	-1.091
290	36.	UTICA		.062	1.598	.2+0	.303	-1.063
291	36.	WHITE PL	AINS	806	.114	1.207	412	298
245	36.	YONKERS		808	207	1.774	.120	428
243	37.	ASHEVILL	E	• 456	1.169	746	.005	.421
244	37.	BURLINGT	0 N	284	144	5h1	.332	903
245	37.	CHARLOTT	F	• 340	529	172	106	1.259
246	37.	DURHAM		1.093	.104	.166	124	.769
247	37.	FAYETTEV	ILLE	1.919	406	518	900	.700
548	37.	GASTONIA		•588	426	457	1.028	412
249	37.	GREENSBU	FO.	035	488	272	352	.660
300	37.	HIGH POI	T IA	.321	265	- · 2H7	.506	447

 Table H.6
 Per Capita Need Scores for 435 Entitlement Cities

1

. ,

i

۲

.

•

.

١

.

· ·

Table H. 6 P

.

.

.

ş

Per Capita Need Scores for 435 Entitlement Cities

.1

•

CASE-NO	STATCUDE	NAMEL	NAME2	FACTORI	FACTOR2	FACT0+3	FACTOR4	FACTOR5
301	37.	RALEIGH		.115	230	.108	-1.054	.432
302	37.	WILMINGT	ON	1.933	.833	6:17	655	1.075
303	37.	WINSTON-	SALEM	.568	.072	402	041	1.256
304	38.	FARGO		505	.161	.500	035	-1.460
305	39.	AKRON		203	.815	405	.434	.550
306	39.	CANTUN		057	.967	166	.576	324
307	39.	CINCINNA	ΤI	.690	.319	.848	. 373	.073
308	39.	CLEVELAN	D	•742	.807	•908	.525	.979
309	39.	CLEVELAN	D HEIGHT	-1.114	1.195	.009	100	348
310	39.	CULUMBUS		.097	.178	•112	498	.499
311	39.	DAYTON		.028	.371	.365	.571	1.262
312	39.	ELYHIA		664	318	472	.532	615
313	.9e	EUCLID		-1.189	-,578	.145	573	619
314	39.	KETTERIN	G	-1.282	777	666	-1.037	328
315	39.	LAKEWOOD		-1.059	.784	1.617	400	-1.149
316	39.	LIMA		096	.544	357	1.191	049
317	39.	LORAIN		196	580	353	1.134	332
318	39.	MANSFIEL	D	135	.619	510	.247	059
319	39.	MIDULETO	WN	312	.253	454	.028	200
350	39.	PARMA		-1.293	-,549	-1.127	001	491
321	39.	SPRINGFI	ELU	.035	.776	.065	.254	655
322	39.	STEUBENV	ILLE	.180	1.381	249	372	143
323	39.	TOLEDO		326	.694	429	.559	.139
324	39.	WARREN		462	.147	301	.5/7	.130
325	39.	YOUNGSTO	WN	•034	1.037	541	1.002	.624
326	40.	LAWTON		.892	701	637	703	.314
327	40.	NORMAN		085	.404	419	-1.903	335
328	40.	OKLAHOMA	CITY	.325	.142	873	734	070
329	40.	TULSA		.007	.028	863	-,d38	.211
330	41.	EUGENE		371	.622	179	-1.753	.646
331	41.	PORTLAND		298	1.445	276	309	.697
332	41.	SALEM		618	.730	463	805	.241
333	41.	SPRINGFI	ELU	503	387	173	.079	.100
334	42.	ALLENTOW	N	561	1.386	217	.258	691
335	42.	ALTOONA		.198	1.888	559	.377	-1.267
3.36	42.	BETHLEHE	м	511	.865	461	.010	706
337	42.	CHESTER		1.021	.724	•568	1.154	1.564
338	42.	EASTON		.369	1.868	.144	.081	859
339	42.	ERIE		190	.756	• 084	.170	857
340	42.	HARKISBU	RG	1.104	1.857	• 4 14 4	571	.779
341	42.	HAZLETON		350	1.649	•031	.103	-1.464
342	42.	JOHNSTOW	N	•430	1.614	•697	.038	-1.444
343	42.	LANCASTE	P	.174	1.824	.278	.248	-,453
344	42.	PHILADEL	PHIA	.330	•q33	.850	.048	.183
345	42.	PITTSBUR	GH	.229	1.176	.680	.527	.291
346	42.	READING		116	2.004	.167	.575	777
347	42.	SCRANTON		240	1.060	.114	.579	-1.126
348	42.	WILKES-B	ARRE	.027	1.868	•412	.326	-1.352
349	42.	WILLIAMS	PORT	.263	1.835	.244	141	-1.131
350	42.	YORK		.175	1.876	• 466	.421	399

231

Table H.6 Per Capita Need Scores for 435 Entitlement Cities

.

.

.

CASE-NO	STATCODE	NAMEL	NAME2	FACTORI	FACTOR2	FACTOR3	FACTUR4	FACTORS
351	44.	CHANSTON		-1.094	. 399	903	. 916	- 345
352	44.	PAWTUCKE	т	378	1.011	. 525	1.076	- 662
353	44.	PROVIDEN	CE	.420	1.797	. 464	.658	.694
354	44.	WARWICK		-1.088	- 192	-1.376	1.132	- 256
355	45.	CHARLEST	ON	2.277	.194	.243	705	.858
356	45.	COLUMBIA		.746	048	059	- 603	.907
357	45.	GREENVIL	1 E	1.164	.225	-155	- 105	.730
358	45.	SPARTANE	URG	1.410	218	243	524	.438
359	46.	SIOUX FA	115	467	.120	- 241	- 404	-1.047
360	47.	CHATTANU	OGA	1.651	738	285	299	.801
361	47.	KINGSPOR	T	.501	.500	-1-026	-1.000	891
362	47.	KNOXVILL	F	.750	.749	573		078
363	47.	MEMPHIS		1.489	803	269	448	.138
364	47.	NASHVILL	E-DAVIDS	.160	113	- 589	354	.195
365	48.	ABILENE	-	.452	416	724	768	617
366	48.	AMARILLO		020	- 363	784	622	225
367	48.	ARLINGTO	N	-1.015	923	413	-1.000	.054
368	48.	AUSTIN		.568	- 497	.266	-1.512	-,123
369	48.	BEAUMONT		. 983	.040	682	4vl	003
370	48.	BROWNSVI	LLE	0.268	-2.700	280	1.514	-2.609
371	48.	BRYAN		1.556	179	564	-1.003	739
372	48.	CORPUS C	HRISTI	1.398	-1.538	347	.166	.128
373	48.	DALLAS		.277	811	.003	206	.985
374	48.	EL PASO		1.829	-2.014	.205	.079	- 665
375	48.	FURT WOR	тн	.252	556	- 455	008	.212
376	48.	GALVESTO	N	1.255	.289	.205	.073	1.172
377	48.	GARLAND		-1.027	-1.478	884	014	478
378	48.	GRAND PR	AIRIE	451	-1.612	547	.352	399
379	48.	HARLINGE	N	5.189	-1.454	-1.117	.103	-1.755
340	48.	HOUSTON		• 454	-1.045	.130	207	.585
3H1	48.	IRVING		810	-1.451	262	559	554
342	48.	KILLEEN		1.081	-1.247	.295	-1.606	292
383	48.	LAREDO		0.099	-2.419	080	1.908	-2.920
3+4	48.	-LUBBOCK		.871	-1.012	519	648	269
345	48.	MC ALLEN		5.051	-1.815	556	.545	-2.288
386	48.	MESQUITE		954	-1.705	966	eut.	828
387	48.	MIDLAND		.364	-1.165	865	-1.002	589
Зня	48.	ODESSA		.415	-1.522	532	040	-1.037
349	48.	PASADENA		671	-1.559	246	251	836
340	48.	PORT ART	HUK	1.166	.031	894	.004	.402
391	48.	SAN ANGE	LO	1.068	065	854	428	653
345	48.	SAN ANTO	NIU	1.036	-1.424	124	. 528	032
393	48.	SHERMAN		402	.462	704	214	318
344	48.	TEMPLE		•930	.225	043	433	510
395	48.	TEXARKAN	A	.871	.677	725	107	.015
396	48.	TEXAS CI	ΤY	.005	-1.260	647	.229	200
397	48.	TYLER		.106	054	4+6	642	.027
348	48.	WACO		1.032	.704	870	745	.564
399	48.	WICHITA	FALLS	.237	043	528	714	563
400	49.	OGDEN		001	.103	336	.104	304

e . .

•

A.

Table H. 6	Per Capita	Need	Scores	for	435	Entitlement	Cities
------------	------------	------	--------	-----	-----	-------------	--------

CASE-NO	STATCUDE	NAMEL	NAMEZ	FACTOR1	FACTOR2	FACTORS	FACTUR4	FACTORS	
401	49.	OREM		.113	-1.978	715	030	-1.306	
402	49.	PROVO		. 580	102	.569	-2.107	-1.390	
413	49.	SALT LAK	E CITY	.039	.753	036	432	.416	
4114	51.	ALEXANDR	IA	565	783	1.717	-1.687	.698	
405	51.	CHESAPEA	ĸE	.629	660	-1.222	.216	792	
4 (16	51.	HAMPTON		028	750	458	416	•077	
4 () 7	51.	LYNCHBUR	G	.209	.897	290	145	299	
408	51.	NEWPORT	NEWS	.443	-,693	326	386	.501	
409	51.	NURFOLK		• 789	380	•439	342	.980	
410	51.	PETERSBU	RG	1.972	179	.602	.347	692	
411	5,1.	PORTSMOU	тн	1.142	329	246	.133	.662	
412	51.	KICHMOND		•747	.381	•138	085	1.385	
413	51.	ROANOKE		•224	1.023	576	124	.364	
4]4	51.	VIRGINIA	BEACH	173	833	-1.044	792	.018	
415	53.	BELLEVUE		-1.239	935	723	-1.609	.256	
416	53.	EVERETT		348	.724	678	122	•174	
4)7	53.	RICHLAND		824	962	903	-1.430	434	
•18	53.	SEATTLE		635	.855	.183	509	.732	
419	53.	SPOKANE		072	1.252	715	506	252	
420	53.	TACOMA		139	.891	749	078	.191	
421	53.	YAKIMA		.270	1.496	798	270	.778	
422	54.	CHARLEST	ON	•540	1.405	174	-1.138	017	
423	54.	HUNTINGT	ON	•657	1.862	275	605	309	
424	54.	WEIRTON		745	163	-1.074	.542	- 890	
425	54.	WHEELING		•207	1.724	1+8	105	812	
426	55.	APPLETON		880	271	285	.256	-1.267	
427	55.	GREEN BA	Y	555	351	347	• 448	-1.487	
428	55.	KENOSHA	-	506	209	040	.933	-1.199	
429	55.	LA CROSS	E	215	1.263	254	549	-1.151	
47()	55.	MADISON	10 	355	.060	•629	-1./41	801	
431	55.	MILWAUKE	E	106	.136	•752	.329	353	
432	55.	USHKOSH		596	1.217	062	175	-1.242	
433	55.	RACINE		376	034	.096	.840	465	
4 7 4	55.	SUPERIOR	- •	.136	1.538	699	114	-1.041	
435	55.	WEST ALL	15	-1.136	141	058	.502	-1.044	

Appendix I

CORRELATIONS BETWEEN PER CAPITA AMOUNTS AND NEED SCORES AND NEED VARIABLES BY POPULATION SIZE

In Tables I.1 to I.7, we present coefficients of correlation between formula amounts and need scores and need variables by city size. Within each population group, each city receives an equal weight of one. The five factor scores refer to those scores derived and listed Appendix H; the factors are interpreted by the following variables:

	Dimension	Need Variables Defining Dimension
FACTOR 1	Poverty	Poverty variables (PYUTHPOV, PPOORPER, PFEMALHP, PNW), percent of overcrowded houses, percent of houses without plumbing.
FACTOR 2	Age of Housing stock	Percent of houses built before 1939, percent of population aged over 65
FACTOR 3	Density	Percent of owner-occupied houses (negative), population per square mile.
FACTOR 4	Crime and Unemployment	Crime rate, percent unemployed
FACTOR 5	Lack of Economic Opportunity	Percent of population without a high school education

Table	I.1

ų,

.

,

 Coefficients of Correlation Between (1) Per Capita Amounts and (2) Per Capita Need Scores and Need Variables, 72 Entitlement Cities, Population less than 50,000

.

٠ .

1

4

	нн	PRESENT	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	ALT8
FACTOR 1	0321	.9823	.8533	.7556	.7820	.6626	.4488	•3113	.3487	0922
FACTOR2	.1899	1306	.3019	.4910	.3754	.5829	.6752	.7848	.7710	.8477
FACTOR3	.2883	0842	.0532	.0625	.0997	.1013	.1984	.2038	.1953	.2699
FACTOR4	.1306	.0191	.2377	.1974	.3226	.2547	.4330	.3933	.3827	.4620
FACTOR5	.0631	0201	0190	.0208	0330	.0175	0216	.0058	.0070	0068
P65AGED	.1608	.1016	.4027	.5146	.4482	•5667	.6056	•6532	.6498	.6246
PCRIMF	.1088	.2107	.3189	.3312	.3341	.3404	.3427	.3273	.3312	.2569
PNW	.0394	.8345	.6776	.5440	.6217	.4599	.3052	.1582	.1894	1692
PWOHSED	.2464	.3777	.6119	.5973	.6667	.6282	.6990	•6455	.6489	.5494
PFEMAL HP	.0981	.8192	.8074	.7661	.7628	.7069	.5437	.4499	.4790	.1156
PYUTHPOV	0336	.9686	.8138	.7042	.7398	.6075	.3941	•2515	.2889	1462
PPOORPER	0220	.9780	.8912	.8264	.8206	.7399	.5165	•3985	.4356	0106
POCRWD	1011	.7608	.5031	.3075	.4445	.2121	.0816	0938	0642	3813
PWOPLUMB	.0764	.6925	.7266	.6667	.7129	.6307	•5486	.4507	.4721	.1927
PUNEMP75	0670	.0584	.0835	.0955	.0827	.0957	.0836	.0852	.0869	.0598
DENSITY	.2671	0412	.1959	.2623	.2487	.3151	.4000	•4335	.4252	.4750
POWNOCCH	3061	1539	2653	2881	2815	3010	3077	3036	3058	2529
PMULTI	.3542	2183	.0697	.1500	.1458	•5568	.3720	.4262	.4098	.5495
PAGE1939	.2738	1083	.3841	.5160	.4979	.6282	.8170	.8844	.8660	.9838
PNEWSTR	2165	1272	5178	6106	5981	6851	7958	8239	8167	8173
PCINC72	.0407	5323	5311	4847	5120	4503	3704	2964	3140	0914
MEDINC	0230	7967	7906	7553	7471	6985	5377	4493	4776	1230

.

.

• • • •

	нн	PRESFNT	ALT1	AL T2	ALT3	ALT4	ALT5	ALT6	ALT7	ALTO
FACTOR1	.1555	.9826	.9063	.8495	.8555	.7847	.6123	.4964	.5308	.0605
FACTOR2	.3119	0555	.2775	.4586	.3220	.5325	.5887	.7205	.7056	.7998
FACTOR3	.0231	0186	.1622	.1744	.2197	.2236	.3517	.3614	.3493	.4523
FACTOR4	.1127	.1423	.2541	.1638	.3206	.1972	.3614	.2864	.2790	.3349
FACTOR 5	0353	0502	1694	1482	2157	1A07	2874	2684	2610	3147
P65AGED	.2431	.0572	.3421	.4493	.3939	.5125	.5967	. #670	.6559	.7187
PCRIME	0163	.2568	.1539	.1198	.1201	.0823	0041	0478	0343	1912
PNW	.0385	.8438	.7045	.6139	.6523	.5427	.3964	.2574	.2898	1279
PWOHSED	.2363	.5264	.6675	.6240	.7072	.6406	.7031	.6314	.6370	.4967
PFENALHP	•5508	.8884	.8498	.8181	.8065	.7657	.6105	•5195	.5496	.1286
PYUTHPOV	.1565	.9726	.8750	.8023	.8238	.7340	.5656	•4392	.4739	.0070
PPOORPER	.1717	.9778	.9218	.8939	.R707	.8729	.6450	.5428	.5767	.1076
POCRED	0312	.7958	.6188	.4500	.5869	.3796	.293A	.1133	.1426	2216
PWOPLUMB	.1501	.8054	.R153	.7795	.7941	.7451	.6470	.5595	.5834	.2318
PUNEKP75	.1969	.2910	.3550	.3070	.3816	.3150	.3665	.3100	.3128	.2432
DENSITY	0077	0690	.0987	.1063	.1559	.1549	.2875	.2978	.2847	.4072
POWNOCCH	1638	2211	3753	4134	4019	4404	4739	4837	4826	4397
PMULTI	.1247	1755	.0754	.1374	.1446	.2082	.3610	.4180	.3986	.5823
PAGE1939	.3383	.0541	.4462	.5549	•5339	.6475	.8127	.8847	.8658	.9896
PNEWSTR	2700	1911	4978	5666	5657	6332	7541	7874	7767	8140
PCINC72	2108	7219	7213	6759	7043	6439	5641	4763	4977	1860
MEDINC	2465	8350	8622	8462	H377	A)28	6997	6237	6485	2796

Table I.2Coefficients of Correlation Between (1) Per Capita Amounts
and (2) Per Capita Need Scores and Need Variables, 140
Entitlement Cities, Population Between 50,000 and 75,000

. .

۰,

۲.

¥

4

4

3

.

•

ŧ .

.

۰.

	нн	PRESENT	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	AL T8
FACTOR1	.4591	.9554	.8204	.7507	.7557	.6837	.5456	•4731	.4941	.2357
FACTOR2	.3247	.1372	.5905	.7445	.6229	.7864	.7853	.8566	.8527	.8646
FACTOR3	.1241	0067	.2333	.2610	.2770	.2968	.3663	.3758	.3696	.4260
FACTOR4	.3010	.3397	.4703	.3668	.5192	.3859	.4930	•4164	.4149	.4168
FACTOR5	.2326	.3581	.1156	.0554	.0615	.0040	0895	1313	1191	2533
P65AGFD	.3806	.2306	.6574	.7622	.6973	.8024	.8273	.8673	.8639	.8694
PCRIMF	.3520	.4814	.3060	.2051	.2752	.1643	.1207	.0491	.0599	0662
PNW	.3079	.7031	.4360	.3117	.3795	.2465	.1540	.0631	.0803	1193
PWOHSED	.4849	.6102	.7406	.6943	.7490	.6879	.6898	.6363	.6430	.5416
PFENALHP	.5377	.9242	.8349	.7670	.7818	.7091	.5928	•5212	.5403	.3025
PYUTHPOV	.4733	.9596	.7639	.6640	.6971	.5915	.4600	.3715	.3931	.1321
PPOORPER	.5130	.9531	.8673	.8210	.8045	•7584	.6159	•5557	•5762	.3201
POCRAD	.2233	.6339	.3109	.0963	.2855	.0409	.0326	1066	0.932	2422
PWOPLUNG	.2790	.3811	.6242	.6324	.6512	.6492	.6769	.6604	.6614	.6249
PUNEMP75	.3721	.2238	.3516	.3367	.3720	.3474	.3784	.3578	.3579	.3427
DENSITY	.0726	0567	.1813	.2059	.2291	.2448	.3251	.3346	.3273	.3983
POWNOCCH	2608	1853	3877	4405	4005	4546	4507	4686	4688	4493
PHULTT	.2271	0535	.3241	.4017	.3822	.4549	•5353	.5716	.5625	.6446
PAGE1939	.4069	.2045	.7043	.7883	.7707	.8457	.9266	.9535	.9464	.9911
PNEWSTR	4588	-,4224	7458	7594	7862	7862	8342	8170	8166	7894
PCINC72	4261	7062	6401	5531	6140	5150	4643	3892	4021	2398
MEDINC	4784	8225	8224	-,7855	7837	7432	6472	5949	6105	4092

2

4

1

٠,

Table I.3

237

. . . .

× . .

.

Coefficients of Correlation Between (1) Per Capita Amounts and (2) Per Capita Need Scores and Need Variables, 72 Entitlement Cities, Population Between 75,000 and 100,000

	нн	PRESENT	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	ALTB
FACTOR1	.2935	.9514	.8118	.7484	.7360	.6719	.4865	.4088	.4362	.0979
FACTOR2	.4340	.0860	• .5099	.6772	•5476	.7302	.7400	.8252	.8199	.8301
FACTOR 3	.3126	.1252	.3628	.3492	.4224	.3901	.4980	.4758	.4698	.5100
FACTOR4	.2666	.0782	.2341	.1478	.3049	.1863	.3423	.2802	.2724	.3442
FACTOR 5	.2030	.3817	.2367	.2030	.1862	.1561	.0468	.0136	.0274	1320
P65AGED	.2119	.1230	.3922	.4620	.4263	.4969	.5295	.5580	.5548	.5583
PCRIME	.3508	.3330	.3827	.3440	.3888	.3389	.3408	.3001	.3052	.2277
PNW	.1703	.8056	.5710	.4289	•2151	.3544	.2366	.1201	.1433	1298
PWOHSED	.4317	.5180	.6393	.5778	.6609	.5788	.6047	•5391	,5455	.4396
PFEMALHP	.4151	.8809	.7957	.7510	.7313	•6468	.5215	.4568	.4812	.1740
PYUTHPOV	.3069	.9292	.7531	.6744	.6753	.5944	.4119	.3271	.3545	.0209
PPOORPFR	.3320	• 9553	.8636	.8223	.7910	•7517	.5650	.4992	.5260	.1891
POCRWD	0458	.62A7	.3394	.1214	.3090	.0582	.0308	1227	1058	2920
PWOPLUMR	.2500	.4400	.6419	.6622	.6568	.6717	.6633	.6490	.6543	•5546
PUNEMP75	.3476	.1045	.2A08	.2877	.3173	•3148	.3740	.3676	.3642	.3803
DENSITY	.2744	.0459	.3089	.3123	.3737	.3605	.4778	.4689	.4606	.5267
POWNOCCH	4285	3251	5210	5330	5455	5496	∞ ₅698	5558	-,5579	5008
PMULTI	.4454	.0505	.3634	.3924	.4305	•4463	.5593	.5644	•5557	.6215
PAGE1939	.5606	.1264	.6201	.7124	.7039	.7877	.9060	.9406	.9303	.9914
PNEWSTR	4789	3394	7014	-,7434	~.7565	7472	A539	8522	8500	8239
PCINCTA	3325	5831	6043	5645	-,5663	5387	4789	4271	4399	2672
MEDINC	3426	7960	8000	7423	-,7540	7368	6027	- 5555	5757	-,3111

Table I.4Coefficients of Correlation Between (1) Per Capita Amounts
and (2) Per Capita Need Scores and Need Variables, 94
Entitlement Cities, Population Between 100,000 and 250,000

· ·

۰ **۱**

.

.

۲

.

• '

•

. . .

e , >

.

,

.
Table	
-------	--

· · · ·

,

.

I.5 Coefficients of Correlation Between (1) Per Capita Amounts and (2) Per Capita Need Scores and Need Variables, 31 Entitlement Cities, Population Between 250,000 and 500,000

....

а.

.

	нн	PRESENT	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	ALT8
FACTOR 1	0590	.9141	.7261	.5632	.6391	•4345	.2793	.0807	.1118	2103
FACTOR2	.3429	5660	1206	.2467	0611	•3565	.3486	•5837	.5674	.7041
FACTOR 3	.2108	.4795	.7132	.6317	.7578	.6406	.7262	.5963	.6036	.4986
FACTOR4	.1893	.4138	.7072	.6582	.7642	.6835	.7827	.6741	.6789	.5961
FACTOR 5	.1948	.3193	.2551	.2558	.2067	.2012	.0886	.0493	.0627	0772
P65AGED	.0725	1092	.2827	.4263	•3553	.5059	.5873	.6451	.6368	.6889
PCRIMF	.2804	.3869	.5012	.4880	.4999	.4688	.4457	.3746	.3850	.2602
PNW	1085	.9218	.7262	.4766	.6640	.3602	.2881	.0437	.0713	2137
PWOHSED	.2525	.5532	.7895	.7974	.7993	.7823	.7594	•6657	.6797	.5030
PFEMALHP	.3206	.7092	.7197	.7062	.6593	.6230	.4674	• 3593	.3842	.1111
PYUTHPOV	.0506	.8496	.6960	.5723	.6120	.4528	.2909	.1190	.1487	1599
PPOORPER	0375	.9356	.7921	.6552	.7069	.5296	.3653	.1735	.2054	1290
POCRWD	2489	.8893	.6523	.3158	.6095	.2089	.2127	0693	0456	2842
PWOPLUMB	.0663	.4240	.6284	.5792	.6599	.5826	.6336	.5309	.5385	.4342
PUNEMP75	.1548	.2423	.4882	.5469	.5140	.5637	.5702	.5463	.5509	.4752
DENSITY	.2787	.2631	.6160	.6465	.6784	.6905	.7760	•7254	.7266	.6774
POWNOCCH	3196	4792	7048	6809	7289	6780	7004	6014	6115	4774
PMULTT	.3896	.2738	.6379	.6904	.6952	.7319	.7978	•7563	.7585	.6967
PAGE1939	.4336	1248	.4372	.6731	.5286	.7781	.8561	.9503	.9409	.9886
PNEWSTR	3495	0512	5177	7067	5010	7759	8095	8623	8598	8412
PCINC72	0220	6758	6237	5191	5782	4414	3550	2092	2306	0020
MEDINC	0157	8643	7465	6146	6737	5030	3644	1832	- 2119	.0914

239

4

	нн	PRESENT	ALT1	ALT?	ALT3	ALT4	ALT5	ALT6	ALT7	ALT8
FACTOR1	.0094	.9591	.7337	.6004	.6512	.4943	.3318	.1862	.2149	1052
FACTOR2	.3581	-,3286	• •1768	.4708	.2460	.5116	.5611	.7033	.6892	.8078
FACTOR3	.8201	.1690	.5275	.5591	.5969	.6127	.7134	.7017	.6969	.7152
FACTOR4	.3089	.5488	.7172	.6652	.7386	.6613	.6825	.6002	.6085	.4897
FACTOR5	.5257	.1980	.2912	.2910	.3008	.2931	.2967	.2759	.2788	.2348
P65AGED	.5613	0347	.4620	.6060	.5425	.6866	.7763	.8385	.8286	.8951
PCRIME	.6050	.2108	.4704	.5096	.5082	.5381	.5758	.5690	.5688	.5432
PNW	.3493	.7836	.6182	.4524	.5758	.3790	.3145	.1631	.1834	0441
PWOHSED	.0767	.6704	.7157	.6777	.6912	.6358	.5599	.4802	.4965	.2969
PFEMALHP	.3316	.8586	.8529	.8058	.8043	.7389	.6099	.5115	.5344	.2615
PYUTHPOV	.0041	.9560	.7221	.5865	.6383	.4793	.3158	.1695	.1984	1217
PPOORPER	.1497	.9711	.8440	.7446	.7741	.6519	.4978	.3658	.3934	.0772
POCRWD	0108	.8828	.5762	.3493	.5114	.2487	.1615	-,0263	0015	-,2684
PWOPLUMB	.3400	.1041	.3914	.4606	.4338	.4990	.5402	.5579	.5551	,5581
PUNEMP75	. 3873	.0691	.3547	. 3989	.4081	.4440	.5178	.5245	.5197	.5471
DENSITY	.7606	.0781	.5058	.5917	.5806	.6582	.7532	.7765	.7693	.8090
POWNOCCH	7612	= 2564	~ 5795	- 6137	e.6323	- 6522	7157	- 6996	~.6985	- 6762
PHULTI	.6701	.1253	.5466	.6276	.6181	-6896	.7772	.7939	.7881	.8124
PAGE 1939	.6930	.0769	.6041	.7559	.6816	.8319	.9050	-9608	.9536	.9856
PNEWSTR	= 7191	2,2155	- 6991	= 8272	7633		- 9354	- 9682	- 9653	- 9504
PCINC72	.2056	-,5328	- 4573			- 3789	- 2563	- 2020	- 2104	- 0275
MEDINC	- 0970	- A927	- 7667			-,5700	COCJ	- 3234	- 3400	0528

Table I.6Coefficients of Correlation Between (1) Per Capita Amounts
and (2) Per Capita Need Scores and Need Variables, 21
Entitlement Cities, Population Between 500,000 and 1,250,000

.

.

۲

,. -

a

τ

· ·

.

• •

,

.

.

Table I.7

(

,

Coefficients of Correlation Between (1) Per Capita Amounts and (2) Per Capita Need Scores and Need Variables, 26 Entitlement Cities, Population Greater than 500,000

.

.

. .

.

	нн	PRESENT	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	ALT8
FACTOR1	.0374	.9431	.7026	.5716	.6141	.4639	.2979	.1620	.1896	1135
FACTOR 2	.3943	3327	.1724	.4305	.2319	.5127	.5338	.6785	.6667	.7636
FACTORS	.4696	.1594	.4986	.4901	.5723	•5427	6647	.6327	.6274	.6560
FACTOR4	.2034	.4173	.6384	.6195	.6660	.6282	.6559	.6028	.6077	.5287
FACTOR 5	.3714	.1249	.1857	.1863	.1905	.1868	.1863	.1740	.1759	.1480
P65AGED	.5114	0385	.4740	.6146	•5534	.6924	.7765	.8337	.8248	.8841
PCRIME	.4095	.1788	.3517	.3582	.3777	.3744	.4051	.3869	.3874	.3642
PNW	.3031	.7440	.6010	.4455	.5612	.3786	.3219	.1843	.2024	.0001
PWOHSED	.0852	.5895	.7017	.6946	.6845	.6649	.5973	.5416	.5549	.3879
PFEMALHP	.3299	.8417	.8396	.7976	.7863	.7295	.5956	.5059	.5280	.2685
PYUTHPOV	.0203	.9478	.7099	.5781	.6220	.4706	.3056	.1688	.1964	1073
PPOORPER	.1689	•9614	.8214	.7241	.7441	.6283	.4670	•3436	.3705	.0672
POCRWD	0584	.8773	.5583	.3171	.4948	.2193	.1471	0400	0170	2611
PWOPLUMB	.3240	.1235	.3656	.4211	.3956	.4471	.4685	.4783	.4776	.4640
PUNEHP75	.1936	0126	.2359	.2931	.2778	.3322	.3830	.4043	.3997	.4319
DENSITY	.3729	.0617	.4597	.5103	.5349	.5728	.6796	.6849	.6779	.7229
POWNOCCH	4562	2534	-,5225	4974	5773	5310	6202	5747	5733	5629
PMULTT	.3699	.1401	.5219	.5458	.5963	.6027	.7138	.6990	.6934	.7220
PAGE1939	.5925	.0606	.6131	.7642	.6906	.8391	.9088	.9621	.9554	.9856
PNEWSTR	6027	1751	6799	8096	7442	8688	9162	9507	9476	-,9396
PCINC72	.1188	5001	4371	4398	3805	3827	2479	2123	2284	0463
MEDINC	1598	8532	7098	6384	6312	5471	3802	2797	3047	0238

241

Appendix J

EVALUATION OF ADDITIONAL FORMULAS: ALTERNATIVE 8 TO ALTERNATIVE 14

In Appendix J we present the statistical analysis for seven additional, alternative formulas. Three of the formulas include without plumbing as a formula factor. As baselines for comparison, the correlations examined in Chapter 5 and 6 for the present formula, Alternative 1, Alternative 2, and Alternative 4 are reproduced in the below tables. The variables and weights for the formulas are as follows:

		Population	Poverty	Overcrowded Housing	Pre-1939 Housing	Without Plumbing
Alternative	8 (ALT8)			1.	
Alternative	9		1.			
Alternative	10		.30		.70	
Alternative	11	.15	.30	.20	.25	.10
Alternative	12		.40		.40	.20
Alternative	13		.50		.30	.20
Alternative	14		.40	.20	.30	.10
Present		.25	.50	.25		
Alternative	1	.20	.40	.20	.20	
Alternative	2	.25	. 50		.25	
Alternative	4		.60		.40	

242

The correlations of formula amounts with need scores and need variables are given in Table J.1, and with two measures of tax effort, in Table J.2. In both tables, we used the weighing system that determines the importance of a particular city on the basis of the percentage of total entitlement city population accounted for by the grouping within which the city is located. The five factors (FACTOR 1 to FACTOR 5) in Table J.1 refer to those factor scores listed in Appendix F and derived from the factor analysis explained in Chapter 4. The factors (dimensions) are defined as follows:

Table J.1	Dimension	Need Variables Defining Dimension
FACTOR 1	Poverty	Poverty variábles (PYUTHPOV, PPOORPER, PFEMALHP, PNW), percent of overcrowded houses, percent of houses without plumbing
FACTOR 2	Age of Housing Stock	Percent of houses built be- fore 1939, percent of pop- ulation aged over 65
FACTOR 3	Density	Percent of owner-occupied houses (negative), population per square mile
FACTOR 4	Crime and Unemployment	Crime rate, percent un- employed
FACTOR 5	Lack of Economic Opportunity	Percent of population with- out a high school education

		(Ŋ	4JD ENTITI	ement cities	, ALIO 10 AL	-			# 825	
	OPESANT		AL T2	A1 T 4				AL T]]	AL T12	AL T12	- ALT) 4
	PRESENT	MI II	ALIZ	ALIA	ALIO	AL19		ALITI	ALTIZ	ALIIS	41.114
FACTORI	.9-04	.7866	./160	•6297	.0315	•9733	.2661	.6641	.5181	•6456	•0/5/
FACTOR2	.0239	.4541	.6279	.6947	.8628	.1695	.8434	,5733	.7455	.6624	.5849
FACTORS	.2016	.3565	.2795	.3124	.4024	.0605	.3889	.3701	.2965	.2526	.3572
FACTOR4	.0479	.1649	.1546	.1646	.1749	.0725	.1802	.1386	.1114	.0960	.1418
FACTORS	.0463	.1543	.0872	.1182	.2471	0807	.2101	.1843	.1350	.0930	.1695
P65AGED	.1006	•4335	•2335	.5849	.7032	.1680	.6947	.5236	.6236	.5599	.5276
PCRIMF	.3P04	.4404	.3877	.3845	.2724	.3178	.3306	.4100	.3336	.3408	.4083
PNW	.7475	.6683	.5417	.4813	.0526	.7128	.2223	.5463	.3601	.4472	•5482
PWOHSED	.5534	.7112	.6892	.6918	.5324	.5257	.6229	.6962	.6392	.6426	.6984
 PFEMALHP	.8537	.8278	.8000	•7438	.2709	.8945	•4695	.7311	.6291	.7146	•7457
PYUTHPOV	.9386	.7850	.7061	.6241	.0492	•9450	.2750	.6614	.5080	.6289	.6717
PPOORPER	•9536	.8528	.8080	•7315	.1579	.9982	•3890	.7479	.6273	.7426	.7612
POCRWD	.7401	.5526	.3352	.2653	1585	.5976	0050	.4484	.2007	.3020	•4323
PWOPLUMB	.5044	.5802	.5847	•5684	•3431	.5349	•4491	.6845	.7060	.7466	.6717
PUNEMP75	.1318	.3000	.3221	.3473	.3496	.1303	•3940	.3208	.3339	.3018	.3225
DENSITY	.2078	.4549	.4209	.4671	.5869	.1067	.5716	.4812	.4438	.3824	.4738
POWNOCCH	3823	5687	5235	5469	5299	2965	5648	5772	5178	4904	5713
PMULTI	.1961	.4843	•4656	•5193	.6643	.1055	.6434	.5413	.5281	.4586	.5317
PAGE1939	.1251	• 5 4 4 4	.7051	•7836	.9894	.1736	.9621	.7113	.8244	.7250	.7137
PNEWSTR	2711	6439	7222	7750	8517	3101	8673	7193	7859	7217	7232
PCINC72	5109	4632	4623	4192	0942	5680	2258	4150	3725	4383	4246
MFDINC	7862	7415	7266	6580	2020	8484	3942	6671	5891	6790	6799

1

Table J.1Coefficients of Correlation Between (1) Per Capita Formula
Amounts and (2) Per Capita Need Scores and Need Variables,
435 Entitlement Cities. ALT8 to ALT14

1

;

.

1:12

1

,

,

.

	TAX1INC ^a	TXEFFORT
PRESENT	.28	. 37
ALT1	.50	.56
ALT2	. 47	.55
ALT4	.51	.58
ALT8	.55	.57
ALT9	.21	.33
ALT10	.56	.60
ALT11	.51	.56
ALT12	. 47	.53
ALT13	.43	.50
ALT14	.51	.56

 Table J.2: Coefficients of Correlation Between (1) Tax Effort and

 (2) Per Capita Formula Amounts, ALT8 to ALT14

a. TAX1INC equals non-education taxes (1974) divided by personal income (1972).

b. TXEFFORT equals non-education taxes (1974) divided by the market value of the property tax base (1972).

Table J.3 presents the correlation analysis for 435 entitlement cities using equally weighted cases. Tables J.4 to J.10 present correlations between formula amounts and need scores and need variables by city size. In Tables J.3 to J. 10, the five factors refer to those factor scores derived from Appendix H. These factors are defined as follows:

Table J.3	Dimension	Need Variables Defining Dimension
FACTOR 1	Poverty	Poverty variables (PYUTHPOV, PPOORPER, PFEMALHP, PNW), percent of overcrowded houses, percent of houses without plumbing
FACTOR 2	Age of Housing Stock	Percent of Houses built be- fore 1939, percent of pop- ulation aged over 65
FACTOR 3	Density	Percent of owner-occupied houses (negative), pop- ulation per square mile
FACTOR 4	Lack of Economic Opportunity	Percent of population with a high school education, UNEMP75
FACTOR 5	Crime	Crime rate

246

	PRESENT	ALT1	AL T2	AL T4	ALTB	ALT9	ALT10	ALT11	ALT12	ALT13	ALT14
FACTOR1	.9708	.8612	.7914	•7155	.0546	.9754	•3347	.7730	.6488	.7625	.7792
FACTOR2	0391	.3489	.5373	.6075	.A129	.1391	.7868	•4461	.6294	.5374	.4630
FACTOR3	.0619	.2553	.2493	.2925	.4447	.0190	•4138	.3037	.3092	.2518	.2460
FACTOR4	.1453	.2996	.2508	.2591	.3943	.0166	•3668	.3461	.2889	.2383	.3268
FACTOR5	.1402	.0592	.0537	.0266	1362	.1605	0782	0356	0807	0444	0210
P65AGFD	.1051	.4111	.5143	.5674	.6881	.1938	.6883	.4840	.5845	.5161	.4910
PCRIME	.3085	.3064	.2698	.2554	.0915	.2834	.1667	.2549	.1929	.2147	.2584
PNW	.8026	.6431	.5218	•4510	0965	.7325	.1251	.5345	.3671	.4703	.5346
PWOHSED	.5121	.6708	.6341	.6458	.5051	.4706	.6010	.6853	.6369	.6275	.6796
PFEMALHP	.8695	.8319	.7924	.7359	.1787	.8930	.4246	.7488	.6527	.7389	•7591
PYUTHPOV	.9589	.8258	.7408	.6621	.0019	.9463	.2778	.7242	.5833	.7002	.7300
PPOORPFR	.9695	.8956	.8488	.7786	.1292	.9986	.4100	.8072	.7009	.8071	.8174
POCRWD	.7557	•5256	.3583	.2534	2540	.5912	0607	.4379	.2201	.3280	.4216
PWOPL UMR	.6685	.7204	.6925	.6681	.3149	.6735	.4856	.7911	.7710	.8152	.7781
PUNEMP75	.1740	.2797	.2685	.2846	.2852	.1512	.3059	.2876	.2716	.2517	.2856
DENSITY	0072	.1954	.5059	.2505	.4427	0393	.3949	.2448	.2637	.1992	.23AH
POWNOCCH	2646	4301	4513	4720	4385	2815	4847	4440	4520	4276	4471
PMULTT	0524	.2358	.2873	.3526	.6108	0443	.5478	.3163	.3832	.2957	.3128
PAGF1939	.0594	.5087	.6216	.7105	.9886	.1286	.9451	.6324	.7580	.6414	.6332
PNEWSTR	2322	5770	044()	7034	8164	2732	4292	6540	7202	6444	6551
PCINC72	6360	6316	5883	5544	1438	6285	3521	5846	5072	5602	5876
MEDINC	8089	#207	8005	7569	2665	8442	4910	7590	6881	7566	7690

Table J.3Coefficients of Correlation Between (1) Per Capita Formula
Amounts and (2) Per Capita Need Scores and Need Variables,
435 Equally Weighted Cases; ALT8 to ALT14

.

.

-

3

.

.

. .

	PHESENT	ALTI	AL T 2	AL 14	ALTA	ALT9	ALT10	ALT11	ALT12	ALT13	1LT]4
FACTOP1	.4463	. 4533	.7556	.6026	0422	.9684	.2066	.7576	.6090	.7429	.766.8
FACTOR2	1306	.3019	.4910	.5424	.8477	.0187	•H158	.4113	.5979	.4777	.4762
FACTOP3	0+42	.0532	.0625	.1013	.2699	1066	.2254	.1034	.1289	.0769	.0972
FACTOR4	.0191	.7377	.1974	.2547	.4620	0739	.4190	.3299	.3253	.2502	· 304H
FACTOPS	0201	0190	.0208	.0175	0068	.0295	.0025	0778	0682	0648	0621
P65AGED	.1016	.4027	.5146	.5067	.6240	.1972	.6569	.4662	.5681	.5024	.4763
PCRIME	.2107	.3189	.3312	. 3404	.2569	.2245	.3139	.2954	.2845	.2747	.3026
PNW	.8345	.6776	. 5440	.4549	1692	.7664	.0716	.5999	.4357	.5558	.5930
PWOHSED	. 3777	.6119	.5473	.6282	.5494	.3469	.6306	.6827	.6769	.6415	. 5720
PFEMALHP	. 4142	.8074	.7661	.7069	.1156	.8412	.3665	.7331	.6407	.7283	.7419
PYUTHPOV	.9616	.8138	.7042	.6075	1462	.9432	.1473	.7072	.5462	.6846	.7161
PPOORPER	.4760	.8912	.8264	.7399	0106	.9984	.2938	.7914	.6668	.7923	.R008
POCRWD	.7608	.5031	.3075	•5151	3413	.6254	1740	.4085	.1935	.3267	.3940
PWOPL UMP	.6925	.7266	.6667	.6307	.1027	.6701	.3882	,7982	.7518	.8095	.7805
PUNEMP75	.0584	.0435	•0955	.0957	.0598	.0743	.0798	.0746	.0778	.0782	.0783
DENSITY	0412	.1959 .	.2623	.3151	.4750	0048	•4524	.2706	.3475	.2785	.2706
POWNOCCH	1539	2653	2881	3010	2529	1755	2951	2611	2684	2533	2667
PMULTT	2183	.0697	.1500	.2268	.5495	1898	•4674	.1510	.2462	.1431	.1515
PAGE1939	1043	. 3841	.5160	.6282	•9838	0429	.9271	.5333	.6862	.5393	.5330
PNEWSTR	1272	5178	0105	6851	4173	1826	8366	6201	7176	6226	6?15
PCINC7A	5323	5311	4847	4503	0414	~.5199	2456	4528	3646	4153	45:1
MFDINC	7967	7906	7553	- 6985	1230	+233	3681	7011	6081	6922	7133

Table J.4 Coefficients of Correlation Between (1) Per Capita Amounts and (2) Per Capita Need Scores and Need Variables, 72 Entitlement Cities, Population less than 50,000, ALT8 to ALT14

.

,

,

.

.

,

•

• •

٠

. .

.

r

.

.

				and (2) Per Capita Need Scores and Need Variables, 140 Entilement Cities, Population Between 50,000 and 75,000, ALT8 to ALT14							
	PRESENT	ALT1	AL 12	ALT4	ALTA	ALT9	ALTIO	ALT11	ALT12	ALT13	ALT14
FACTORI	. 4.326	.9063	.8495	.7847	.0605	.9848	.3945	.8481	.7513	.8441	.8511
FACTOP2	0555	.2775	.4586	.5325	.7998	.1028	.7558	.3545	.5320	.4334	. 3725
FACTORS	0166	.1622	.1744	.2236	.4523	0437	.3923	.2166	.2464	.1799	.2105
FACTOR4	.1423	.2541	.1638	.1972	.3349	.0092	.3048	.2879	.2207	.1756	.2687
FACTORS	0502	1694	1482	1807	3187	.0004	2869	2506	2642	2194	7348
P65AGED	.0572	.3421	.4493	.5125	.7187	.1370	.6940	.4083	.5178	.4336	•4163
PCHIME	.2568	.1539	.1198	.0953	1912	.2506	0857	.0942	.0354	.0878	.0986
PNW	.8438	.7045	.6139	.5427	1279	.8076	.1636	.6237	.4940	.5947	.6241
PHOHSED	.5284	.6675	.6240	.6405	.4967	.4705	.6095	.6813	.6335	.6138	.6742
PFEMALHP	. 8844	.8498	.8181	.7057	.1286	.9091	.4297	.7930	.7191	.7950	•7997
PYUTHPOV	.9726	. 2750	.9023	.7340	.0070	.9581	.3371	.8082	.6951	.7926	.8099
PPOOPPER	.9778	.9218	.8839	.8229	.1076	.9997	•4421	.8611	.7785	.8665	.8676
POCRED	.7958	.6188	.4500	.3796	2216	.6635	.0294	.5551	.3699	.4680	.5398
PWOPI LIMP	.8054	.8153	.7795	.7451	.2318	.8051	.4867	.8541	.8197	.8691	.8448
PUNEMP75	.2910	. 3550	.3070	.3150	.2432	.2322	.2992	.3497	.2980	.2888	.3439
DENSITY	0690	.0987	.1063	.1549	.4072	1002	• 3355	.1474	.1725	.1065	.1412
POWNOCCH	2211	3753	4138	44(14	4397	2503	4824	4000	4330	3987	4035
PMULTT	1755	.0754	.1374	.2082	.5423	1608	.4689	.1568	.2423	.1459	.1541
PAGF1939	.0541	.4452	. 5549	• 6475	•9896	.1122	.9300	.5505	.6753	.5513	•5530
PNEWSTH	1911	4978	5666	6332	8140	2243	8106	5714	6480	-,5596	5725
PCINCTA	7219	7213	0754	6439]400	7065	4115	6862	6138	6610	6868
MEDINC	8350	8622	4462	+128	2746	8583	5481	8205	7660	8162	8274

.

.

.

			• 	Entitlemen ALT8 to AL	t Cities, Po _T14	pulation Bet	ween 75,000	and 100,000	•		
	PRESENT	ALTI	ALT2	ALT4	ALTA	ALT9	ALTIO	ALT11	ALT12	ALT13	ALT14
FACTORI	.9554	.8204	.7587	.6837	.2357	.9684	•4142	.7027	.5777	.6815	.7138
FACTOR?	.1372	.5905	.7445	.7864	.8646	.3566	.8644	.6897	.8277	.7837	.7019
FACTORS	0067	•5333	.2610	.2968	.4760	.0075	•3914	.2720	.2991	.2512	.2712
FACTOR4	.3397	.4703	.3668	.3859	.4168	.1845	•4193	.5046	•4137	.3951	.4829
FACTORS	.3581	.1156	.0554	.0040	2533	.3306	1641	0288	1296	0649	0144
P65AGFD	.2306	.6574	.1622	.8024	.8694	.3801	.8736	.7377	.8267	.7840	.7449
PCRIME	•4814	.3060	.2051	.1643	0662	.3896	.0193	.1940	.0636	.1184	.1967
PNW	.7031	.4360	.3117	.2465	1193	.6099	.0158	.2847	.1174	.2078	.2905
PWOHSED	.6102	.7406	.6943	.6879	.5416	.5859	.6158	.7485	.6865	.7091	.7421
PFEMALHP	.9242	.8349	.7670	.7091	.3025	.9304	•4675	.7226	.6002	.6905	.7331
PYUTHPOV	• 9596	.7639	.6640	.5915	•1321	.9295	•3114	.6231	.4677	.5761	.6326
PPOOPPER	.9531	.8673	.8210	.7584	.3701	.9994	.4978	.7513	.6444	.7422	.7663
POCRWD	.6339	.3109	.0963	.0409	7472	.3850	1428	.2022	0209	.0572	.1848
PWOPLUMB	.3811	.6242	.0324	.6492	.6249	.4077	.6556	.7417	.7646	.7627	.7259
PUNEMP75	.2238	.3516	.3367	• 3474	.3427	.2076	• 3562	.3515	.3266	.3153	.3503
DENSITY	0567	.1813	.2059	•244H	.3983	0538	• 3535	.2128	.2369	.1823	. 2125
POWNOCCH	1853	3877	4405	4546	4493	2706	4667	3977	4306	4150	4067
PMULTI	0535	.3241	.4017	.4549	.6446	.0219	•5945	.4134	. 4948	.4274	•4131
PAGE 1939	.2045	.7043	.7883	.8457	.9911	.3052	.9697	.8250	.9084	.8443	.8720
PNEWSTR	4224	7458	7594	7862	7894	4521	8152	7912	-,7906	-,7657	7889
PCINCTA	7062	6401	5531	5150	2398	6502	3527	5862	4742	5373	5829
MEDINC	8225	8224	7855	7432	4092	8576	5503	7582	6776	7490	7660

Table J.6 Coefficients of Correlation Between (1) Per Capita Amounts and (2) Per Capita Need Scores and Need Variables, 72 Entitlement Cities, Population Between 75,000 and 100,000, ALT8 to ALT14

1.41.11

11 . 4 . 44

1

1

.

.....

t

,

.

٠

.

١.

.

5

.

.

,

. . .

						·	· · · · · · · · · · · · · · · · · · ·				
	PRESENT	AL T 1	AL. T2	AL T4	ALTA	AL T9	ALT10	ALT11	ALT12	ALT13	ALT14
FACTORI	.9514	.8118	.7484	.6719	. 0979	.9633	.3317	.6748	.5406	.6618	.6906
FACTOP?	.0860	.5099	.6772	.7302	.8301	.2897	.8354	.6214	.7781	.7186	•6340
FACTOR3	.1252	.3628	.3492	.3701	.5100	.0852	.4899	.4327	.4294	.3798	.4201
FACTOR4	.0782	.2341	.1478	.1863	.3442	0647	.3000	.2897	.2258	.1751	.2663
FACTORS	.3817	.2367	.2030	.1561	1320	.3858	0245	.1217	.0446	.1111	.1364
P65AGED	.1230	. 3922	.4620	.4969	•5583	.2041	•5641	.4621	.5278	.4890	.4642
PCPIEF	.3330	.3827	.3440	.3389	. 2277	.2994	.2843	.3578	.3006	.3134	3570
PNW	.+056	.5710	.4289	.3544	1298	.6980	.0558	.4200	.2253	.3363	.4235
PWOHSED	.5180	.6393	.5778	.5788	•4396	.4581	.5188	.6381	.5587	.5692	.6304
PFEMALHP	.8809	.7957	.7510	.6868	.1740	.9073	.3875	.6796	.5691	.6733	.6951
PYUTHPOV	.9292	.7531	.6744	.5944	.0204	.9710	.2503	.6001	.4504	.5743	.6158
PPOOPPER	.9553	.8636	.8553	•7517	.1891	.9946	.4232	.7378	.6239	.7384	.7558
POCRUD	.6287	.3394	.1214	.0582	2920	.3979	1685	.2188	0198	.0708	.2028
PHOPLUMA	.4400	.6419	.6622	.6717	.5546	.4851	.6313	.7525	.7795	.7874	.7401
PUNEMP75	.1045	.2808	.2877	.3148	.3803	.1014	.3749	.3152	.3206	.2877	.3118
DENSITY	.0459	.3089	. 3123	.3605	.5267	.0207	.4891	.3776	.3903	.3285	.3679
POWNOCCH	3251	5210	5330	5496	5008	3478	5474	5504	5483	5359	5499
PHULTI	.0505	. 3634	.3924	.4463	.6215	.0577	•5855	.4660	.5096	.4433	.4553
PAGE1934	.1264	.6201	.7124	.7077	.9914	.2120	.9642	.7631	.8626	.7729	.7577
PNESTR	3754	7014	7434	7872	8234	3866	8540	7890	8239	7787	7846
PCINC7A	5831	6043	5645	5387	2672	5750	3897	5586	4839	5313	5621
MEDINC	7460	8000	7823	7368	3111	8433	4974	7192	6430	7219	7334

1

.

.

3

•

TableJ.7Coefficients of Correlation Between (1) Per Capita Amounts
and (2) Per Capita Need Scores and Need Variables, 94
Entitlement Cities, Population Between 100,000 and 250,000,
ALT8 to ALT14

.

.

.

1

1

. .

			-	Entitlemen ALTS to AL	t Cities, Po T14	opulation ter	tween 250,00	0 and 500,00	0.		
	PRESENT	ALT1	ALT?	AL T4	ALTR	ALT9	ALT10	ALTII	ALT12	ALT13	ALT14
FACTORI	.9141	.7261	.5632	.4345	7103	.9542	0015	.5430	.2763	.4456	.5506
FACTOR2	5660	1206	.2467	.3565	.7041	3617	.6235	.0415	.3960	.2633	.0711
FACTOR3	.4795	.7132	.6317	.6406	.4986	.3509	.5741	.7463	.6424	.6502	,7364
FACTOR4	•4138	.7072	.6582	.6835	.5961	.2907	.6583	.7809	.7204	.7114	.7702
FACTOR5	.3193	.2551	.2558	.2012	0772	.4154	.0137	.1257	.0433	.1056	.1453
P65AGED	1092	.2827	.4263	.5059	.6889	1083	.6637	.4373	.5911	.5089	•4395
PCRIME	.3869	.5012	.4880	.4688	.2602	.3934	.3456	.4863	.4274	.4631	.4908
PNW	.9218	.7262	.4766	.3602	2137	.8424	0293	.5581	.2354	.3895	.5513
PWOHSED	.5532	.7895	.7974	.7823	.5030	.5668	.6256	.7733	.7047	.7405	.7835
PFEMALHP	.7092	.7197	.7062	.6230	•1111	.8293	.2920	.5717	.4309	.5409	.5959
PYUTHPOV	.8496	.6960	.5723	.4528	1599	.9169	.0407	.5141	.2790	.4349	.5268
PPOORPER	.9356	.7921	.6552	.5296	1290	.9967	.0889	.6056	.3506	.5163	.6179
POCRWD	.8893	.6523	.3158	.2089	2842	.6978	1312	.5214	.1592	.3042	.4965
PWOPLUMB	.4240	.6284	.5792	.5826	.4342	.3443	•5084	.7666	.7433	.7745	.7465
PUNEMP75	.2423	.4882	.5469	•5637	.4752	.2612	.5312	.5118	.5245	.5148	.5212
DENSITY	.2631	.6160	.6465	.6905	.6774	.1956	.7185	.6974	.7061	.6697	.6961
POWNOCCH	4792	7048	6809	6780	4774	4371	5717	7015	6230	6417	7047
PMULTT	.2738	.6379	.6904	.7319	.6967	.2350	.7464	.7150	.7360	.7031	.7177
PAGE 1939	1248	.4372	.6731	.7781	.9886	0738	.9702	.6215	.8438	.7335	.6342
PNEWSTR	0512	5177	7067	7759	8412	1152	8644	6369	7873	7192	6523
PCINC70	6758	6237	5191	4414	0020	6876	1521	5189	3405	4477	5234
MEDINC	8643	7465	0146	5030	.0914	9059	1066	5939	3625	5128	6020

Table J.8 Coefficients of Correlation Between (1) Per Capita Amounts and (2) Per Capita Need Scores and Need Variables, 31 Entitlement Cities, Population Between 250,000 and 500,000 ALT8 to ALT14

٦

.

.

1

٩

1

.

t

.

۷

.

		-	÷								
	PRESENT	ALT1	AL T2	ALT4	ALTA	ALT9	ALT10	ALT11	ALT12	ALT13	ALT14
FACTORI	.9591	.7337	.6004	.4443	1052	.9642	.1082	.4980	.2392	.3804	.5167
FACTOR2	3286	.1768	.4208	.5116	.8078	1583	.7380	.4094	.6618	.5720	•4133
FACTOR3	.1690	.5275	•5591	.6127	.7152	.1286	.7116	.6269	.6351	.5876	.6194
FACTOR4	.5488	.7172	.0652	.6613	.4897	.4948	.5753	.6983	.5816	.6056	.6967
FACTOR5	.1980	.2912	.2910	.2931	.2348	.1970	.2671	.2246	.1717	.1671	.2362
P65AGED	0347	.4620	.6060	.6866	.8951	.0260	.8613	.6941	.8424	.7752	.6839
PCRIME	.2108	.4704	.5096	•5381	.5432	.2201	.5669	.5313	.5371	.5192	.5306
PNW	.7836	.6182	.4524	.3790	0441	.6933	.1079	.4011	.1357	.2273	.4113
PWOHSED	.6704	•7157	.6777	.6358	.2969	.6951	•4344	.5857	.4394	.5025	.6032
PFEMALHP	.8586	.8529	.8058	.7389	.2615	.9131	•4477	.6721	.4871	.5836	.6967
PYUTHPOV	.9560	.7221	.5865	.4793	1217	.9599	.0915	.4710	.2060	.3461	.4916
PPOORPER	.9711	.8440	.7446	.6519	.0772	.9993	.2902	.6447	.4140	.5448	.6638
POCRWD	.8828	.5762	.3493	.2487	2684	.7570	0927	.3495	.0384	.1666	.3513
PWOPLUMB	.1041	.3914	.4606	.4990	.5581	.1354	•5628	.6307	.7316	.7248	.6071
PUNEMP75	.0691	.3547	.3989	•4440	.5471	.0569	.5353	.4904	•5383	.5039	.4785
DENSITY	.0781	.5058	.5917	.6582	.8090	.0868	.7921	.6577	.7284	.6700	.6507
POWNOCCH	2564	5795	6137	6522	6762	2441	6993	6316	6196	5889	6321
PMULTI	.1253	•5466	.6276	.6896	.8124	.1352	.8060	.6694	.7217	.6667	.6662
PAGE1939	.0769	.6041	.7559	.8319	.9856	.1562	.9760	.7778	.8968	.8316	.7784
PNEWSTR	2155	6991	8272	8863	9504	2923	9718	8363	9147	8715	8392
PCINCTA	5328	4573	4365	3788	0275	6027	1565	3251	2164	2951	3443
MEDINC	4927	7607	0430	5947	0528	9338	2527	5898	3868	5126	6075

Table J.9 Coefficients of Correlation Between (1) Per Capita Amounts and (2) Per Capita Need Scores and Need Variables, 21 Entitlement Cities, Population Between 500,000 and 1,250,000, ALT8 to ALT14

t

-

t

1

,

7

.

.

. I

.

シー

	PRESENT	ALT1	AL T2	ALT4	ALTA	AL T9	ALTIO	ALTII	ALT12	ALT13	ALT14
FACTORI	.9431	.7026	.5716	.4639	1135	.9554	.0877	.4818	.2385	.3809	.49HF
FACTOR2	3327	.1724	.4305	.5127	.7636	1298	.7073	.3804	.6354	.5517	.3900
FACTORS	.1594	.4946	.4901	.5427	.6560	.0656	.6442	.5722	.5465	.4916	.5625
FACTOR4	.4173	.6344	.6195	.6282	.5287	.3836	.5872	.6195	.5399	.5395	.6232
FACTORS	.1249	.1857	.1863	.1868	.1480	.1263	.1683	.1208	.0808	.0741	•1314
P65AGED	0385	.4740	.6146	.6924	.8941	.0209	.8543	.6886	.8292	.7599	.6A1u
PCRIMF	.1788	.3517	.3582	.3744	.3642	.1632	.3837	.3944	.3823	.37 3 5	. 3910
PNW	.7440	.6010	• 4 4 5 5	.3786	.0001	.6561	.1352	.3905	.1416	.2217	.4015
PWOHSED	.5895	.7017	. 0946	.6649	.3879	.6349	.5037	.5880	.4775	.5209	.60++
PFEMALHP	.8417	.8396	.7976	.7295	.2685	.9063	.4447	.6619	.4893	.5833	.6873
PYUTHPOV	.9478	.7099	.5781	.4706	1073	.9587	.0943	.4684	.2163	.3552	.4865
PPOORPER	.9614	.8214	.7241	.6283	.0672	.9993	.2704	.6279	.4092	.5414	.6465
POCRWD	.8773	.5583	.3171	.21,93	2611	.7282	1010	.3469	.0365	.1613	.3442
PWOPLUMB	.1235	.3656	.4711	.4471	.4640	.1561	.4782	.5981	.6903	.6984	.5737
PUNEMP75	0126	.2359	.2431	.3322	.4319	0004	•4152	.3018	.3473	.3056	.3022
DENSITY	.0517	.4597	.5103	.5728	.7229	.0286	.7008	.5521	.5816	.5146	.5488
POWNOCCH	2534	5225	4474	5310	5629	1696	5760	5655	5141	4834	558I
PMULTI	.1401	.5219	• 5458	.6027	.7220	.0816	.7109	.6244	.6315	.5756	.6157
PAGE1939	.0606	.6131	.7642	.8391	.9856	.1397	.9763	.7672	.8813	.8101	.7713
PNEWSTR	1751	6799	8096	8688	9396	2525	9553	7975	8760	8239	+042
PCINC72	5001	4371	4348	3827	0463	6014	16#4	3175	2365	3137	33-7
MEDINC	8532	7098	+3R4	5471	0238	9165	2117	5467	3690	4967	5645

Table J.10 Coefficients of Correlation Between (1) Per Capita Amounts and (2) Per Capita Need Scores and Need Variables, 26 Entitlement Cities, Population Greater than 500,000, ALT8 to ALT14

.

4

*

 ~ 1

,

>

.

•

с,

Appendix K

COMPARISON WITH OTHER STUDIES

In this appendix we compare our methodology and results with those of other researchers and, where possible, evaluate each formula allocation using their techniques. Included are studies by (1) the Institute For the Future, (2) Richard DeLeon and Richard LeGates on the equity of CDBGs in California, and (3) Richard Nathan on central city hardship.

Institute for the Future Study

In its study of the allocation formula for general revenue sharing, the Institute for the Future constructed an evaluation index which measured a city's need for revenue sharing funds by considering its service requirements, its tax effort, and its fiscal capacity. $\underline{1}$ The general form of the evaluation index was

Service Requirements x Tax Effort Ability

Each of the three components was expressed in index form; the service requirements index was a composite of per capita need indexes for six categories of public expenditure.

In this section we examine for 77 entitlement cities, the distribution of per capita amounts under hold harmless, the present formula, and the seven alternative formulas in terms of seven indexes developed by the Institute for the Future. The correlations are presented in Table K.1. Abbreviations and definitions are as follows:

EVALINDX	evaluation index = (SRINDEX x TAXEFORT) / ABILITY
ABILITY	index of fiscal capacity based on per capita sales value of taxable property
TAXEFORT	tax effort index based on per capita non-education taxes

1/ Schmid, G., Lipinski, H. and Palmer, M. An Alternative Approach to General Revenue Sharing: A Needs-Based Allocation Formula, Institute for the Future, June, 1975.

Tabl	e K.1: Coeff The Future a	icients of nd (2) Per	Correlat Capita /	tion Betw Amounts u	veen (1) Inder Hol	Indexes Id Harmle	Develope ess, the	ed by the Present	e Institut Formula,a	e For nd
		Eight A	lternat [.]	ive Formu	11as, 77	Entitlen	ent Citi	ies		
	Hold Harmless	PRESENT	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	
EVALINDX	.47	.51	.66	.64	.68	.65	.67	.62	.62	
ABILITY	26	44	51	52	50	50	45	42	43	
TAXEFORT	.30	.16	.33	.33	.38	.36	.44	.42	.42	
SPINDEX	.48	.82	.88	.82	.88	.79	.75	.65	.67	
SSINDEX	.50	.86	.94	.91	.93	.88	.81	.72	.74	
HEALTHI	.40	.77	.79	.74	.77	.70	.63	.54	.56	
CRIMEI	.45	.68	.72	.65	.72	.62	.60	.50	.52	
RECI	01	.67	. 37	.19	.31	.10	.00	15	13	

· ·

۲

۴

.

٠

5

256

SRINDEX

service requirements index which is a composite of need indexes for six public expenditure categories: social service, health, crime, transportation, environment, and recreation. Factor analysis was used to develop each of the six public need indexes.

SSINDEX social service index based on a factor analysis of PPOORPER, POCRWD, PWOHSED, PYUTHPOV, POVAGE65, PFEMALHP, and other measures of social service recipients.

> health index based on a factor analysis of variables that indicate a high demand for public health services (e.g., P65AGED, PYUTHPOV).

crime index based on a factor analysis of total serious crimes and variables associated with high crime such as PNW, PWOHSED, and PFEMALHP.

recreation index to measure relative variation in terms of the demand for parks and other recreation facilities. Need variables input into the factor analysis included P65AGED, MEDINC, DENSITY, and POCRWD.

In general, the hold harmless correlations shown in the first column of Table K.1 are higher than those reported in Tables 5.9 and 5.10 of Chapter 5; however, only with tax effort does hold harmless show a higher correlation than the present formula and all of the alternatives completely dominate hold harmless. The case for choosing one of the alternative formulas to replace the present formula is given support by the correlations for EVALINDX; in fact, ALT1 dominates the present formula in all cases except RECI. Somewhat surprising are the higher absolute correlations of some alternatives with both ABILITY and SSINDEX as compared with those of the present formula. Despite these differences, the correlations reported in Table K.1 are quite consistent with our earlier results.

Redistribution Effects of CDBGs in California

Richard DeLeon and Richard LeGates conducted a cross-sectional analysis of the redistribution effects of the change from the cate-

CRIMEI

HEALTHI

RECI

gorical to the CDBG system for 79 California cities. $\frac{2}{}$ They begin by discussing six types of need that should be addressed by CD assistance. First, their deprivation theory argues for channeling subsidies to the oldest and most physically deteriorated cities with the highest concentrations of poverty, substandard houses, and social problems. Their minority enrichment theory views urban problems as race problems and would channel CD funds to areas of greatest minority concentration. Their growth support theory would direct CDBGs to growth centers in need of infrastructure support. Their triage theory would concentrate CDBGs in viable, but declining areas rather than those best off or beyond hope. Their fiscal equalization and resource redistribution theories focus upon disparities in fiscal capacity and would reward those cities with the lowest capacity and greatest tax effort. Finally, their dispersal theories argue that aid should be distributed to relatively affluent, suburban communities to underwrite costs of their absorbing a more equitable share of low income housing. In their analysis of how well the CDBG system matches resources to areas of need as compared with the categorical system, the authors emphasize race, economic and housing deprivation, growth, and fiscal capacity and effort.

The authors first divide the 79 cities into new phase-in cities (HH equals zero), other phase-in cities, and phase-down cities, and compute, for each group of cities, average percentages for socioeconomic variables that reflect the type of need being considered. For example, poverty, aged housing, and overcrowded housing were used to characterize cities according to economic and housing deprivation. This is the method we used in Table 5.6 of Chapter 5 when we compared the present CDBG system with the displaced categorical system in terms of gainers and losers. From their analysis of average percentages for need variables, the authors conclude that the present CDBG formula fails to match resources to need as defined under any of the theories outlined above; with respect to economic and housing deprivation they state that "needs as defined by deprivation theory are not met as the formula disfavors older, more overcrowded, poorer areas with high composite measures of housing deprivation." However, as we emphasized in Chapter 5, the fact that phase-down cities or losers under the present formula are more needy than phase-in cities does not necessarily mean that the present system is inequitable, or less equitable than the categorical system. To reach any equity con-

2/ DeLeon, R. and LeGates, R. <u>Redistribution Effects of Special</u> Revenue Sharing for Community Development, April, 1976.

	(1) Total HH	(2) Total Present Formula	(3) Per Capita HH ^a	(4) Per Capita Present Formula	(5) Per Capita ALT1	(6) c Per Capita ALT2
PPOORPER	. 34	.21	.55	.95	.95	.91
POCRWD	.12	.09	.36	.69	.42	.17
PAGE1939	.44	.26	.30	.43	.74	.85
PAGE1949	.38	.23	.36	.48	.74	.81
PCINC70	.30	.06	31	61	36	20
MEDINC	18	09	43	84	78	71
UNEMP75	.27	.18	.31	.67	.61	.53
PWOHSED	.14	.09	.30	.67	.55	.39
PFEMALHP	. 34	.22	.56	.92	.84	.74
PWOPLUMB	.57	.29	. 32	.47	.67	.70

Table K.2: Correlation Coefficients Between Selected Variables and CD Assistance, 68 California Cities

a. A correlation analysis of the 56 cities with positive hold harmless (HH) amounts yielded similar results.

4

b. ALT1 formula weights are: .2 POP, .4 POORPER, .2 AGE1939, and .2 OCRWD.

c. ALT2 formula weights are: .25 POP, .5 POORPER, and .25 AGE1939.

.

7

clusions, one has to examine the distribution of funds over all cities and, in the case of the categorical system, justify the wide range in per capita amounts. In Chapter 5, we concluded that the large differences in per capita assistance to these three groups of cities under the categorical system could not be justified on the basis of differences in need variables and that the redirection of CD assistance from the more needy, phase-down cities was necessary in order to properly recognize the need that exists in the less needy, phase-in cities. In other words, under the categorical system, the gap between the per capita amounts of phase-in and phase-down cities was too large. On the other hand, we did mention that such gainer/loser comparisons may identify important dimensions of CD need (e.g., aged housing) that are not included in the existing formula.

DeLeon and LeGates also used correlation analysis to compare the present formula system with the categorical system in terms of matching CD assistance to areas of need. They correlate several percentage and per capita need variables with total assistance under both the categorical system and the CDBG formula system. Their most important conclusion was "in comparative terms the CDBG system does a poorer job of matching resources to needs than did the categorical assistance." Coefficients of correlation between need variables (expressed in either percentage or per capita terms) and total aid under the categorical system were consistently stronger than those obtained under the CDBG formula system. Their conclusion is the opposite of that we reached in Chapter 5 based on the correlation coefficients reported in Tables 5.9 and 5.10. They obtain different results because they correlate percentage variables with total amounts instead of with per capita amounts. This is shown clearly in Table K.2 which gives correlations between (1) need variables expressed in percentage form and (2) both total and per capita levels of CD assistance for the 68 California cities included in our entitlement city file. The pattern of correlation coefficients in columns (1) and (2) of our Table K. 2 is similar to that reported by DeLeon and LeGates in their Table 7 for variables that reflect economic and housing deprivation and for per capita income. The conclusion that the CDBG system does a poorer job of matching need to levels of assistance follows from the lower correlation coefficients in column (2) of Table K.2.

We think that if the need variables used in the correlation analysis are expressed in either percentage or per capita terms, then the assistance amounts should be in <u>per capita</u> terms instead of being expressed in total amounts as is done by DeLeon and LeGates and in columns (1) and (2) of Table K.2. Extended to its extreme, the reasoning behind correlating percentage need variables with total aid amounts would support allocating to Anniston, which has a population of 31,533, a larger CDBG amount than to New York City, which has a population of 7,895,563, simply because Anniston has a higher poverty percentage than New York City. In columns (3) and (4) of Table K.2, we compare the categorical with the present system in terms of correlations between percentages of need variables and per capita amounts and the results are completely opposite to those obtained by DeLeon and LeGates and those reported in columns (1) and (2). The coefficients show the present formula (column 4) to be more responsive to need than the categorical system (column 3). This agrees with our conclusion in Chapter 5. In fact, except for aged housing and without plumbing, the correlations under the present formula are all above 0.5. The correlations given in columns (5) and (6) for ALT1 and ALT2 show how the correlations change if pre-1939 housing is added to the formula.

Hardship Cities

Richard Nathan chooses to compare cities on the basis of differences in the severity of social problems within the city's own boundaries in relation to the adjacent suburbs. $\frac{3}{2}$ Nathan uses data for 58 large SMSA's to identify those central cities that have a high city-to-suburb hardship ratio and are also politically and fiscally isolated. A city is considered to be politically and fiscally isolated if the suburbs are large in relation to the central city and no structural reform measures exist to spread the central city burden to the suburbs. The city-suburb hardship ratios are constructed so that an index figure over 100 denotes that the central city is disadvantaged in relation to the balance of its SMSA, the higher the figure the greater the disadvantage. Hardship ratios are computed for six measures: unemployment, dependency, education, income, crowded housing, and poverty. For example, the central city is disadvantaged relative to the suburbs if the city's unemployment rate is greater than that of the suburbs. For per capita income, where a higher amount is a desirable characteristic, the suburban amount was divided by the central city amount. Nathan found some comparative disadvantage in three-fourths of the fifty-eight cities Many of the most disadvantaged central cities were located examined. in the northeast and midwest and the better off central cities were located in the south and far west.

Our ranking of cities by levels of distress was based on measurements for individual cities as compared with each other. Nathan, on the other hand, tries to identify those disadvantaged

^{3/} Nathan, Richard. "The Record of the New Federalism: What It Means for the Nations' Cities," report submitted to PD&R, Dept of HUD September 30, 1974.

	(1) Composite Central City Disad- vantage index ^b	(2) Rate of Un- employment	(3) Dependency ratio ^C	(4) Limited education ratio	(5) Crowded Housing ratio ^e	(6) Low-income famil <u>y</u> ratio ¹	(7) Per Capita income (balance of SMSA as percent of central city)	(8) Population ratio ^g
DENSITY	.48	.36	-,01	.51	.45	.56	,48	-,24
PAGE1949	.46	.44	.04	,56	,13	,59	.44	-,45
PPOORFAM	.41	,37	.19	.21	,53	,34	,43	.03
PPOORPER	.40	.36	.18	.24	,49	,34	,41	.00
POCRWD	.35	,24	,29	,13	,59	,19	.37	,18
PNW	,55	.47	.36	.29	,69	.40	,53	,06
PWOHSED	.65	.55	.43	44	.52	,60	.67	15
PUNEMP75	.31	.23	.15	,24	.16	.37	,38	45
PCINC70	44	35	40	-,28	-,32	-,28	-,55	-,05
PYUTHPOV	.48	.42	.36	.24	.56	.38	.46	.15

Table K.3: Correlation Coefficients Between Nathan's Hardship Ratios and Selected Variables, 58 Central Cities^a

a. Hardship ratios are from Table 1 and Table A of Nathan's article. The hardship ratios in columns (2)-(6) are each computed by dividing the central city figure by the figure for the SMSA balance.

b. This central city disadvantage ratio is a composite of the six hardship ratios

c. Persons less than eighteen or over sixty-four years of age as percent of total population

d. Percent of persons twenty-five years of age or older with less than twelfth grade education

e. Percent of occupied housing units with more than one person per room.

f. Percent of families below 125 percent of low-income level

g. Central city population divided by total SMSA population

central cities where a flight to the suburbs and political isolation would prevent the city from spreading its fiscal burden and doing something about its social problems. In this section we evaluate the different formula distribution in terms of the hardship ratios developed by Nathan. A positive correlation between per capita funds and hardship ratios is desirable because, in this case, CDBGs will be directed to those cities that are under a constant threat of a flight to the subsurbs. However, first we attempt to determine whether or not a high percentage for a need variable is associated with a high hardship ratio for that need variable; in other words, within this group of our largest central cities, does an above average poverty percentage automatically mean an above average hardship ratio, defined as the percentage of poverty in the central city divided by that percentage for the balance of the SMSA. If the distribution of each need or formula variable is positively and strongly correlated with the distribution of the corresponding hardship ratio, there is no need to re-evaluate the formulas in terms of Nathan's hardship ratios. On the other hand, if the individual city measurements are not associated with hardship ratios, and if we assume that distributing CDBGs according to Nathan's hardship ratios is one objective of the CDBG program, then it is necessary to evaluate each formula in terms of the distribution of hardship ratios as well as in terms of the distribution of city need variables. In this latter case, one criterion for selecting new formula variables would be a significant correlation with the set of hardship ratios. In Table K.3 we present the correlation coefficients between need variables and Nathan's hardship ratios. A positive correlation between a need variable and a hardship ratio indicates that cities with above average percentages for the need variables tend to have above average hardship ratios. For example, the 0.69 correlation coefficient in column (5) indicates that for this group of central cities, an above average percentage of nonwhites is associated with an above average overcrowded housing ratio. Somewhat surprising in Table K.3 is the rather low correlation (0.34) of PPOORPER with the low-income family ratio; this means that the poverty percentage cannot be used to predict the extent to which a central city is disadvantaged relative to its suburbs with respect to low-income families. An examination of the 58 cities on a regional basis indicated that central cities in the South had higher poverty percentages but lower hardship ratios than central cities in other regions. In other words, with respect to poverty, central cities in the South are more similar to their suburbs than are central cities in the other regions.

Column (1) presents correlations between the need variables and a composite of the six hardship ratios. The five variables exhibiting the highest correlations are PWOHSED (0.65), PNW (0.55), PYUTHPOV (0.48), DENSITY (0.48), and PAGE1949 (0.46). Column (8) presents correlations between the need variables and the population ratio, defined as the central city population divided by the total SMSA

According to Nathan, a low population ratio indicates population. that the central city is politically and fiscally isolated. The worst situation for a central city is a set of high hardship ratios coupled with a low population ratio; in this case, the central city will not have the political strength to attempt regional solutions to its problems and any city solutions will encourage a flight to the suburbs. For our purposes the most important point in column (8) is the high negative correlation (-0.45) between PAGE1949 and the population ratio. -4 This means that central cities with the highest percentages of housing units built before 1949 also tend to be the most politically and fiscally isolated. Coupled with the 0.46 correlation between PAGE1949 and the composite index in column (1), this also means that age of housing stock is a good proxy for both of the conditions that Nathan uses to identify high levels of central city distress--high hardship ratios and a low population ratio. An examination of the 58 cities indicated that most of the cities with low population ratios were located in the Northeast and North Central regions, both of which are characterized by an aged housing stock.

Table K.4 shows the correlation coefficients between Nathan's hardship ratios and per capita allocations under the present formula and the seven alternatives. As shown in column (1) of Table K.4, the coefficient for each alternative formula is greater than the 0.42 for the present formula. This means that, compared to the present formula, each alternative allocates higher per capita amounts to those cities with above average hardship ratios. The coefficients in column (8) indicate that each alternative formula and fiscal isolation, as defined by a low percent of total SMSA population living in the central city. In this case, the 0.03 correlation coefficient for the present for the present formula is insignificant.

4/ A data error required our using PAGE1949 instead of PAGE1939

	-	(1) Composite Central City Disadvantage Index	(2) Rate of Un- employment	(3) Dependency ratio	(4) Limited education ratio	(5) Crowded Housing ratio	(6) Low-income family ratio	(7) Per Capita Income (balance of SMSA as percent of central city)	(8) Population ratio
	PRESENT	.42	.35	.20	.22	.60	.33	.43	.03
	ALT1	.57	.50	.19	.46	.54	.56	.57	25
	ALT2	.53	.50	.14	.49	.37	.57	.53	36
	ALT3	.58	.51	.18	.49	.52	.58	.58	30
	ALT4	.52	.49	.12	.52	. 32	.58	.52	41
•••	ALT5	.57	.51	.15	.55 .	.41	.61	.57	42
	ALT6	.46	.44	.07	.53	.17	.56	.45	50
	ALT7	.47	.44	.08	.53	.18	.56	.46	49

Table K.4: Correlation Coefficients Between Nathan's Hardship Ratios and Per Capita Formula Allocations, 58 Central Cities

a. See Footnotes at end of Table K.3

265

· · · · · ·

.

•

•