e

HUD-0050556

ORIGIN

TCDMS SYSTEM PROGRAMMER'S MANUAL

(Data Management Section)

January 1976

Department of Housing and Urban Development

Office of the Assistant Secretary for
Policy, Development & Research

HUD Contract H-2073-R

INTER-REGIONAL INFORMATION SYSTEM

Regional Information Systems Department
Lane County Courthouse
Eugene, Oregon 97401

and
Data Processing Authority

4747 East Burnside
Portland, Oregon 97215

AL

BIBLIOGRAPHIC 1. Report No, 2. 3. Recipient’s Accession No
DATA SHEET USACLCG20014B

4, Titie and Subtite S. Report Date

TCDMS System Programmer's Manual January 30,-1976

Volume II (Data Management Section)

6.
7. Author(s) 8. Performing Organization Report No.
9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

Lane County Government
Lane County Courthouse

i 1. Contract/Grant No.
W295

Eugene, Oregon 97401 73-R
12. Sponsoring Organization Name and Address 13, Type of Report & Period Covered
U.S. Department of Housing & Urban Development) i
. Office of Policy, Development & Research Special Technical Report
451 7th St., S.W. 14.

Washington, D.C. 20410

15. Supplementary Notes

16. Abstracts

This manual is from a USAC series produced by the Regional In-
formation Systems Department of Lane County. It contains a
description of the data base definition process for the Data

Management component of the Telecommunications Data Management
System.

17. Key Words and Document Analysis - 17a.
Information System

Local Government
Computer System Programs
Data Retrieval
17b. Identifiers/Open-Ended Terms
Urban Information Systems Inter-Agency Committee
Municipal Information System
Lane County
Data Management System

17c. COSATI Ficld/Group 5B

Descriptors

unclassified 87 .
18. Availability Statement 19. Sccurity Class (This Report) |21. No. of Pages
unclassified
released for distribution by NTIS g, Security Class (This Page) |22. Price

FORM NTIS-35 (REV. 372) USCOMM-D.C. 14952P72

THE CITATION Of‘ TRADE NAMES OR MANUFACTURERS IN THIS REPORT
DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF
THE USE OF SUCH EQUIPMENT OR SOFTWARE.

ii

0.1 PREFACE

In 1972, the Data Processing Authority (representing the city of Port-
land and Multnomah County, Oregon) and the Regional Information
Systems Department of the Lane County government (representing the
cities of Eugene, Springfield, Albany, Cottage Grove, and Florence;
and Lane, Linn and Benton Counties, Oregon) formed an organization
called the Inter-Regional Information System (IRIS). Its purpose

was manifold:

to solve some of the complex problems of public information
handling through cooperative planning and development of

hardware and software environments;

to minimize the duplication of effort involved in writing

application systems;
to reduce the cost of governmental data processing; and
to increase the quality of service to the taxpayer.

Since its inception, the IRIS organization has grown to represent
over one hundred different city, county, state, and federal agencies
serving over 70% of Oregon's population. Current projects include
the Fleet Management System, the Assessment and Taxation System,

and the Telecommunications Data. Management System. Future involve-
ment is anticipated in the areas of criminal justice, management

analysis, human resources, geo-coding, and financial systems.

Much of the inter-regional success enjoyed by the IRIS organization
has been facilitated by a cost-reimbursement contract with the
Urban Information Systems Inter-Agency Committee (USAC). USAC is a

consortium of ten federal agencies formed in 1968 to work together

iii

0.1 PREFACE

In 1972, the Data Processing Authority (representing the city of Port-
land and Multnomah County, Oregon) and the Regional Information
Systems Department of the Lane County government (representing the
cities of Eugene, Springfield, Albany, Cottage Grove, and Florence;
and Lane, Linn and Benton Counties, Oregon) formed an organization
called the Inter-Regional Information System (IRIS). Its purpose

was manifold:

to solve some of the complex problems of public information
handling through cooperative planning and development of

hardware and software environments;

to minimize the duplication of effort involved in writing

application systems;
to reduce the cost of governmental data processing; and
to increase the quality of service to the taxpayer.

Since its inception, the IRIS organization has grown to represent
over one hundred different city, county, state, and federal agencies
serving over 70% of Oregon's population. Current projects include
the Fleet Management System, the Assessment and Taxation System,

and the Telecommunications Data Management System. Future involve-
ment is anticipated in the areas of criminal justice, management

analysis, human resources, geo-coding, and financial systems.

Much of the inter-regional success enjoyed by the IRIS organization
has been facilitated by a cost-reimbursement contract with the
Urban Information Systems Inter-Agency Committee (USAC). USAC is a

consortium of ten federal agencies formed in 1968 to work together

iii

PREFACE Continued

with local governments across the United States in an effort to
improve urban governance through more effective use of computer-
based processing systems. USAC is sponsoring several research and
development projects which will result in transferable, computerized
information systems available to local governments throughout the
United States.

With the support of USAC, IRIS is developing the system software
foundation for the application programs which control these
computerized systems. This foundation is called TeleCcommunications/
Data Management System (TCDMS). This system contains two components
which bring together the state-of-the-art features in both tele-

communications and data base/date management systems.

The telecommunications component of TCDMS extends the power of

the modern computer to the desk of each user. 1Its facilities include
such features as terminal independent I/O functions, user-specified
security, multiprogramming, priority scheduling, message switching,

print-out spooling, on-line debugging, and remote job entry.

The data base/data management component of TCDMS optimizes the
efficiency of data file construction and minimizes data redundancy
by combining all files in the system into an integrated data base.
Its facilities include data access flexibility, file and data
element security, and application program. independence from the
physical file structure.

Perhaps the most important feature of TCDMS is the transferability

of application systems it allows. Application programs running under
TCDMS control are isolated from changes in phe hardwére or software
configuration of the installation. This means that TCDMS-controlled
application systems can be transferred between IRIS installations

without the costly conversion efforts usually necessitated by such

iv

PREFACE Continued
exchanges.

TCDMS may ,be implemented on any IBM System 360/370 computer having
252K bytes or more of storage capacity. It will support IBM
System 360/370 BAL, FORTRAN, COBOL, and DL/l user languages.

TCDMS will run in real core under the control of IBM OS or VS
operating systems. The modular construction of TCDMS makes it

hardware independent; it can operate with any IBM terminal hardware

configuration.

The joint software development and maintenance by means of the
regional and interregional cooperation of IRIS and the integrated
data base/data communications approach of TCDMS are becoming an
increasingly popular solution to the problems of information handling
in the public domain. '

TABLE OF CONTENTS

0.1 PrefaCe. . « « o « « o« o o « s+ o« o o o« o« « « « « opage iii

) Table of Contents. . ¢« + & &+ o« + o &+ o o o o o & vi
0.2 Introduction . . . « « o o o & 4 « o « o 0 2 e e vii

1.0 OVERVIEW OF THE DATA MANAGEMENT SYSTEM 1

1.1 The TCDMS Data Base . « « « « o o o s o o o = 2

1.2 Data Storage and Description. « . . . (8

1.3 TCDMS Data Base ACCESS. « + « s s o « « o o o 11

2.0 DEFINING THE DATA BASE STRUCTURE . . &+ « ¢ o« o« o = 13
Defining the Data Elements. 14

Defining the Segments « « ¢« « « .« . 21

Redefining the Segments which are Referenced
by Pointers . . 23
2.4 How to Use the DSEG, DDE, and RSEG Macro

Instructions to Define a Data Base . . . 26

2.4.1 The DBSTRT Macro Instruction 27
2.4.2 Segment Layouts. . . « .+ ¢ ¢« 4 ¢ 4 o 28
2.4.2.1 The DSEG Macro Instruction. . 29

2.4.2,2 The DDE Macro Instruction . . 36

2.4.2.3 The RSEG Macro Instruction. . 49

2.4.3 The DBEND Macro Instruction. 53
2.4.4 Sample Data Base Definition. 54

3.0 GENERATING THE DATA BASE CONTROL BLOCK 58
3.1 DBCB Components . . . &+ « & & « o o o o o o o 60
3.2 How to Create a DBCB. . . + ¢ « « « o o & o« 64

4.0 GLOSSARY v v &« v & o o o o o « o o &

0.2 INTRODUCTION

This manual is a reference guide for TCDMS system programmers and
data base administrators at TCDMS installations. It contains a
description of the TCDMS functions which define a data base and
which create a data base control block (DBCB). It is written with
the assumption that its readers have a working knowledge of data
base design. For this reason, it offers no instruction in general
data base concepts. The user of this manual should have designed
the structure of his installation's data base. The information in
this manual enables him to create the TCDMS system files which
both identify this structure to TCDMS and allow the application

programmers at the installation to access the data within the structure.
This manual has three main sections. They are:

OVERVIEW OF THE DATA MANAGEMENT SYSTEM - there is a
general overview at the beginning of the manual which

describes the data management component of TCDMS.

DEFINING THE DATA BASE STRUCTURE - this section describes
the TCDMS functions which define data elements, éegments,
and the relationships between them.' These functions
create the Data Dictionary and the Segment Dictionary
which define the data base structure to TCDMS.

GENERATING THE DATA BASE CONTROL BLOCK - this section
describes the process by which the data base control

block is created.

In addition, this manual also contains a glossary of terms that are of

particular interest to TCDMS programmers.

vii

INTRODUCTION Continued

For other information about TCDMS, the reader is referred to the

following documents:

TCDMS SYSTEM SUMMARY - a conceptual overview of TCDMS.

TCDMS APPLICATION PROGRAMMER'S MANUAL (Data Management
Section) - a description of the TCDMS data base access
functions available to application programmers at TCDMS

installations.

TCDMS UTILITIES MANUAL - a description of the TCDMS
utility programs which load and maintain a TCDMS data

base.

TCS SYSTEM PROGRAMMER'S MANUAL - a description of the
TCDMS SYSGEN process.

viii

1.0 OVERVIEW OF THE DATA MANAGEMENT SYSTEM

1.0 Overview of the Data Management System

The data management component of TCDMS provides to an instal-
lation both a hierarchically structured data base with extensive

capabilities for inter-relating data, and a data base access sys-

tem which permits application programmers to retrieve, insert, change,

or delete data in the data base.

1.1 The TCDMS Data Base

The TCDMS data base contains one or more data files which can
be separately indexed, loaded, and reorganized. Data in one TCDMS
file can be a pointer to data in another file, thus providing ex-

tensive data inter-relatability within the data base.

A data element is the unit of data handled by an application pro-
grammer who uses files organized and accessed by TCDMS. One or
more related data elements are stored within a segment on the file.
Only one occurrence of a particular data element is allowed on a
segment. Any other occurrences of that data element require addi-
tional occurrences of the segment. Generally there is a one-to-
one correspondence among the data elements in a multi-element seg-
ment. TCDMS treats the segment as the smallest unit of data it
reads from or writes to the files. When an application program
requests retrieval of a data element which is stored in a multi-
element segment, TCDMS reads the segment, extracts the particular
data element desired, and passes this value to the requesting pro-
gram. Similarly, when TCDMS writes data to the data base it writes

an entire segment.

Segments are arranged in a hierarchical structure into a family.
There can be up to 256 hierarchical levels in a family. Each fam-
ily contains data of one type and structure. This data is all log-
ically related to, and hierarchically dependent on, one segment -
the root segment. Each family in a file is identified by the pre-—
sence of this root segment. A root segment occurs only once in
each family. Generally these segments are indexed. Groups of fam-

ilies make up a TCDMS file.

Data in the TCDMS data base can be related by pointers. These are
segments (or data elements) in one file which define the location

of a segment in another file. Rather than actually containing the
data, a pointer segment contains information which describes where
the data is stored in another file. Any segment which is the "tar-
get" of a pointer from another file contains back pointers which

identify the segments which point to it. Pointers in one file al-

ways identify root segments of families in the pointed to file.

Diagram 1 shows one family in a file. This example file, the Public
Utility Property File in an assessment and taxation data base, will
be used throughout this manual for illustration. The structure of

the families which comprise this file is explained briefly.

o This box represents the root segment for this particular fam-
ily. The root segment is a single-element segment. It con-
tains only an account number data element. The data element name
AQ0001 which appears in the lower-right corner of the box has been
assigned to this data element. Only one account number is stored

in this segment on the file. All the data hierarchically dependent
on this root segment pertains to the one account number stored in

the segment.

e T S o e M Y i R Vil b it G i ik s 2e: U oo S TR POy e g u e s
T wexbetd
_ N aT1t3d Kzxodexg K3t1TIn otTAdnd
ToLoy | beLod | %9ted /3099 | 000¥ osLo¥ | 85000 .
wa s
word | 7 saw | awil aibe | y3wpen Clyawaon L LN 53933y PNIISSESSY €7 9TTd
AL Boayr | AL Sowa ITHNI AL g 2/4L) yIgNon ‘Batyn jdwars /L
Sitey | 9Ney 1 oty , LOooy #9000 1 Tosoy | 10S9Y | La50k | hosof
| N Ip L
dgwaxd) g 18N o/ " Ao ﬁu‘_muawen_ LTI mﬁkwﬁwx_. DWesgy 1 TV ISV
Iyi0L 31wA gial 3mya qvsal Fewa, 290D Ty avey Fi¥a J00> | “garwa 34k
oy | T ; — ,._ T T " :
&8\ | THSOY 4 Liood. " hww%wm \ Ob9ov quumnmr!“ Si00y “ JEso¥ | T bGooy “ N.anmw €oooy | hoooy 9S00y | IEHO VY S010 ¥ Tito¥
.m MWUQ" Lol wa) vwedd ly au.r:lo" :u.uw»ﬂ._ Swdol _kuqu.wg‘ww_ AT TP L%ﬁw.mum VooSwNITTR L..i(ou_"utqZL«é duwnoy | sis O _uuhmc%
”, ' 7
dnd B TTang M yesh ov7d WL 9VTS WV oy, 0791 #s07vn FLvQ VY54 ¥ 3dhL “ LEZLECR] 1 NIIALY 0L wRINId ‘Hemo z_wwwu. “zhﬁqquuwwou o) wrINTOg ol y FiN10d
T I
T 1
010y | b890¢ 1 9LTO¥
H Jnow D
Tr0g 1 TTTIIED 1 aovinen
yIIWaN | Syrs | wFwnh
Jooot/

QN Loy

0 The next lower hierarchical level on the file contains one
multi-element segment. This segment contains three data ele—
ments: A0276, A0689, and A01l10.

e There are sixX segments on this hierarchical level. Each is
dependent on the segment above (described in 2). Several of
these segments have multiple occurrences. The current owner name
segment can have several occurrences. There can be more than one
owner for a piece of property and each owner's name requires a
separate occurrence of the current owner name segment. There are
multiple occurrences of the year segment as well. There is one for

each year that the account number has been in use.

The first five segments on this hierarchical level contain pointers.
These pointer data elements do not contain the referenced data, but
they identify the root segment in another file which does contain

the data. The pointed to files are illustrated in Diagram 2.

‘) Dependent on each occurrence of the year segment there are two
multi-element segments -~ the appeal segment and the levy code
assessment segment. There are also two multi-element segments de-

pendent on the leVy code assessment segmént;

The Public Utility Property file contains many occurrences of this
account family structure. Each account in the file is represented
by one family with the structure illustrated in Diagram 1. Because
there are many accounts in the file, there are many occurrences of
the family structure. Diagram 3 shows a simplified schematic view
of this file. For clarity, only certain segments are depicted and
the data elements within these segments are not illustrated. No-

tice that the entire account family structure is repeated for each

PROP

DESCR
RToO!

FORMER
ALeT
NUMBER

Rroot2

NAME

ATo013

AD DR
RY 0014

Diagram 2

24201 YPITEL &)

2090
Y Fqi

7W3ddY

rIHIIIIIh

¢ wexberqg

¥FH2004

Ldw Xy

YIHonon Ldw3NT

234

yaey
SNIING
s ¥ 79900

Fw YN

INFOY
L vy o>

SWUN
 ELL I
LTy ¥0D

L

I

®TTd A3xsdoxag A3TT1T3IN oTTqng
€ STT4 UT SSTTTWEI JUNOIOY

¥2u200N Ldw I3 _ w5
I] 3900 e 7¢ Idd¥
Ve 763ddY
F@0> _
T Y .y S wuN rwon
il b LE) onn7g] |Inzoy ¥ Inno umw L22¢ ysag
WYE] LwIgyad| kNTIVOD dyod d99d
T I I 1 T Y
YQay FWYN Fwl¥NH
ELEL wirng| | twaoy ¥ INmo F 1o/ y>sxa
Inywos| |[LNa¥¥as] |aivawynd I yod doyd
T T T Y I
LY ¥753¢ F\
Yawvwod) | do¥g
a _ T0Y1INGDS
TOY NG '
]
70y LNOD L
Liaooooy
Lhngaoy
i Llnoooy |—’—
i
y LNa0DIG
]

LNOGIDY

account segment in the file. This three-dimensional view of the
hierarchical data base is the view used by an application program-—

mer who accesses the data base.

Within the TCDMS data base there may be two basic types of files.
The shared or multiple chain files contain data that is common to
several users. Individual users view this data through pointers
in their own files. Therefore, the shared files can be "pointed
to" from several applications. Notice that many of the segments
in the Public Utility Property file contain pointers. Diagram 2
shows the pointed to files in this sample assessment and taxation
data base. These are shared files. They are accessed through
the Public Utility Property file and through other files not de-
scribed here. They contain data (names, addresses, and property

descriptions) used by many files within the data base.

The other variety of file, the root chain file, contains data for

an individual application. A root chain file contains within it
not only data relating to the particular application, but also
pointers to related data in other files. The Public Utility Prop-
erty file is a root chain file. It contains the data which relates
specifically to the accounts for property owned by public utilities.
It contains pointers to the related data (names, addresses, etc.)

contained in other files.

1.2 Data Storage and Description

When a data base is created and installed at a data center,
the exact descriptions of the files and the definitions of the data
elements and segments contained in these files are established.

The Data Dictionary, which defines the names and descriptive attri-

butes for all data elements in the data base, is built. The Segment

Dictionary, which defines the hierarchical structure of the files,
is built. These two systemvfiles, the Segment and Data Diction-
aries, define the data base to TCDMS. Each installation determines
the particular structure of its data base - which types of TCDMS

= files to include, what access limitations are imposed, and so forth.
This data base definition process is a main ﬁopic of this System
Programmer's manual. The process is described in detail in Chapter

2.0 Defining the Data Base Structure.

Data in a TCDMS file can be stored on disk in a variety of formats.
TCDMS can either write data to the file exactly as it is supplied,
or it can compress the data before storage. There are thirteen
types of data compression available. When the data base is estab-
lished at an installation, each data element is defined, and the
compression type, if any, is set. TCDMS converts data to and from

these compressed formats as it transfers the data to and from the

data base. An application program normally handles only an exter-

nal, or uncompressed form of the data element.

All the data elements in a TCDMS file are referenced by data ele-
ment name. These data element names are unique names, determined

by each installation to suit their particular data and storage re-
quirements. TCDMS keeps a data element descriptor for each data
element name, which contains both the external length and the stored
length of the data element. FEach data element descriptor contains
the compression type and any accessibility specifications for the
data element. The data element descriptor also contains informa-
tion which describes the relationship between the data element and
the segment and the location of the data element within the segment.

These data element descriptors are stored in the Data Dictionary.

The Segment Dictionary defines the hierarchical structure of the
files. Each entry in the Segment Dictionary relates a segment to
the segment on the next higher hierarchical level. For pointer
segments, each entry identifies the "pointed to" file. For root
segments which are "pointed to" from another file, the Segment Dic-
tionary identifies the file and segment which are pointing to the
root segment. If there are several segments which point to the root

segment, there are several Segment Dictionary entries.

A data base control block (DBCB) defines which data elements can

be accessedAby a particular application program. DBCBs are created
at each installation by a data base administrator in consultation
with users and application programmers. Each application program
which accesses the data base must have a DBCB. The DBCB genera-

tion process is described in Chapter 3.0, Generating the DBCB.

The DBCB relates the physical structure of the data to the logical
structure which the application program will use. The data base
control block is associated with an application program either as
the program is loaded or during execution before any data base ac-—
cess. It occupies a portion of the thread the program is using.
The DBCB includes a list of all the data elements the program can
use and a segment table TCDMS uses to locate the segments which
contain these data elements. The DBCB also includes and formats
an area of storage, the segment work area (SWA). The SWA is the
area that TCDMS uses either when it extracts data elements from a
retrieved segment before passing them to the program, or when it
groups data elements into segments before inserting them into the

data base. The DBCB also contains other TCDMS work areas.

The TCDMS data files are formatted and locaded onto direct access

storage devices using the Data Management System file load utility

10

programs. These utilities are described in the TCDMS Utilities

Manual, Data Management Component,

1.3 TCDMS Data Base Access

There are four major functional areas in the TCDMS data base
access system: access method, segment processor, request manager,

and the file and family protection system.

Data base access requests from an application program are initially
handled by the regquest manager modules. These modules determine
the nature of the request, convert the request to the appropriate
format for the access method, and handle conversion of data from
its stored format to the format desired by‘thé user. In addition,
the request manager modules maintain positioning within the data
base for direct or sequential access requests. The request manager

modules handle data elements.

Within the data base, data elements are stored in segments. The
request manager modules call the segment processor modules to handle
data segments. The segment processor modules manage the segment
work area‘(SWA) where segments are constructed from data elements
(for insertion) or held during data element retrieval. The segment
processor also determines whether segments are pointers and per-
forms special processing for them. The segment processor modules
cali the access method modules for actual data base retrievals,

insertions, or deletions.
The access method modules map the complex data structures to and

from their physical representations on direct access storage. The

access method groups segments into families and stores each family

11

in one physical block on disk. A block can contain several fami-
lies. If a family will not fit in one block, the access method
splits it between two blocks and constructs the necessary linkages
to relate the two areas of storage. The access method is designed
so that the physical structuring of families is independent of the
technique used to access families. This means that a family can

be accessed in several ways. The access method index handling rou-
tines provide direct or sequential access by index. A family can
be accessed through a pointer from another file. The access method
also manages any buffers needed during data base physical access.
The access method performs the actual read and write operations

which access the data files on disk.

The file and family protection modules provide data base protec-
tion and restoration facilities. Data base protection assures data
integrity during data access operations. In addition, modules
within the data base protection system handle processing in the
event that an application program which has accessed the data base
terminates abnormally. The data base restoration facility includes
the capture module and the file recovery modules. The capture mod-
ule provides the basis for data base recovery in the event of a
system failure. It writes a record of each data base update trans-
action (inserts, deletes, and changes) to the system capture file.
The file recovery modules provide the capability to restore the
data base to its original condition in the event it becomes damaged
during a system failure. Incomplete transactions can be removed.
Transactions from the capture file can be applied to a backup copy
of the data base.

12

2.0

DEFINING THE DATA BASE STRUCTURE

2.0 Defining the Data Base Structure

There are three things you must do to define the data base

structure. (1) You must define the data elements to be included
in the data base. (2) You must define the segments which contain
these data elements. (3) You must identify the segments which are

referenced by pointers from other files and redefine them to as-
sociate them with the pointers. TCDMS then sorts these definitions

to form the Data Dictionary and Segment Dictionary.

Note that when you define the structure of the data base you are
only concerned with the two-dimensional view of the data base.
Multiple occurrences of segments can be ignored. The data base
structure defines only the possible relationships between segments
on two hierarchical levels. Diagram 4 shows the two-dimensional

view of the example data base. 1In File 23 there are 37 data ele-

ments in 12 segments which must be defined. Files 11 through 14
contain single-element segments. These files can all be accessed
through pointers from the root chain file, File 23. Each segment
must be defined and the linkages to the root chain file must also
be defined. The sections which follow describe data element def-
inition, segment definition, and segment redefinition for segments

referenced by pointers.

2.1 Defining the Data Elements

When you define a data element you create an entry for the
Data Dictionary. This entry identifies the data element name, and
includes descriptive information about the data element. You de-
fine the data element compression type, the external length (used

by an application program), and the internal length (used by TCDMS

14

STTd SS9aAPPY

9TTHd 2WweN

y wexbe1q

oTTd Iaquny

JUNODOY A2UI0q

STTd

uotydraosaaq Ajxadoxag

#1001 1001y TiguLy TToo1y
yaay DV 7oLy ¥Is30
VYELRLE) 40Md
Q000! 00 0000%100 . JU00TIO0 0000TIO0
vl =2ltd T °91td ¢T ©Tt4 TT °TTd
boLoy | brioy , S9%T9Y /800¥ 1 0%00Y ooy | §body
wa
woig | D7 zan | awd 3V | yIndpon L) yawmoen L Ausnsiane paassessy
AL Bagyr | AL 3w 4DV ALH, 54y | yIIven SaTHN | dWaky I
g3F0 200 28K9% 200
Siod | ey . aqooy . hoeod #9906 | Tosoy | 19S50y | LS04 | posoy 5
Showard! o7 UM, s) A oy o wady | ST T,y) e ey
TYi0L AN WL I1y A 7ydcl Jewa, F09> QYIS FLve, Fiva | 2005 | ELIT7 N 34hL
S8¢0¢Zad . F8£0£200
AMMHQ | TmSoy | L199¥ | Lh50Y | gheo¥ urmamhln S/00y | /ES0V | Toood 5500y | Nuuwww €o0ob | foooy 75007 T 95hov STEeV
S5 umywes | Tvand asiiwe! "N i Tuuijﬁﬁu“ ALTDLY |y 55 7250 vt N b VWL | s o Luwnsy) 2o M ove
Tiaed F 7iafiy B, W5 gvrd IVIL 9¥7F ¥¥IA synd geTyr gnve Sdve | Y2 pashd) wTINI0) LU NFIAL) OL wFiried ‘Mero rw\\ww __zhod.\mﬂwmcu oL ¥ 3.N:03
F8T0TTO0 yorostod Por0 £¢00 Ea 347 It 207 ATRXTL]
oTTd :
A3xedoxg A3TTTIN OTTqnd €Z OTTA .
glioy | bgs0¥ ! 2LToY
L] noy <
710 2 ITTINE Jmthun\‘.
YIouay ! Sy | ¥IGwon
18102T00
teoo¥
[X 211"

000020

when it stores or retrieves the data element). You can indicate
the location of the data element within its containing segment.

Any access limitations you specify for the data element are in-
cluded in the Data Dictionary entry. Data element vélidation and
sort information which you define is also included in the Data Dic-

tionary entry.

Each data element and the corresponding Data Dictionary entry are
identified by the data element name. Each data element name is a
unique name, determined by each installation to suit its particular
data and storage requirements. Data element names can be from one
to six characters long. They must begin with an alphabetic charac-
ter (A through Z). The remaining 5 characters can be either alpha-
betic (A~Z) or numeric (0-9). It is suggested that each installa-
tion develop data element naming standards for the data elements

in their data base. For example, a one- or two-character prefix

can be used to identify the particular application area which uses
the data element, and the remaining four or five digits could be
used for a sequential numbering scheme within that programming area.
The example data base depicted in Diagram 4 uses such a scheme.

It is an assessment and taxation data base; the data element names
begin with the character A and are numbered sequentially. (The root
segments to the multiple chain files, Files 11 through 14, are ap-
parent exceptions to this standard. Because these data elements

are accessed via pointers from File 23, they are referenced by the
data element names illustréted in File 23. These names follow the
standard. The relationships between pointers and the "pointed to"

segments are described in Section 2.3).
Data in a TCDMS file can be stored on disk in a variety of formats.

TCDMS can either write data to the file exactly as it is supplied,

or it can compress the data before storage. There are thirteen

16

types of data compression available. These represent combinations
of ten external formats and seven internal storage formats. Table
I, Data Compression Types and Codes, lists the data compression

types.

Data compression allows TCDMS to use disk storage space more effi-—
ciently. Some savings are also realized in channel usage, because
less data is transferred to and from the disk. TCDMS can validate
compressed data. For example on insert requests, TCDMS can check
that the characters supplied are valid for the compression type for
the data element whose value is being inserted. TCDMS handles all

conversion for data which is stored in a compressed format.

When you define the compression type for a data element you also
specify an external length. For the numeric compression types you
must also specify an internal length. The internal length values
depend on the compression type you choose and the alignment require-

ments for that type.

For certain compression types, TCDMS computes the internal length.
For example, suppose you want to define a Name data element that
can be a maximum of 42 EBCDIC characters. The external length

is 42 bytes. If you use the 6-bit alphanumeric compression type
(code 6), the Name data element occupies 32 bytes in the segment.

A 42 character name, when compressed, cah be stored in 31-1/2 bytes.
Because the data compressed to the 6-bit compression type is byte-
aligned, TCDMS allocates 32 bytes for the data element.

For numeric compression types, you must specify both the external
length and the internal length. For example, suppose you want to
define a numeric data element which contains a 5-digit unsigned

zoned number. The external length is 5 bytes. The internal length

17

spIioMaTqnop Io

18

SpIiomIIn3 ‘spaom3ziey Kxeurd 31q TRUIIIXS SB IJWRS 8 Kxrutg paubif Axeurg 1g
SBNTeA Y3TM sSpiomslqnop IO
cmmvuowﬂﬁsu ‘gpiom3Tey Axeutd 319 Teula3lxs Se aues 8 0 € Axeutg paubrsun Axeutg Mg
(wnwTxew s93Aq 8)
SONTRA TRWTIOSP payded 3Tq paoatnbax 53Tq JO ISqunu 0T oTIBuUMU TewToop pd)ord paubts aum:ﬂm 1d9g
(wnwtxew sa93&q 8)
0 2z SoNnTeA TRWTOSP pa)ded 3Tq paxtnbax S3Tq JO I3qumu 0T ¢ OTI9UMU TewTO8p paxdoed paubisun AxeuTg Mdg
(umwtxew sa3&q 8)
3uerq ¢ 03 0 31q paIxTnbax sS3Tq JO IDqUnu 114 OoTI3unU pauog paubts Axeutg b4
(unwtxew s93&q §)
juelq 6 O3 0 319 paxtnbax s3Tq JO Iaqumu 6T 0 % OTIsumu pauoZz peoubrsun Axeutg nzg
(unutxew so3iq 97T)
- Yuelq 6 03 0 a3kq peatnbax sa34&q Jo Isqumu [4% OSTIswnu pauol paubts paxoed IZd
(unutxew so3kq 97)
Yuelq 6 o3 0 a34q paxInbax s934Aq Jo Iaqumu 1€ 0 ¢ OTIdUMU P3UOYZ poubTsun paxoeg MzZd
sewroy KX/pp/umu UT S893Ep 23 kq s93&q ¢ 8 (o1a09™) XA&/pp/unu a3ep 934q-7 sa
jewroy AAppumu ut sa3ep 93k s934q ¢ 9 (o1a093) KAppunt o3ep 93Xgq-Z a
$$~‘° Nuelq ¢ 03 0 93&q Yy3busT Teuxszxs ¢/I1 L9L'ZE (DIQD0g3) oTIsWNN oTIgUMU I®3OoRIRYD 3ITq-§ 3
-l\-
100,X uelq 2z o3 ¥ 334q YyjbusT Teurslxa 8/§ L9L'2E (010089d) ot3oqeydry ot3aqeydTe 3ITq-§ S
=i 2 W/ 581840 ()
00,X MUBRTq 6 03 0 2 O3 ¥ 234q y3busT TeUIdIIX® /€ LgL’ee oTxaumueydiy otTxsumueydie 3Td-9 9
siaqumu jurtod
butjeo13 ‘siaqumu paxoed
s510093 "6 ‘apoo 3ITQ 8 Auy 934q TeuIslxs Se sues L9L'2E spoo Auy possaxduoo j30u g
sodkl e3ed PTTRA JusuubyTY yabuol feuxsjuy (s23&q) yabueg uoy3ejussaxdey TrUISIXT uoyjejussexdsy Teuxsjzul apod
Teuxajulr TRPUIIIXH UMWTXe} 9dL1 uorssaxdwo)

§3003 NV S3dAL NOISSUdWOI Vivd I 314vl

is 17 bits - the number of bits which can represent the largest

non-negative value that can be expressed in 5 zoned digits.

Another descriptive attribute you can specify for the Data Diction-
ary entry is the offset to the data element within its containing
segment. It defines the position of the data element in the seg-
ment. For byte-aligned data elements the offset is specified by
the number of bytes from the beginning of the segment. For bit-
aligned data elements, the offset is expreésed by both the number
of bytes from the beginning of the segment to the byte in which the
data element begins and the number of bits within that byte to the
beginning of the data element. Remember that the offsets are com—

puted from the internal (compressed) length.

You can use the offset parameter to define several data elements
which reference the same or overlapping fields in a segment. This
feature allows you great flexibility in the way you use segments

and data elements. There are two main ways to use this feature.

(1) You can define one data elemen£ to include fields which are also
defined by several other data elements. Example l: You create a
segment which contains a 40-byte name data element A0436. You can
also define a 1l5-byte surname data element, a 10-byte first name
data element, a 1l0-byte middle name data element, and a 5-byte name
suffix data element to reference the same 40-byte segment.

A0436 NAME LEGAL OWNER

A0436l1 A04362 A04363 04364
||L|ll|;||||:||\lnlj;nlallLlnnn;DIilJllll
Surname First Middle Name
Name Name Suffix

19

Example 2: Your installation uses a combination of department num-
ber and employee number as the employee retirement account number.
You can define one segment to contain the account number data ele-
ment RP0023 to reference the 13-byte field in its entirety, and a
4-byte department number data element and 9-byte employee number
data element (FS0052 and FS0015) to reference these fields separat-
ely.

) I 1
RP0023 RETIREMENT ACCT. #

FSOOSZl FSOOlSi

D .
Dept. Employee
#

(2) You can define several data element names with different com-
pression types for one field in the segment. When you do this the
internal (stored) form for the several data elements MUST BE THE
SAME. The external format can vary. For example, a numeric value
is stored in binary in an 8-bit field within a segment. Application
programs can access this through three data elements with different
external formats'and external lengths. The table below shows three

data elements which could reference this field.

Element Name Compression Type External Format Internal Format

DR0728 BI Signed Binary Signed Binary

DR0942 BZI Zoned Numeric Signed Binary

¥A6843 BPI Packed Decimal Signed Binary
You can define the access allowed for a data element. If no ac-

cess specifications are included in a Data Dictionary entry for a
data element, the data element can be accessed only for retrieval.

If the data element is to be updated (change, insert, or delete)

20

you must indicate this when you define the data element. In addi-
tion, you can indicate whether the segment which contains the data
element is sorted by the value of the data element. Note that
data elements which establish the collating position for sorted
segments cannot be changed. They must be deleted and re-inserted
with a new value. For these data elements you should define the

access as insert and delete only.

.In addition to the validation which TCDMS performs for compressed
data, you can specify two data checks for the data element values.
You can specify that the first digit of the compressed form always
be 1, or you can specify that it must always be 0. The other data
validation which you can request is that compressed form of the

data element never be binary 0.

TCDMS provides a function which enables you to create a data ele-
ment description for the Data Dictionary. The DDE macro-instruc-
tion creates a Data Dictionary entry for one data element. Section
2.4 contains a description of the DDE macro instruction, and an

explanation of the operands.

2.2 Defining the Segments

You must define each segment within the data base. You iden-
tify the segment and its hierarchical positon within the data base.
The descriptions of the hierarchical relationships among the seg-
ments define the structure of the data base. When you define a
segment you create a Segment Dictionary entry which contains de-

scriptive information about the segment.

21

EFEach segment has a segment descriptor which you create when you
define the segment. The segment descriptor contains a four-digit
file number, a two-digit number to indicate the hierarchical level
that the segment occupies, and a two-digit segment identification.

The data base administrator assigns file numbers and segment IDs.

Each file within the data base has a four-digit hexadecimal file
number. For the files in the sample data base (Diagram 4 on page
15) these file numbers are 0023 for the Public Utility Property
file, 0011 for the Property Description file, 0012 for the Former
Account Number file, 0013 for the Name file, and 0014 for the Ad-

dress file.

The two-digit hexadecimal level number can be from 00 to FF. The
root segment of a file is always on level 00. During the SYSGEN
process, each installation sets the maximum number of hierarchical
levels for their data base. The sample data base depicted here
has 5 hierarchical levels, including the root segment. Thus the
maximum level number for any segment on this data base is 04.

This level contains the exemption segment and the voucher segment.

The segment IDs identify the segments within one hierarchical level
on the data base. These two-digit hexadecimal numbers are assigned
by the data base administrator. Segments which are pointers have
segment IDs from 01 to 7F. There can be 127 types of pointers in
a file. The segment IDs 80 to FF are used for non-pointer segments.
There can be up to 128 segments on each level in the file. In the
sample file 23, the maximum number of segments on one level is 6,
on level 02. Remember that you are concerned only with the two-

dimensional view of the data base. There can be many occurrences

of any one segment in the three-dimensional view; but there is al-

ways a maximum of 128 segments per level.

22

For root segments, the information you supply in the segment de-
scriptor is sufficient to uniquely describe the segment to TCDMS.
When you describe the segments at lower hierarchical levels within
a fiie you must include information which defines how the segments
relate to the ones on the next hierarchical level. For each seg-
ment, you must specify the segment ID of its upward-related seg-
ment. For example, when you define the appeal segment which is on
level 03, you specify that its upward-related segment is the year

segment.

When you define a pointer segment, there is one additional relation-
ship you must specify. You include the four-digit hexadecimal file
number of the file to which the pointer segment is linked. Pointers
in one file always identify root segments in another file. Thus

the file number is sufficient to create the relationship between

the two files. In the example data base, the first five segments
illustrated on level 02 are pointers. When these segments aré de—-

fined, the files to which they "point" are specified.

The TCDMS function which allows you to define the segments for
your data base is the DSEG macro instruction. This function cre-
ates a Segment Dictionary entry for one segment. Section 2.4 con-
tains a description of the DSEG macro instruction and an explana-

tion of the operands.

2.3 Redefining the Segments Which are Referenced by Pointers
After you have defined the data elements and the segments,

and established the hierarchical structure within each file, you

must complete the data base definition process by creating the in-

ter-file pointer relationships. The inter-file linkages in the

23

TCDMS data base are composed of corresponding pointers and back

pointers.

The inter-file linkages are established in two steps. When a pointer
segment is defined, the linkages are placed in the Segment Diction-
ary entry for the pointer segment. These linkages identify the

file the segment references. Section 2.2 describes how these pointer
segments are defined. Linkages (back pointers) must also be de-
fined in the Segment Dictionary entries for segments which are refer—
enced by pointers. A back pointer in one segment identifies the
particular segment in another file which references the first seg-
ment. This section describes how the back pointers are created to

complete data base definition.

You must identify each segment which is referenced by pointers from
other files. These segments are always root segments in multiple-
chain files. Diagram 5 shows a portion of file 23, a root chain
file, and all the multiple-chain files associated with it in the
sample data base. Notice that the root segments in files 11, 12,
13, and 14 are referenced by pointers from file 23. The root seg-
ment for file 13, the Name file, is referenced by pointers in two

segments in the root chain file.

Segment redefinition links a "pointed to" root segment with the
appropriate pointer segment in another file. When you redefine a
segment you specify the segment descriptor of the segment which
references it. For example, the root segment for the Property De-
scription file is pointed to by the first segment on level 02 in
file 23. Thus when you redefine the root segment for file 11, you
specify the segment descriptor of the pointer. This includes the
four-digit hexadecimal file number (0023), the two-digit hexadecimal

level number (02), and the two-digit hexadecimal segment ID (01).

24

G uexbetd

Y¥ILmiogd HOHY

¥ ILNOY
fal IS 1 37 z!r IS o Ind
«QQQ I YN #F LD ~Nolld 1 drsad
¥ 3wvos hLyRdoyd
0000 110U G000% 100 vﬁdg' 000G /190
)
\ |
\ i
\]
\]
]
/ |
]
\ !
| |
i !
| i
T Y N
T 4
= | hoooy 9g00y ! IEhOY Sotay T120y
bsood I oL m.anQ_ ol K‘ ® “ ol oL ¢ oL
1 |
To o0 3003200 | $02 05200 $0T65200 16205200
ooy b89av 1 ILzoY
] !
—rareerir—]
75102
gz 34 1900 Y
LNODY
QVQoeTo¢

25

When a segment is referenced from pointers in several other files,
or from several pointer segments in one'file, you must include seg-
ment redefinitions which describe each linkage. Notice that the
root segment in the Name file is "pointed to" by both the Owner
Name segment and the Agent Name segment. You should redefine this
segment twice. Once to create the linkage to the Owner Name seg-

ment, and once again for the Agent Name.

The TCDMS function which redefines segments is the RSEG macro in-
struction. RSEG defines the necessary linkages in the Segment Dic-
tionary entry for a segment which is referenced from another file.

Section 2.4 describes the RSEG macro instruction and its operands.

2.4 How to Use the DSEG, DDE, and RSEG Macro Instructions to
Define a Data Base

To define the data base you create a module for assembly and
execution. This module contains the TCDMS macro instructions which
create the Data Dictionary and Segment Dictionary entries. There

are five macro instructions which make up this assembly.
DBSTRT - creates the TCDMS module which sorts the data
element descriptions and segment descriptions

into the Data Dictionary and Segment Dictionary.

DSEG - defines a segment and its hierarchical location

within the data base.

DDE - defines a data element and its descriptive
attributes.

26

RSEG - redefines a segment referenced by a pointer seg-

ment in another file.

DBEND - terminates the Data Dictionary and Segment Dic-

tionary generation.

The assembly you create consists of a DBSTRT macro instrucﬁion, a
series of segment layouts (composed of DSEG, DDE and RSEG macro
instructions), and a DBEND macro instfuction. This section describes
how to code each of these instructions, and explains the operands
available. It includes a data base generation assembly for the

example data base depicted in Diagram 4 on page 15.

2.4.1 The DBSTRT Macro Instruction

The DBSTRT macro instruction creates the TCDMS module which
generates and loads the Data and Segment Dictionaries. These dic-
tionaries are TCDMS system files. The dictionary entries which are
loaded are created by DSEG, RSEG, and DDE macro instructions in the
same éssembly. The module also produces an alphabetical listing
of all the data elements defined for the data base. The DBSTRT
macro instruction is the first instruction in your data base defin-

ition module. There are no operands available with DBSTRT.

Format for Coding the DBSTRT Macro Instruction

[symbol]l DBSTRT

Return Codes

TCDMS places a completion status code for the Data and Segment Dic-

tionary load into register 15 when the load completes.

27

Code Explanation

0 NORMAL LOAD - The Data and Segment Dictionaries have

been loaded.

4 LOAD ERROR OCCURRED ~ An ISAM load error has occurred.
The Data and Segment Dictionaries have not been loaded.
An ISAM error message is produced which indicates the
nature of the error. Some possible errors are:
‘duplicate key - you loaded more than one DDE with
the same name or more than one DSEG with the same
segment ID.
*disk I/O error.

16 MNOTE ISSUED BY DSEG, RSEG, AND/OR DDE MACRO. LOAD
PROGRAM TERMINATED - One or more of the DSEG, RSEG,
or DDE macro instructions could not be assembled.
Check the assembly listing for MNOTE error messages.

The Data and Segment Dictionaries have not been loaded.

2.4.2 Segment Layouts

Your data base definition module for assembly is composed
chiefly of segment layouts. Each segment layout consists of a seg-
ment definition and, for segments referenced by pointers from an-
other file, a segment redefinition. All the segment layouts for
one file must be grouped together in the assembly, but they can

occur in any order within that group.

A segment definition is composed of one DSEG macro instruction fol-

lowed by one or more DDE macro instructions which identify the data

28

elements in the segment. In general, you should arrange these DDE
instructions in the same order as the order that the data elements

occur in the segment.

A segment redefinition is composed of one RSEG macro instruction
followed by one DDE macro instruction for each pointer to the seg-—
ment being redefined. Segment redefinitions occur in the segment
layouts for a multiple-chain file. A segment redefinition does not
change the segment descriptor or the upward-related segment for the
segment being redefined. It describes a different way the segment
can be accessed. A segment redefinition allows the use of a data
element name which can be accessed only through a pointer to the
file which contains the referenced data. TCDMS allows up to 5

intermediate linkages for data referenced by pointer.

Both the Owner Name and Agent Name segments illustrated in Diagram
5 on page 25, are pointers. The segment layout for the root seg-
ment of the Name file should contain a segment definition which
identifies thé root segment, and two segment redefinitions - one
fér the pointer from the Owner Name segment and one for the pointer
from the Agent Name segment. Notice that this allows the segment
to be accessed via two data element names -~ Owner Name and Agent

Name.

2.4.2.1 The DSEG Macro Instruction

The DSEG macro instruction generates a Segment Dictionary en-
try. This entry defines the segment and its hierarchical position
within the file. The segment defined by the DSEG macro instruc-
tion contains all the data elements defined by DDE macro instruc-

tions which follow the DSEG until the next DSEG macro instruction

29

or the DBEND macro instruction in the assembly.

There are three operands available with the DSEG macro instruction.
These define the segment and its hierarchical position. The first
operand, the segment descriptor, is specified as an eight-character
hexadecimal value. It has the format ffffllss. This operand is
required for all segment definitions. The four-digit hex file num-
ber (ffff) is specified first. These file numbers are assigned by
the data base administrator at each installation. The file number
for the Public Utility Property file is 0023. The segment descrip-

tor for each segment in this file begins with 0023.

The next field in the segment descriptor contains the hex level num-
ber (11). The root segment of a file is always level 00. Each hier-
archical level below that is assigned a number from 01 to FF. The
data base administrator sets the maximum number of hierarchical
levels at an installation. In the sample data base there are five

hierarchical levels, numbered 00 to 04.

The last two digits in the segment descriptor contain the segment
ID (ss). These two-digit hex segment IDs are assigned by the data
base administrator. They identify the segments within one hierar-
chical level. Segments which are pointers have segment IDs from
00 to 7F. There is a maximum of 127 pointer segments in each file
(on.§l£ levels). Thus within a file, a segment ID for a pointer
segment is unique. Segment IDs for the non-pointer segments are

from 80 to FF. There can be up to 128 segments on each level of

a TCDMS file, and the segment IDs are unigque within that level.
The next operand identifies the upward-related segment. This is

the segment, on the next higher level, on which the segment being

defined is dependent. For all segments except root segments, you

30

must include this operand to define the upward-related segment.
The operand is specified as the two-digit segment ID, ss, of the
upwara—related segment. For example, in Diagram 5 the upward-re-
lated segment for all the segments on level 02 is the single seg-
ment on level 0l which contains the three data elements 40276,
A0689, and A0110. The segment ID for this segment on level 01 is
8l. Thus the value of the upward-related segment operand for the
segments on level 02, all of which are dependent on segment 81, is
81.

You code the third operand for the DSEG macro instruction only

when you define a pointer segment. This operand designates the
"pointed to" file. You specify this operand by including the four-
digit file number (ffff) of the file referenced by this pointer
segment. Pointers in one file always reférence the root segments
of the "pointed to" file. Thus the four-digit file number is suf-
ficient to establish the linkage to the "pointed to" file. (The
linkage is completed by information in the segment redefinition
contained in the segment layouts for the "pointed to" file. This

is described in the section The RSEG Macro Instruction on page 49.

Each DSEG macro instruction must be followed by the DDE macro in-

structions which define the data elements contained in that segment.

31

Format for Coding the DSEG Macro Instruction

,DSEG seg descript,up rel seqg ID[,ptfile]

Explanation of Operands

Operands are positional and must be coded in the order illustrated.

seg descript is the eight-digit hexadecimal segment descriptor.
It has the format ffffllss.

-ffff is the four-digit hexadecimal file number of
the file which contains this segment.

-11 is the two-digit hexadecimal level number. It
designates the hierarchical level on which this
segment occurs. Level numbers are 00 to FF. A
root segment is always on level 00.

-ss is the two-digit hexadecimal segment ID. It
identifies the particular segment within a hierar-
chical level. Segment ID 00 is used for the root
to a file. Segment IDs 01-7F identify pointer seg-
ments. Segment IDs 80-FF are used for all other

segments.

up rel seg ID is the two-digit hexadecimal segment ID of the
upward-related segment. You must code this bperand

for all except root segments.
ptfile is the four-digit hexadecimal file number of the

file referenced by this segment. It is used only

for pointer segments.

32

Examples:

These examples show how the DSEG macro instruction is used to

"define the segments marked with large numbers in the sample data
base depicted in Diagram 6.

o To define the root segment you code:
DSEG 00230000

This creates a Segment Dictionary entry for the root seg-

ment for file 23. A root segment is always on level 00 of a file,
and its segment ID is always 00.

(9 To define the segment on the second hierarchical level (01)
you code:

DSEG 00230181,00

Notice that this segment definition includes the up rel seg
ID operand with a value of 00. It specifies that the seg-
ment being defined is hierarchically dependent on segment ID 00
on the next superior hierarchical level (in this case, the root
segment). The first operand, 00230181, specifies that the seg-
ment being defined is segment ID 81 on level 01 in file 0023.

Notice that this segment is not a pointer segment because the
segment ID is between 80 and FF.

(D To define the segment which references the name of the legal
owner for the property you code:

DSEG 00230205,81,0013

All three operands are present in this pointer segment defin-

ition. The segment descriptor specifies that the segment is a

33

9 wexbeId

hlod 0o oo 21003 . Mooty
Yaay IWHN F Loy %7530
Q 2 3wyod Joud
U000 h1d0 000Q 100 0009 TIQ0 00001100
T o114 - €T OTTd « ¢T ®TTA IT °TTd
boLoy | beiod | FOtey ,ygo0¥ | 0800y ocLoy | §b90¥
w3
wots | o7 saw! awid Ve) y3wonon Llyawmen c Luows3assy HNWTSISSY
AL Dayyr) AL owp (990N ALH, aJiL |y IIMeN a1y | dWaks F4iL
g8 Lhogzod 2JhosT o0
Sioy | 910y o olo0y 1 40998 59000 Tosoy | /1950y | $o5ok | hosoy M
|] INIYYIH ! I SndYLS 1 Tyaar
Showa3) of7 asp An = WIS d 76 7dY
Fyi0L I yunl u;:\.u.:ta. wnu—;" F99) mwww\w:w»e__._ Fiva ! qruuuvx ! .\mﬂuu ” EZLNA
S3808z0¢ . J850¢ 200
ooy | T 0 v T T T T T
i 2450 ¥ ! Ligod _?Mww “ ﬁuﬁa ; m.wmbmm&” SIo0y . JES0V | Toogy bcooy | TTZOY €000y | foooy 2S00y | IEhol S010 ¥ TiTov
SIYY | 1oy yo2 | s | aziiwe, v syaoy 4?7V sEET ALY | miss 30se L%\ﬁxw.ﬂuw T Lo oz | Lkwpsy | 2ewm on Ly MLy 830
Tised 7! Tmang p) yesk oerz 30sk 9v7d) wyik svrd sasyn ! JNaus! Fdee ! STEN ook 1w gm0 o L anvn oy ZV527 Inmo 70957 w0y aovd
—_— \4 <oczd 1 1 ') < Ao NIFAL Y 00 wFuricd NeE N BeAL | P w9UN0Y oy WIINICG oL y 7iNI03
2 0 YeToTTw 90CoRZOV 50T o%tod £ITOTZX f0T0g 290
olioy | 6906 ' 9LTOY
L] lad
T10d) Qw.ﬁ..wwwﬂu_ J.utuouuvo R Lo
w%o::.iu Sy u ¥ IgwnN
/8105200 € 9114
loge¥
¢MN19oy

0q0zT0 0

pointer segment (segment ID 05) on level 02 in file 0023. It
is hierarchically dependent on segment 8l on level 0l. The file
to which segment 00230205 points is file 0013, the Name file.

o To define the journal voucher segment, you code:
DSEG 0023048B,85

This segment is not a pointer. Its definition contains only
the segment descriptor and upward-related segment operands. The
segment descriptor, 0023048B, specifies that the segment is seg-
ment ID 8B on level 04 in file 0023. It is hierarchically depen-
dent on segment ID 85 on level 03.

(3 You define the root segment for the Name file in a manner
similar to the way you defined the root segment for the Pub-

lic Utility Property file. You code:
DSEG 00130000

This creates a Segment Dictionary entry for the root segment
of file 0013, the Name file.

Error Messages for the DSEG Macro Instruction

The DSEG macro instruction creates a Segment Dictionary entry
when your module is assembled. It contains no executable coding.
Thus any error conditions TCDMS encounters are flagged by the
assembler and appear as MNOTEs in your assembly listing. These

messages are listed on the following page.

35

2.4.

* SEGMENT DESCRIPTOR MUST BE PRESENT
* SEGMENT DESCRIPTOR MUST BE EIGHT HEX CHARACTERS

*UPWARD-RELATED SEGMENT ID MUST BE PRESENT ON NON-ROOT
SEGMENTS

*UPWARD-RELATED SEGMENT ID MUST BE 2 HEX CHARACTERS
*UPWARD-RELATED SEGMENT ID NOT ALLOWED ON ROOT SEGMENTS
*ROOT CANNOT BE A POINTER

*NO DDE SINCE PREVIOUS DSEG OR RSEG

-POINTED TO FILE MUST BE FOUR HEX CHARACTERS

2.2 The DDE Macro Instruction

Each DSEG macro instruction you code should be followed by a

series of DDE macro instructions to define the data elements within

the

one

You
the

one

segment., Each DDE creates a Data Dictionary entry which defines

data element for the data base.

designate the name for the data element by coding this name as
label on your DDE macro instruction. Data element names are

to six alphanumeric characters and they must begin with an al-

phabetic character (Section 2.1 discusses a data element name con-

vention.)

36

There are six operands available with the DDE macro instruction.
These define the compression type, the position of the data ele-
ment within the segment, the allowed forms of access, sort infor-

mation, and data validation information.

The compressidn operand defines the compression type for the data
element and the external length. There are thirteen types of data
compression available. Table 1, Data Compression Types and Codes
on page 18, lists these compression types. For the numeric com-
pression types (PZW, PZI, BZW, BZI, BPW, BPI, BW, and BI) you must
also specify the internal length when you code the compression op-—
erand. TCDMS computes the internal length for the non-numeric com-

pression types.

Suppose you want to define a Name data element that can be a max-~
imum of 38 EBCDIC characters. The external length is 38 bytes.
Alphabetic character data can have compression type 8 (no compres—
sion), 6 (6-bit alphanumeric), or 5 (5-bit alphabetic). TCDMS com-

putes the internal length for the compression type you request.

For numeric types you must specify both the external and internal
length. For the PZW and PZI compression types the stored values

are byte-aligned and the internal length is expressed in bytes.

For the BZW, BZI, BPW, BPI, BW, and BI compression types the stored
value is not aligned (or is "bit-aligned") and the internal length
is expressed in bits. Suppose you want to define a data element
which you use as a 5-digit unsigned zoned number. The data element
is stored as an unsigned binary value. The compression code is BZW.
For external length you specify 5 bytes; the internal length is 17
bits. This is the maximum number of bits needed to represent the

largest value which can be expressed in 5 zoned digits.

37

The offset operand allows you to specify the position of the data
element within the segment. This operand is optional. If you ar-
range the DDE macro instructions in the same order as the "left-
to-right" order that the data elements occur in the segment (see
Diagram 6 on page 34), you can omit the offset operand from all
these DDEs. When you include the offset operand, remember that
the data elements are placed in the segment in their compressed

format. You should calculate the offset values accordingly.

The offset operand has two suboperands. The first, bytes offset,
is used for all the data compression types. It defines the number
of bytes within the segment to the byte which contains the data
element. The second suboperand, bits offset, is used only for the
data elements with a binary compression type (BZW, BZI, BPW, BPI,
BW, and BI). It defines the number of bits within the byte to the
beginning of the data element.

The offset also allows you to define several data elements which
reference the same or overlapping fields in the segment. There

are two main ways to use this feature. (1) You can define the data
element to include fields which are also defined by several other
data elements. In this case you use the offset operand to specify
the location in the segment at which the field accessed by each data

element begins.

Example: Element Offset Length

FS0052 0 4
FSOOS2| FS0015 FS0015 4 9
i 31 1 [i i 1 1 1 L RP0023 0 13
\ S
N
RP0023

38

These three data elements are all contained in one segment. Example
3 on page 45 shows the DDEs which define the data elements in a sim-
ilar segment. The example also shows how data compression can be
used for these data elements. (2) You can define several data ele-
ment names with different compression types which all reference one
field in the segment. You can use the offset operand to specify
that each of these data elements begins at the same location in the
segment. When you do this you must be certain that the internal
(stored) format of the several data element names IS THE SAME. The
external format can vary. Example 4 on page 46 shows how you can

code these data element definitions.

The access operand specifies whether the data element can be ac-
cessed for update (insert, delete, or change). All data elements
are automatically available for retrieval. You use the access op-

erand to specify the other types of allowed access.

The sort operand specifies that the data element is used to deter-
mine the sort sequence for the segment. Only one data element in
a segment can be used to determine the sort. Thus only one DDE
macro instruction in each segment layout can include the sort op-

erand.

The remaining two operands are used for data validation. One spec-
ifies that the compressed form of the data element must have a spec-
ified value (either 0 or 1) for the first digit. The other operand
specifies that the value of the data element must not be zero.

TCDMS performs the data validation whenever the designated data

elements are accessed.

39

FORMAT FOR CODING THE DDE MACRO INSTRUCTION

element name | DDE | (compression) [, (offset)] [,A=¢

[,$=Y] [,F= 2}1 [, 2=N]

Note that you must code the 1 to 6 character data element name as

the label on the DDE macro instruction.

Operands
The first two operands are positional and must be coded in the

order illustrated.

(compression) is the compression information for the data ele-
ment. This operand is required. It has several
suboperands. The set of suboperands must be enclosed in parentheses.

The format of these suboperands is:
(compression code,external length[,internal length])

compression code is the 1 to 3 character TCDMS code for the

compression type of the data element.

external length is the maximum length in bytes of the uncom-
pressed form of the data element. This value

cannot exceed the maximum for the compression type.
internal length is the maximum length of the compressed form

of the data element. For all the compression

types stored in binary format (BZW, BZI, BPW, BPI, BW, and BI)

40

the internal length is number of bits. For all the other com-
pression types, internal length is number of bytes. The internal
length value cannot exceed the maximum stored length for the

compression type.

Table 1 on page 18 lists all the TCDMS compression types and the
codes associated with them. It specifies the maximum external and
internal lengths, and indicates whether the compressed from of the
data element is byte-aligned. When you code the internal length
suboperand for a bit-aligned data element you specify this length

in number of bits.

(offset) is the offset within the segment to the data ele-
ment. This operand is optional. If it is omitted,
TCDMS places the data element immediately following the one de-
fined by the previous DDE. If the DDE is the first for the segment,
TCDMS places the data element first in the segment. There are two
suboperands for the offset operand. They must be enclosed in par-—
entheses, even if only one suboperand is present. The format of

the offset operand is:
(bytes offset[,bits offset])

bytes offset is the number of bytes within the segment to the

byte which contains the data element.

bits offset is the number of bits within the byte to the first
bit of the data element. This suboperand must

be coded only for data elements with a bit-aligned compression

type (BZW, BZI, BPW, BPI, BW, and BI).

41

f IW This operand specifies the types of access allowed for
g this data element. It is optional. If the access oper—
=< ID} and is omitted the data element is restricted to retrieval
gg only. You can specify any combination of the three up-
IC% date access codes. These can be in any order.

I specifies that the value for the data element
can be inserted (MCALL INSx). v

C specifies that the value for the data element
can be changed (MCALL CHG).

D specifies that.the value for the data element
can be deleted (MCALL DEL).

S=Y specifies that the segment which contains this data ele-
ment is sorted on the compressed value of this data ele-

ment. This operand is optional. If it is omitted, the data ele-

ment does not determine a sort sequence for the segment. Note that

you must not specify A=C for data elements which determine sort se-

quence.

F={% This operand specifies that the first digit of the com-
pressed form of the data element must have the specified

value (either 0 or 1l). When you include this operand, TCDMS per-

forms data validation on the first digit whenever the data element
is accessed. This operand is optional. If you omit it, TCDMS does

not check the first digit of the data element value.

Z=N This operand specifies that the compreséed form of the
data element value can never be all zeros. This operand

is optional. When you include 7Z=N, TCDMS checks the data element

for zero values whenever the data element is accessed. If you omit

this operand TCDMS does not check the data element.

42

ExamEles

Example 1: To define the data element contained in the root

segment for file 23, you code:
A0001 DDE (8,6),S=Y,A=ID

This defines the data element A000l1, which contains the account
number. The data element name A000l1 appears as the label for the
DDE macro instruction. The compression information, (8,6), spec-
ifies that the data is stored uncompressed (code 8) and that its
maximum external length is 6 bytes. There is only one data ele-
ment in this segment. The offset operand has been omitted. The
S=Y operand has been included. This means that this root segment
is sorted by the value of this data element. These segments are
stored in a sequence based on the value of the account number.

In general, root segments in TCDMS files are sorted. The access
operand A=ID specifies that this data element can be accessed

for retrieval, insert, or delete. Note that because the data
element determines the sort sequence, access to change it is pro-
hibited. ©No data validation has been requested for this data ele-

ment.

When you assemble your data base definition module, the internal
length of each data element is computed and printed below the DDE
which defines the element. Thus this DDE in the assembly listing

of your module will appear as:

A0001 'DDE (8,6),S=Y,A=ID
*,48 BITS LONG FROM BYTE 0, BIT 0 TO BYTE 5, BIT 7

43

Example 2: To define all the data elements in the year segment

84 on level 2 in file 23 (segment number 00230284) you code:

A0002 DDE (8,2),A=ICD YEAR ASSESSMENT

A0531 DDE (8,8),A=C DATE LAST ACTIVITY
A0015 DDE (8,5),A=C TOTAL GROSS ACCT VALUE
A0378 DDE (8,5),A=C TOTAL NET ACCT VALUE
A0690 DDE (8,1),A=C FLAG YEAR ACCT ACTION
A0547 DDE (8,1),A=C FLAG YEAR OMITTED PROP
A0617 DDE (8,1),A=C FLAG YEAR APPEAL

A0542 DDE (8,3),A=ICD #PUTIL DOR ACCT

A0018 DDE (8,4),A=C #PUTIL ACRES ACCT

These DDE instructions are coded in the same order as the data
elements occur in the segment (see Diagram 6 on page 34), so the
offset operand is omitted. When you assemble your module, the
internal length for each data element is computed and printed
below each DDE. These values provide you with a map of the year

segment. This segment layout will appear in your listing as:

AQ02 DDE (8,2) ,A=ICD YEAR ASSESSMENT

*,16 BITS LONG FROM BYTE 0, BIT 0 TO BYTE 1, BIT 7
A0531 DDE (8,8),A=C DATE LAST ACTIVITY

*,64 BITS LONG FROM BYTE 2, BIT 0 TO BYTE 9, BIT 7
AQ015 DDE (8,5),A=C TOTAL GROSS ACCT VALUE

*,40 BITS LONG FROM BYTE 10, BIT 0 TO BYTE 14, BIT 7
A0378 DDE (8,5),A=C TOTAL NET ACCT VALUE

*,40 BITS LONG FROM BYTE 15, BIT 0 TO BYTE 19, BIT 7
A0690 DDE (8,1),A=C FLAG YEAR ACCT ACTION

*¥,8 BITS LONG FROM BYTE 20, BIT 0 TO BYTE 20, BIT 7
AQ0547 DDE (8,1),A=C FLAG YEAR OMITTED PROP

*,8 BITS LONG FROM BYTE 21, BIT 0 TO BYTE 21, BIT 7
A0617 DDE (8,1),A=C FLAG YEAR APPEAL

¥,8 BITS LONG FROM BYTE 22, BIT 0 TO BYTE 22, BIT 7
A0542 DDE (8,3),A=ICD #PUTIL DOR ACCT

: *,24 BITS LONG FROM BYTE 23, BIT 0 TO BYTE 25, BIT 7

A0018 DDE (8,4) ,A=C #PUTIL ACRES ACCT

*¥,32 BITS LONG FROM BYTE 26, BIT 0 TO BYTE 29, BIT 7

44

Example 3: You want to define a segment which contains a 13-
digit retirement account number which is composed of a 4-digit
department number, and a 9-digit employee number. You can use
compression type 4 to reduce storage space in the file. ~You

use the offset operand to "overlay" the three data element names
in the segment. The series of DDE macro instructions you code

is:

RP0023 DDE (4,13) ,A=ICD
FS0052 DDE (4,4),(0),A=ICD
FS0015 DDE (4,9),(2),A=ICD

When your module assembles, the internal length for the data ele-

ments is computed. Your assembly listing appears as:

RP0023 DDE (4,13) ,A=ICD

* 56 BITS LONG FROM BYTE 0, BIT 0 TO BYTE 6, BIT 7
(4,4),(0) ,A=ICD

* ,16 BITS LONG FROM BYTE 0, BIT 0 TO BYTE 1, BIT 7
FS0015 ©DDE (4,9),(2),A=ICD

*,40 BITS LONG FROM BYTE 2, BIT 0 TO BYTE 6, BIT 7

FS0052 ©DDE

Notice that the internal length has been used to produce the list-
ed segment layouts. A 13-byte external length can be stored in

7 bytes when it is compressed using compression type 4. (The
value can in fact be stored in 6-1/2 bytes, but compression type

4 is byte-aligned, thus the data element is allocated 7 bytes in
the segment.)

The second and third DDEs in the segment layout use the offset
operand to specify the location at which the defined data elements
begin. The DDE for data element FS0052 begins at 0, the beginning
of the segment. Its external length is 4 and since it is stored

using compression type 4, the internal length is 2. Although you

45

do not code the internal length for data elements which use com-
pression code 4, you must calculate it for this example because
you need it to compute the offset for the next data element,

FS0015. The offset value for the DDE which defines FS0015 is 2.

Example 4: You want to define an area within a segment that can
be accessed from several different applications in several differ-
ent formats. The value is stored in binary. One application

uses the value in its binary format, another uses it in a zoned
numeric format and a third uses it in packed decimal format. You

define three data elements which reference this field by coding:

DR0728 DDE (BI,S8,8)
DR0942 DDE (BZI1,4,8
FA6843 DDE (BPI,2,8

,0) ,A=1IC,2=N
1,0),A=ICD,Z=N
1,0

, (1
), (
) 4 () ,2=N

4

The first operand specifies the compression type, the external
length in bytes, and the internal length in bits (because the com-
pression type is "bit-aligned"). Notice that all these data ele-
ments have the same internal length. Because the compression
types are different, the external lengths vary. The location of
the data elements within the segment is expressed by the second
operand, the offset. These data elements are all located one

byte from the beginning of the segment. They all reference the
same area of the segment. Notice that because these data elements
have a binary internal format, the offset (1,0) is specified by
both the number of bytes to the byte which contains the data ele-
ment and the number of bits within that byte to the beginning of

the data element.

The A operand specifies the allowed access. When the field is

accessed with the data element name DR0728, it can be retrieved,

46

inserted, or changed. When this field is accessed by data ele-
ment DR0942, any type of access (retrieval, insert, delete, or
change) iskpermitted. For access by data element name FA6843,
the value can be retrieved only. No other access is allowed for
that data element.

The last operand in all three DDE macro instructions requests
that TCDMS check that the value of the field is not zero.

Error Messages for the DDE Macro Instruction

The DDE macro instruction creates a Data Dictionary entry when your
module is assembled. It contains no executable coding. Thus any
error conditions TCDMS encounters are flagged by the assembler and
appear as MNOTEs in your assembly listing. These messages are listed
below:

*NAME MUST BE PRESENT -

-name IS TOO LONG - SIX CHARACTERS MAXIMUM

where name is the data element name you supplied.

+COMPRESSION INFORMATION REQUIRED

-COMP TYPE, EX LEN REQUIRED FOR xxx COMP

where xxx is the compression code you supplied.

+EXTERNAL LENGTH MUST BE NUMERIC

«INVALID COMPRESSION TYPE

+EXTERNAL LENGTH MUST NOT BE GREATER THAN nn
where nn is the maximum external length for the compres-

sion type you supplied.
+EXTERNAL LENGTH MUST BE EQUAL TO nn
where nn is either 8 or 6 depending on the date compres-

sion (DS or D) you specified.

*COMP TYPE, EX LEN, INT LEN REQUIRED FOR xxx COMP

where xxx is the compression code you supplied.

* INTERNAL LENGTH MUST BE NUMERIC

* INTERNAL LENGTH MUST NOT BE GREATER THAN mm
where mm is the maximum internal length for the compres-
sion type you supplied.

*EXTERNAL LENGTH MUST BE 1, 2, 4, OR 8

*OFFSET SUBOPERAND (S) MUST BE NUMERIC

*ONLY BYTE OFFSET ALLOWED FOR xxx COMP

where xxx is the compression code you supplied.

*BYTE AND BIT OFFSET REQUIRED FOR xxx COMP

where xxx is the compression code you supplied.
*BIT OFFSET MUST BE NUMERIC AND LESS THAN 8

*INTERNAL LENGTH PLUS BIT OFFSET MUST NOT BE GREATER THAN 64

48

*NO MORE THAN n SUBOPS ALLOWED FOR xxx COMP

where xxx 1is the compression code you supplied and n is

the maximum number of suboperands (2 or 3) allowed for

that compression type.
*DSEG MUST PRECEDE DDE
*ONLY ONE DDE ALLOWED PER ROOT SEGMENT
*INVALID ACCESS TYPE OPERAND

*OFFSET MUST BE ZERO FOR ROOT SEGMENT

2.4.2.3 The RSEG Macro Instruction

Each segment which is referenced through a pointer from an-

other file must be identified and connected with the pointer seg-

ment.

Segments which are referenced by pointers from other files are al-

ways root segments in multiple-chain files (File 0011,
and 0014 in the sample data base depicted in Diagram 6
Segment redefinition links a "pointed to" root segment
appropriate pointer in another file. You use thé RSEG
tion to do this. The RSEG macro instruction redefines
to data elements within the segment. It specifies the

points to the root of the file which contains the data

0012, 0013

on page 34).
with the

macro instruc-
the access
segment which

element.

For example, the root segment for the Property Description file is

pointed to by the first segment on level 02 in file 23.

The seg-

ment descriptor for this segment is 00230201. When a segment is

49

referenced from pointers in several files, or from several pointers
in one file, you must include segment redefinitions which describe

each linkage.

The RSEG macro instruction has one operand. There can be up to 5
suboperands. Each of these suboperands contains a segment descrip-
tor for the "pointing segment". For direct linkages, such as are
illustrated in the sample data base, only one suboperand is used

in each RSEG macro instruction. The value of the operand for the
RSEG macro instruction for the root segment of File 12, the Former
Account Number file, is 00230203, the segment descriptor for the
segment in File 23 which is identified as the "pointer to former

account number".

There can also be indirect linkages between TCDMS files. In this

case, each suboperand in the RSEG macro instruction defines the

segment which points to the root of the previous file in the link-

age. Example 3 on page 52 illustrates this type of linkage.

You code the RSEG macro instruction following the segment layout
for the root segment being redefined. The RSEG macro instruction
is followed by a DDE macro instruction to identify the data ele-
ment name for the "pointed to" data. If there are additional re-
definitions for the root segment, you code these following the

first one.

50

FORMAT FOR CODING THE RSEG MACRO INSTRUCTION

I RSEG l (ptfile[,ptfile,ptfile,ptfile,ptfilel)

Ogerand

There can be up to 5 suboperands for the RSEG macro instruction.
For direct linkages you code one. It identifies a segment which
points to the root of the file which contains the data element de-—
fined by the DDE which follows the RSEG. For indirect linkages,
each suboperand specifies the segment which points to the root of

the previous file in the linkage.

ptfile is the segment descriptor which identifies the pointing

segment. It has the format f£fffllss where
ffff is the four-digit hexadecimal file number
11 is the two-digit hexadecimal level number

ss is the two-digit hexadecimal segment ID

Example 1l: To redefine the root segment for the Property Descrip-

tion file, file 11, which is pointed to from file 23, you code:

RSEG (00230201) :
A0212 DDE (8,18) ,A=ID DESCR PROPERTY

Notice that the data element name by which the "pointed to" data

is referred is defined in the "pointed to" file, not the pointing
file.

51

Example 2: The coding below defines, and redefines, the root
“segment for the Name file, which is pointed to by two segments
in the root file, file 23.

DSEG 00130000 ROOT FILE 13--NAME FILE
RT0013 DDE (8,40) ,A=ID NAME
RSEG (00230205)
A0436 DDE (8,40) ,A=ID NAME OWNER LEGAL
RSEG (00230206)
AQ004 DDE (8,40) ,A=ID NAME AGENT
Example 3: To redefine a segment which is connected through

intermediate linkages you can code:

RSEG (00060201,00050101)
X00001 DDE (6,2) ,A=ICD

This redefinition means that the root of the file which contains
data element X00001 is pointed to by segment ID 01 on level 02

in file 0006. The root segment for file 0006 is, in turn, pointed
to by segment ID 01 on level 01 in file 0005.

File 0002 File 0005 File 0006
00020000 00050000 00060000
X00001

<

I |
00050101 00050120

00060189

|
00060201 00060282

52

Error Messages for the RSEG Macro Instruction

When your module is assembled, the RSEG macro instruction creates

a completed linkage in the Segment Dictionary entry for the segment
defined by the preceding DSEG macro instruction. It contains no
executable coding. Thus any error condition TCDMS encounters is
flagged by the assembler and appears as an MNOTE in your assembly

listing. These messages are listed below.
*NO DDE SINCE PREVIOUS DSEG OR RSEG
*POINTING SEGMENT DESCRIPTOR NOT PRESENT
*NO MORE THAN 5 POINTING SEGMENTS ALLOWED

*POINTING SEGMENT DESCRIPTOR MUST BE EIGHT HEX CHARACTERS

*RSEG MUST BE PRECEDED BY A DSEG

*RSEG NOT ALLOWED ON POINTING SEGMENTS

2.4.3 The DBEND Macro Instruction

The DBEND macro instruction terminates a data base definition
assembly module. You code this macro instruction after all the
segment layouts for all the files in your data base. The DBEND
macro instruction sets the counters for the number of data elements
and segments you have defined. There are no operands available with

the DBEND macro instruction.

53

FORMAT FOR CODING THE DBEND MACRO INSTRUCTION

DBENDl

There are no operands or return codes from DBEND.

2.4.4 Sample Data Base Definition

The sample assembly listing on the following page is the en-
tire data base definition module for the sample data base depicted
in Diagram 4 on page 15.

54

120V ¥0Q 1I1LNd ¥IIWNN aI=v‘(g’8)
L 119 ‘2g 3LAC 0L O LI9 ‘¢c 31AE WOd¥d 9NO1T SLIE 8‘x

Ivaddv dvIA 9VId 2=v‘(T‘8)

L 119 ‘Tz 31AE 0L O LIE ‘TZ JILALG WOYd ONOT SLIF 8'x
ALY3d0¥d QILLIWO ¥v3IA 9Vd 2=V’ (T’8)

L 1I9 ‘02 31A9 0L O LI9 ‘02 3ILAE WOYd 9NOT SLIF 8“‘x
NOILDV 12DV ¥v3IA 9vd I=V‘(T’8)

L 1Id ‘6T 31AG 0L O LIE ‘ST ILAE WOYd ONOT SLIE O+’
1220V 13N Iv1i0oL 3nivA I)=v‘(s’‘8)

L 1I9d ‘4T 31A9 0L O LIE ‘OT 3ILAG WOY¥d ONOT SLIF O+ 'x%
122V SSO¥9 VL0l INTVA)=v‘(s‘8)

L 119 ‘6 31AE 0L O LIg ‘2 3JLAG WOYd 9ONOT SLIL %9‘x%
ALIAILDV LSV 31Va J)=v‘(8'8)

L 1I9 ‘T 3LA9 0L O LI ‘0 ILAL WOY¥d ONOT SLIE 9T’ x
INAWSSISSY AVIA adI=v‘(z‘8)

INIW93IS AYVIA T8/%#820€200

L 119 ‘4 JIAG 0L O LI ‘% 3JLAD WOY¥d ONOT S1Id 8‘x%
LVYWY0d 9NITTIg vadAL =V’ (T’8)

ONITIIE ¥aAav 01 ¥3ILINIOd #T00‘T8/Vv020£200

J 1I9 ‘4% 31LAG 0L O LI ‘% 3ILAL WOY¥d ONOT S1Ig 8‘x%
LYWY0d LNIOV NIdAL I=V‘(T’8)

IN3OV 3IWVN Ol ¥3ILINIOd €T00‘T8‘9020€£200

J 1I9 ‘% 31A9g 01 O LI ‘% 3ILAD WOY¥d ONOT SLIE 8‘x%
LYWY0d V9371 ¥INMO NIdAL I=V‘(T’8)

Y937 ¥INMO IWVN OL ¥ILNIOd €T00‘T8*5020£200
YIWYO0D 122V ¥3IGWNN 0L ¥ILINIOd 2TO00‘T8’€020€£200
Al¥3d0odd ¥IS3IC 0L HYILINIOd TTO0‘T8/T0Z20€200

L 119 ‘G 31A9 0L O LI9 ‘¢ JLAD WOYd ONOT SLIF #2’=x%
17Nd YIEWNN I=v’(€’8)

L 1I9 “‘Z 31A9 0L O LI ‘2 3LAG WOY¥d ONOT SLIE 8‘x%
@3113IONVD LDIJV 9vd 2=V‘(T’8)

J 119 ‘T 31A9 0L O LId ‘0 3ILAE WOY4 9ONOT SLIF 9T‘=x%
dNOY9 T0YLNOD ¥IFGWNN d=v‘(2Z’8)

00‘T8T0E200
L LId ‘G 31A9 0L O LI€ ‘0 ILAE WOYd 9NOT SLIF 8%'x

NOILVIIJILINIAI 12OV ¥IFWNN QI=V‘A=S‘(9’'8)
ALIILN=--¢Z 37714 1004 ; 0000¢€200
N3I9OON

=R

adda

3acq

idda

idaa

adca

3dqa

idd
93sda

jaa
RENY

iada
93Sa

3da
93sca
93sda
93sd
iqa
aqa

aaca
93sda

aqa

935
1d1s4q
INI¥d

290V
LT90V
L%G0V
0690V
BLEOV
STOOV
Tes0ov

000V

6500V

£000V

9500V

OTTOV
6890V

9L20V

TOO00V

INIWILVLS 32UN0S

0eTT
8¢TT
STTT
cTTT
OOTT
860T
680T
€80T
0L0T
890T
Q60T
£G0T
0%0T
8¢0T
Q20T
8TOT
9TOT
€00T
966
Y66
186
Y16
ZL6
696
2466
a%6
BE6
9¢b
€26
T26
806
906
£68
988
788
TL8
%98

LWLS

56

27 L3N AL 3INTIVA 2=v’(5’8) jaa 62.0V 66€ET

L 114 “‘HT 31A9 0L O LI€ ‘L 3LAD WO¥d 9NOT SLIE %9« L6ET
W3ILSAS FWIL 3JLVA TAIVAACL ¥EWNN J=v‘(8’8) iaa G020V +8€T

L 119 ‘9 3LAE OL O LIF ‘S JLAD WOYd ONOT SLIF 9T’=x% 28¢T
YIHINOAr 3dAL J=v‘(2’8) iaa T8OOV 69€T

J 1149 ‘% 3LAE OL O LId ‘0 3ILAL WOY4 9NO1 SLId 0% ’x L9€T
YIHINOAT YEWNN aI=v‘(s’s) jaa 0800V %GET

LINIW93IS ¥IHINOA g8‘/d8+%0€200 93sa LYET

L 119 ‘9 JLAE 0L O LI€ ‘2 3ILAE WOY¥d 9NO1 S1Ig O%'x% GHET
LINIWSS3ISSY WIX3 3NTIVA =V’ (5’8) jaa 0€l0V Z2€ET

J LIg ‘T 3LA9 OL O LI ‘0 3LAD WOYd 9NOT SLIF 9T’ 0€ET
~LNIWSS3ISSY WIX3I 3dAl ali=v’(z’s) jaa 8600V LTET

INIW93S LdW3X3 g8‘28%0€200 93Sa OTET

L 114 ‘)T 3LA9 OL O LIF ‘€T 3JLAD WOYd 9NOT SLIE O%’x% 80€T
2\ dW3IX3 1vLI0L 3INIVA 2=v‘(5’8) jaa STTOV S62T

J 119 ‘2T 3LAL OL O LId ‘8 JLAL WOY¥d ONOT SLIE O%‘x €62T
J\7 L3N VL0l 3INIVA 2=v’(5’8) jaa 9TTOV 082T

J 1I1g ‘), 3LA9 OL O LI€g ‘¢ J1AE WOYd 9NOT SLID 0O+’ = 8.2T
2\ IvLi0oL 3INIVA I=v‘(s’8) iaa 9TO0V G92T

J 114d ‘z 3LA9 0L O LI€ ‘0 ILAE WOYd 9ONOT SLId %2’ €92T
AA3T 3a02 ali=v‘(g’s) jaa 6000V 0S2T

INIW93IS LNIWSSISSV D\ #8/68€0€200 935a €H2T

L 1194 ‘€2 31A9 OL O 11 ‘9T 3ILAL WOYd 9NO1 S1Id +9'x TH2T
99VIH WIONI 3INIVA 1v3ddv 31vda J=v‘(8‘8) jaa #900T 822T

J LI9 ‘ST 3J1AE OL O LIF ‘8 JLAL WOYd 9NOT SL1Id #9’x 922T
Iv3addy 31va 2=v’'(8’8) iaa 2060V €TZT

L L1g ‘), 31A9 0L O LId ‘/ 31LA9 WOYd 9NO1 S1IfE 8’x% _ : TTZT
SNLVLlS v3iddvy 3a0? 2=V‘(T’8) jaa TOGOV 86TT

L 119 ‘9 3LAE 0L O LI ‘2 JLAD WOYd 9ONO1 SLId O%‘x% 96TT
VL0l 1v3addv INIVA)=v’(s’8) iaa 80S0V €8TT

L LId ‘T 3LAE 0L O LIE ‘0 ILAE WOYd 9NO1 SL1IE 9T‘x TSTT
Tv3ddy 3dAlL adi=v’(z’s) iaa 0G0V 89TT

IN3IW93S 1v3IddV #8/48€0€200 93Sa TOTT

L 119 ‘62 3LAE OL O LI ‘92 ILAL WOYd 9NO1 SLIE 2¢€’x% 8GTT
120V S3¥OV 1I1Nd ¥YITWNN 2=V’ (%’8) iaa 8TOOV G¥%TT

J 119 ‘g2 31A9d 0L O LId ‘€2 31AE WO¥d 9NOT SLIFG %2'x%- €HTT
IN3IW3I1VLS 32¥N0OS LWLS

119 ‘6€ 3JLAE 0L O LIF ‘0O JLAE WOYS
ONITIgE ¥aav

119 ‘6€ LA 0L 0 LIE ‘O JLAE WOMUS
Haav
INI4 d¥aav--+T 3114 100H

119 ‘6€ 3LAE 0L O LIE ‘0O JLAE WOMUS
IN3OV 3IWVN

119 ‘6¢ 3LAG 0L O LIF ‘0O ILAE WONS
V93 Y3INMO IWVN

119 ‘6¢ 3LAG 0L 0 LIE ‘0O 3ILAE WOMS
IWVN
3714 IWYN--¢T 3714 100H

9NO1 SLIF 0Z2¢’=x%
aI=v‘(0%’8)
(V0Z20€200)

9NOT SLIg 0Z¢€’x
aI=v‘’(o%‘s)
0000+ T00

9NO1 SLIg 02¢’=x
ar=v’(ov‘s)
(9020€£200)

9NO1 S1Ig 0Z¢’x
ar=v‘(o+’s)
(5020€200)

9NO1 SLIFE 02¢€’x%
aI=v‘(0%’8)
0000€ETO00

L 119 ‘S 31A9 0L O LI9 ‘0 JLAE WOYd 9NOT SLId 8% ‘x

YIWY04 123V UIEWNN

aI=v’'(9'8)
(£020€200)

L 1Ig ‘G 31A€ 0L O LIF ‘0 3JLAE WO¥d 9NOT SLIFE 8%'x

YIAWHO0S 1I3JV UIFWNN
dAWYES 120V ¥3EWNN--ZT 31714 LOOH
L19g “.T JLAE 0L O LI ‘0 3JLA9 WOYS

ALld3d0¥d ¥IS3C

119 ‘)T 31LA9 0L O 119 ‘0 3JLAE WOYA
AL¥3I40dd ¥IS3C
Al¥3d40¥d ¥IS3A--TT 3114 1l0O0OY

aI=v’(9’8)
0000<ZTO00

ONOT SLIg #%T'x
qI=v‘(8T’8)
(T0Z20€Z200)

ONOT SLIF #%T‘x%
qI=v‘(8T’8)
OO0OOTTOO

119 ‘%2 3LAE 0L O LI ‘02 3JILAE WOY4 ONO1 SLIE O¥'x

W3IX3 AC JINTIVA

2=V (s’8)

119 ‘6T 3LA9 0L 0 LIF ‘ST 31AE WOYd 9NO1 SLIE O%‘x

!
aN3gda

3da
93SY

3dd
9350

3da
RER.!

3ada
93SY

3aa
93sda

3dqa
93SHd

3da
93Sda

3da
93SH

3da
93Sda

3da

22cov

#TO00LY

#0000V

9¢v0V

€T001Y

SOTOV

ZTO0LH

ZTZ0v

TTOOLY

60,0V

INIWILVLS 32¥N0S

09T
TO9T
66ST
989T
S86T
€B8GT
0LST
€941
09sT
LyST
9+vgT
VaAN"
TeaT
0estT
BZST
GTST
BOGT
S0sT
26%1T
T6%T
6841
9LYT
69+%T
Q94T
€St
2a%T
0¥t
LevT
oevT
LZHT
YTHT
Z2THT

IWLS

57

3.0 GENERATING THE DATA BASE CONTROL BLOCK

3.0 Generating the Data Base Control Block

A data base control block (DBCB) defines which data elements
within the data base can be accessed by a particular application
program. It includes a list of all the data elements which the
program can use, and a segment table which TCDMS uses to locate
the segments whiclh contain these data elements. The DBCB also con-

tains other TCDMS work areas.

DBCBs are created at each TCDMS installation by the data base ad-
ministrator in consultation with users and application programmers.
These DBCBs are kept in a TCDMS library. Each application program
which accesses the data base must have a DBCB associated with it.
The data base control block from the library is associated with an
application program either as the program is loaded or during exe-
cution before any data base access. This DBCB is loaded into an
unused portion of the thread which the program is using. In addi-
'tion to the tables and control blocks which were stored on the 1li-
brary, the DBCB includes and formats the remaining space in the
thread into tables and a Segment Work Area (SWA). The SWA is the
area that TCDMS uses either when it extracts data elements from a
retrieved segment before passing them to the program, or when it
groups data elements into segments before inserting them into the

data base.
This chapter describes the component tables, work areas, and fields

in the DBCB and the procedures for generating a data base control
block.

59

3.1 DBCB Components

A data base control block (DBCB) contains two types of areas:
those TCDMS builds when the DBCB is created and those it builds

when the DBCB is loaded into a user thread.

The three tables or areas constructed when the DBCB is created are
the DMS communications area (DCA), the segment descriptor table
(SDT), and the data element area (DEA). These three fields are in
the DBCB that is stored in the TCDMS library. When the DBCB is
loaded into a user thread, six additional areas are allocated and
formatted from the available storage in the thread. These are the
back pointer occurrence table (BOT), the scan point element (SPE),
the access request (ARQ), the segment processor work area (SPWA),

a register save area, and the segment work area.

The DMS communications area (DCA) contains address constants for
DMS tables and routines as well as parameters and work areas. It
contains the addresses of the other tables and areas in the DBCB.
TCDMS uses the information in the DCA when it handles data base ac-
cess requests for an application program. The DCA is 524 bytes
long. TCDMS creates this field when the DBCB is generated.

The segment descriptor table (SDT) maps out the physical structure
of the portion of the data base which the application program will
use. It contains one segment descriptor table entry for each seg-
ment which includes a data element listed in the data element area.
In addition there is one entry for each higher segment along the
vertical hierarchical path from this segment to the root segment
of the file. Thus the SDT contains the information which enables
" TCDMS to locate any data element which the application program can

regquest.

60

Each SDTE (segment descriptor table entry) contains the segment
descriptor (file number, level number and segment ID), and the file
number of any pointed to segment. In addition it contains the off-
set to the SDTE for the upward-related segment, and the offset to
the first data element entry (in the DEA) which is associated with
this segment. It contains other linkage and status fields used by
TCDMS. Each SDTE is 36 bytes long. TCDMS creates the segment de-—
scriptor table entries from information contained in the Data and
Segment Dictionaries. It groups them into the SDTE when the DBCB

is generated.

The data element area (DEA) contains one data element entry (DEE)
for each data element which is specified in the DBCB generation
process. Only the data elements listed in the DEA can be accessed

by an application program which has been associated with the DBCB.

Each data element entry contains the data element name, the loca-
tion of the SDTE for the segment which contains this data elément,
and the location of the data element within the segment. In addi-
tion it contains status bits to indicate the data element external
 format and length and the internal (compreséed) format and length.
It also contains a work area used by both the scan processor and
the data element processor during data access. Each DEE is 20
bytes long. TCDMS creates the DEEs from information in the Data
Dictionary when a DBCB is generated. You specify only the data

element names for the data elements you want included.

The three tables just described are stored as a DBCB in the system
library. When the DBCB is associated with an application program,
TCDMS creates and initializes the remaining six tables and areas.
They are described briefly here, and estimates of the length of
each are given. A programmer should be aware of the size of the

DBCB which is associated with his program to be sure that both will

61

fit in the thread and that there is ample storage for the segment
work area.

The back pointer occurrence table (BOT) is a table TCDMS uses to
identify the back pointer file linkages for data elements at the
current data point. The BOT is 12 bytes long, plus 12 bytes for
each pointer segment. The scan point element (SPE) is a control
block used to identify and describe the current scan point. The
SPE is 99 bytes long. The access request (ARQ) is a control block
used to pass requests to the access method for physical data ac-
cess. This control block is 20 bytes long, plus 8 times the maxi-
mum segment level in any file referenced by the DBCB. For example,
if the "lowest" segment in the hierarchy is level 04, then the ARQ
is 20 bytes + (8 bytes/level) x (5 levels) = 60 bytes. The segment
processor work area (SPWA) is used by the segment processor. It

is 20 bytes long plus 4 times the maximum segment level in any

file referenced by the DBCB. Thus for the same DBCB just used as
an example for the ARQ length, the SPWA is 40 bytes.

The register save area is used by all the data management system
routines which handle an application program request. Control pas-
ses through many DMS routines before the request is satisfied. The

register save area is 1000 bytes.

TCDMS uses all the remaining space in the user's thread as the seg-
ment work area. The SWA is the area that TCDMS uses during appli-
cation program execution either when it extracts data elements from
a segment before passing them to the program, or when it groups data
elements into segments before inserting or updating a segment on

the data base.

62

The SWA contains three areas - the data position tables (DPT), the
segment headers and data, and the update control blocks. TCDMS
creates and modifies these fields while handling the applicaticn
prOgram data access requests. The data point table is used to keep
track of multiple data points within the data base. There can be
up to 256 data points used by the application program. TCDMS does
not use the data point table if only one data point (data point 0)
is being used. The DPT contains one entry for each data point num-
ber (other than data point 0) which is used by the associated ap-
plication program. This entry is a copy of the SDT status at the

" time when the data point was set. It contains 4 bytes, plus 6 bytes

for each segment in the SDT, plus a copy of the BOT and SPE from
that time.

The main use of the SWA is to contain the segments being accessed
by the application program. Each segment that is kept in the SWA
is preceded by a segment header. The size of the segment header
depends on the type of segment. Segment headers for root segments
are 8 bytes long. For a pointer segment, the segment header is 20
bytes plus 4 bytes for each level from the root segment to the
pointer. For example, a segment header for a pointer on level 02
of a file is 32 bytes long (20 bytes + (4 bytes/level) x 3 levels).
Segment headers for other segments are 16 bytes plus 4 bytes per
level.

When TCDMS retrieves data it keeps only the most recently accessed
copy of a segment in the SWA. TCDMS keeps all segments for update
(insert, delete, or change) in the SWA until the physical write

to the data base is performed. If the SWA fills up with these up-
dated segments, TCDMS attempts to obtain more SWA space by freeing
space occupied by retrieved segments. If there are no retrieved

segments to release, the application program has no more storage to

63

use to update the data base. TCDMS terminates this application
program abnormally. For this reason, it is important that program-

mers understand the sizes of storage available to them in the SWA.

TCDMS keeps in the SWA only the amount of the segment which con-
tains the data elements specified by the application program. For
root segments, it keeps the entire segment (the key). For pointer
segments it is the pointer portion (RBF address of the pointed to

segment) and the "pointed to" wvalue.

TCDMS creates update control blocks in the SWA only when the appli-
cation program requests a file update. Each update control block
contains an ARQ and a file request table which identifies the files
affected by the update. The FRT is 4 bytes plus 2 bytes for each
file referenced in the DBCB.

3.2 How to Create a DBCB

You create a DBCB using the TCDMS DBCB generation module
DUDBCB. You execute this program as part of a job. The job also
should include a link-edit step to prepare the DBCB for the 1li-
brary.

The SYSIN input data set for DUDBCB contains the one- to six-char-
acter name of the DBCB, and the names of all the data elements which
the application program which uses the DBCB can access. You spec-
ify the DBCB name by coding DBCB=name and you separate this from

the data element names by a comma. Each data element name is sep-
arated from the next by a comma. You must also include DD state-
ments which define the system libraries which contain the Data Dic-

tionary and the Segment Dictionary. DDname DMSDADIC identifies the

64

Data Dictionary. DDname DMSSEDIC identifies the Segment Dictionary.

The DUDBCB module reads the data element names you supply, and looks
up the appropriate entries in the Data Dictionary. From that in-
formation it -can create the data element entries for the DEA. The
information in each Data Dictionary entry also identifies the seg—
ment descriptor for the segment which contains the data element.
Using this, DUDBCB looks in the Segment Dictionary to find the up-
ward-related segment for this segment. It continues this process
until it has identified all the segment descriptors for segments in
the path from the segment which contains the data element to the
root segment of the file. DUDBCB does this for each data element
name input. These segment descriptors form the segment descriptor
table (SDT) in the DBCB. DUDBCB also sets up the DCA. It puts the
completed DBCB onto the system library, and produces a listing of
the DBCB and all the data elements in it.

Tﬁe sample job control statements below show the DBCB creation step
in a DBCB generation job. This job generates a DBCB for the data
base defined in chapter 2. The DBCB identifies all the data ele-
ments in this sample data base. They are all accessible to any pro-

gram which is associated with this DBCB.

//GEN EXEC PGM=DUDBCB
//STEPLIB DD DSN=USER.TCDMSGO,DISP=SHR LIBRARY FOR DUDBCB
//SYSIN DD
DBCB=ADBCBL,A0001,A0276,A0689,A0LL0,A0056,A0003,A0059
A0002,A0531,A0015,A0378,A0690,A0547,A0617,A0542,A0018
A0504,A0508,A0501,A0502,A0064,A0009,A0016,A0116,A0115
A0098,A0730,A0080,A0081L,A0205,A0729,A0709,A0212,A0L05
A0004,A0222,A0436
/* .
//DMSDADIC DD DSN=USER.DMS.ATDBDD,DISP=0LD,DCB=DSORG=IS
//DMSSEDIC DD DSN=USER.DMS.ATDBSD,DISP=0LD,DCB=DSORG=IS
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSN=&&DBCB,DISP=(NEW,PASS),DCB=(DSORG=PS,
BLKSIZE=800,LRECL=80,RECFM=FB),SPACE=(TRK, (1)),
UNIT=SYSDA

65

The six DDnames define the data sets used for DBCB generation.
STEPLIB describes the library which contains the DUDBCB module.
The SYSIN data set contains the input to the DUDBCB program, the
name of the DBCB and the data element names. DMSDADIC defines the
Data Dictionary and DMSSEDIC defines the Segment Dictionary. SYS-
LIB specifies the output data set for the DBCB which is created.
SYSPRINT contains the messages generated by this step. ,
The next component of your DBCB generation job link-edits the DBCB
and puts it on the system library. The sample job control state-
ments below show the link-edit step.

//LINKDBCB EXEC UPLKED,NAME=ADBCBL

//SYSLIN DD DSN=&&DBCB,DISP=0LD
The DUDBCB program produces a list of all the data elements in the
DBCB and a map of the DBCB structure. The sample JCL below shows
the entire DBCB generation. It is followed by the DBCB map pro-

duced by this job. The DBCB which is generated is for the sample
A&T data base used throughout this manual.

//ATDBCB JOB accounting information

//GEN EXEC PGM=DUDBCB

//STEPLIB DD DSN=USER.TCDMSGQO,DISP=SHR

//SYSIN DD *

DBCB=ADBCB1,A0001,A0276,A0689,A01L10,A0056,A0003,A0059

A0002,A0531,A0015,A0378,A0690,A0547,A0617,A0542,A0018

A0504,A0508,A0501,A0502,A0064,A0009,A001.6,A0116,A0115

A0098,A0730,A0080,A0081,A0205,A0729,A0709,A0212,A0105

A0004,A0222,A0436

/*

//DMSDADIC DD DSN=USER.DMS.ATDBDD,DISP=0LD,DCB=DSORG=IS

//DMSSEDIC DD DSN=USER.DMS.ATDBSD,DISP=0LD,DCB=DSORG=IS

//SYSPRINT DD SYSOUT=A

//SYSLIB DD DSN=&&DBCB,DISP={NEW,PASS) ,DCB={DSORG=PS,
BLKSIZE=800,LRECL=80,RECFM=FB),SPACE=(TRK, (1)},
UNIT=SYSDA

//LINKDBCB EXEC UPLKED,NAME=ADBCB1

//SYSLIN DD DSN=&&DBCB,DISP=0LD

//

66

TCDMS DATA BASE CONTROL BLOCK GENERATION ﬁﬁﬁ DBCB ADBCBL
: DBCB MAP

LOGICAL DBCBL UP REL SEG GEN SRTD PTR T0O

0023-00-00 *XROAT
’ A0001L X
0023-01-81 0023-00-00
A0276 '
A0689
A0110
0023-02-01 0023-01-81 001L
A0212 , .
0023-02-03 0023-01-81 0012
AOLO5
0023-02-05 0023-01-81
AD436
AQ056
0023-02-06 0023-01-81 0013
A0004
A0O0O03
0023-~02-0A 0023-01-81 . 0014
Aoz22
A0059
0023-02-84 0023-01-81
A0002
A0531
A0015
AQ378
A0690
A0547
A0617
A0542
A0018
0023-03-85 0023-02-84
A0009
AOOLe6
A01L6
AOL1L5
0023-04-8B 0023-03-85
A0080
A00O8L
A0205
A0729
A0709
¢ 0023-04-8C 0023-03-85
A0098
A0730
0023-03-8F
A0504
AQ508
A0O501
A0502
A0O64

67

Interpreting the DBCB Map

The DBCB map shows the logical structure of the data base defined
by the DBCB. The field on the left contains the segment descrip-
tors for all the segments in the portion of the data base described
by this DBCB. They are arranged in a hierarchical structure which
parallels the data base hierarchy. Each segment which is dependent
on another segment is listed beneath its upward-related segment and
is indented two spaces. This allows you to see the data base hier-
archy more clearly. All the segments on one level have the same
indentation (for example segments A0023—03—85 and 0023-03-8F). All
the data elements which are contained in a segment are listed im-
mediately following the segment descriptor for that segment. The
data elements which are the "target" of pointers (for example A0004
and AQ0003 in files 0013 and 0014) are listed as if they were direct-

ly contained in the pointing segment. This is the logical view of

the data base. Remember that when you defined the physical view

of the data base using the data base definition process described
in chapter 2, you listed the DDEs for "pointed to" data elements

in the files to which they belonged.

The four columns on the right define the upward-related segment

(UP REL SEG column) and specify whether the segment was generated
for the DBCB (GEN column), whether the segment is sorted (SRTD col-
umn) and if it is a pointer (PTR TO). The UP REL SEG column con-
tains the segment descriptor for the upward-related segment for any
segment. If the segment is a root segment, it has no upward-related
segment and **ROOT** appears in this column. (See segment 0023-00-
00).

68

The GEN column contains an X for any segments which are required
to complete the hierarchical path to the root but which do not con-
tain data elements listed in the input to DUDBCB. Such segments
lie on the path between a segment which contains a listed data ele-
ment and the root segment, but since no data elements in these seg-

ments are listed, they cannot be accessed.

The SRTD column contains an X for any data element that determines
the sort sequence for its containing segment. For example, data
element A0001 in segment 0023-00-00 is marked X in the SRTD column.

This means that the many occurrences of segment 0023-00-00 are stored

in a collating sequence, arranged by the values of the A0001 data
elements within them. The PRT TO column indicates the file number

of the file pointed to by any pointer segments.

69

Cataloging a DBCB

After DUDBCB creates a DBCB and it is link-edited, the DBCB is
placed in a TCDMS library. Before the DBCB can be used by an ap-
plication program the DBCB name must be cataloged. This creates

a TCDMS library directory entry for the DBCB. When a DBCB is cat-
aloged the names of all application programs which can use this
DBCB are specified. DBCB cataloging is a secured ULIB CAT func-
tion available only to a data base administrator. The format of
the ULIB command to catalog a DBCB is

*ULIB CAT,DBCB=dbcbname,PGMS=(progname,...)

where dbcbname is the one- to six-character name of the DBCB

being cataloged.

progname is the one- to six-character name of a program
which can use the DBCB. There can be several
program names; they must be separated by commas
and the entire list must be enclosed in paren-

theses.

70

4.0 GLOSSARY

4.0 GLOSSARY

. ACCESS METHOD The set of modules within the Data Management
component of TCDMS which locate and access data
s ' in a TCDMS data base.
ACCESS REQUEST (ARQ) A control block within a DBCB which is

used to pass a request to the access
method for physical data base access.

ARQ See access request.

BACK POINTER A linkage contained in a segment in a multiple-
chain file which identifies a particular segment
(a pointer segment) in another file. TCDMS file linkages are com-

posed of corresponding pointers and back pointers.

BACK POINTER OCCURRENCE TABLE (BOT) A table in a DBCB that TCDMS

uses to identify the back
pointer file linkage during data base access.

DATA BASE ADMINISTRATOR A person or group responsible for design,
creation, and maintenance of the data

base at an installation.

DATA BASE CONTROL BLOCK (DBCB) A TCDMS control block which identifies
both the data elements accessible
to an application program and the logical relationships between

) those elements. The DBCB also contains the segment work area and
other TCDMS work areas.

72

DATA COMPRESSION A TCDMS method for reducing the direct access

storage requirements for data in TCDMS files.

DATA DICTIONARY A TCDMS system file which contains the data ele-
ment descriptors for all the data elements in
the data base.

DATA ELEMENT The unit of data handled by an application program-
mer who accesses TCDMS files. It is the smallest
unit of data in a TCDMS file.

DATA ELEMENT AREA (DEA) A TCDMS control block within a DBCB which
identifies the names and location infor-

mation for the data elements which can be accessed using that DBCB.

DATA ELEMENT DESCRIPTOR (DED) An entry in the Data Dictionary

which contains a data element name,
the external and stored lengths and the compression type of the
data element, the accessibility and security attributes, and in-
information relating the data element to a segment. There is one

DED for each data element in the data base.

DATA ELEMENT ENTRY (DEE) An entry in the data element area. It
identifies one data element name and its

location and status information.

DATA ELEMENT NAME A unique name assigned to a data element in the
data base.

DATA POINT (1) A collection of segments in the data base which are
available for access. A data point includes only one
occurrence of each segment type on each hierarchical level in the

file. A data point identifies a unique location within the data base.

73

(2) A number (0 to 255) which specifies a scan point and data

point.

DATA POINT TABLE (DPT) A table in the segment work area which
TCDMS uses to identify multiple data
points during data base access.

DBCB See data base control block.

DBEND The TCDMS macro instruction which terminates a data base

definition assembly module.

DBSTRT The TCDMS macro instruction which initiates a data base

definition assembly module.

DCA See DMS communications area.

DDE The TCDMS macro instruction which creates a Data Dictionary

entry for one data element in the data base.
DED See data element descriptor.
DEA See data element area.
DEE See data element entry.
DMS COMMUNICATIONS AREA A control block in the DBCB which contains
address constants for routines and tables

TCDMS uses to handle data base access requests.

DPT See data point table.

74

DSEG The TCDMS macro instruction which creates a Segment Dic-
tionary entry to define a segment and its hierarchical

position within the data base.

FAMILY A collection of segments which are hierarchically dependent
on one segment, the root segment. All the data in a

family pertains to the root segment.

HIERARCHICAL LEVEL An occurrence or set of occurrences of seg-

ments which occupy the same relative vertical
position in the data base. Root segments always form the first
hierarchical level in a file. The set of segments directly depen-
dent on the root segments forms the second hierarchical level. The
segments directly dependent on these form the third hierarchical
level, etc.

HIERARCHICAL PATH A set of segments which includes one segment

on each level between the lowest-level segment
requested and the root segment for that file. Also called vertical
path.

LOGICAL FILE The view of the data base defined by a DBCB. This
is the view used by application programmers who ac-
cess the data base using that DBCB.

LOGICAL ROOT The root segment for the logical view of the file.

MCALL CHG The TCDMS data base access macro instruction which

changes one or more data element values on the data base.

MCALL DEL The TCDMS data base access macro instruction which de-

letes a data element value from the data base.

75

MCALL GETxX The TCDMS data base access macro instructions which

retrieve one or more data elements values from the data

base.

MCALL INSx The TCDMS data base access macro instructions which

insert data element values into the data base.

MULTIPLE CHAIN FILE A TCDMS file which contains data that is com-

mon to several users. Individual users view
this data from pointers in other files.

PHYSICAL FILE The actual data base file. The physical view of
the file is connected to the application program's
logical view by the DBCB. Compare with logical file.

POINTER A segment in a root chain file which identifies a root

segment (and its associated family) in another file.
TCDMS file linkages are composed of corresponding pointers and
back pointers.

POINTER SEGMENT See pointer.

RBF The relative block address of a segment within a family.
This address is used by the access method routines to

locate a requested segment.

REQUEST MANAGER" The set of modules within the Data Management

component of TCDMS which interpret an applica-
tion program request for data base access.

ROOT CHAIN FILE A TCDMS file which contains both data for an in-

dividual user and pointers to data in shared, or

multiple-chain, files.

76

ROOT SEGMENT The one segment in a family which identifies that
family. All the data in the family is logically

related to, and hierarchically dependent on, the root segment.

RSEG The TCDMS macro instruction which redefines a segment to

complete the pointer-back pointer interfile linkages.

SCAN POINT A collection of hierarchically related segments con-
taining data elements that uniquely identify the par-
ticular data of interest to an application program. The segments

included in a scan point form a hierarchical path in the data base.

SCAN POINT ELEMENT (SPE) A control block within a DBCB which
identifies the scan point being used

by an application program.
SDT See segment descriptor table.
SDTE See segment descriptor table entry.
SEGMENT A set of data elements grouped physically together in a
TCDMS file. The data elements in a segment all occupy

the same logical position in the data base hierarchy.

SEGMENT DESCRIPTOR An eight-character hexadecimal valve which

identifies a segment within the data base.

SEGMENT DESCRIPTOR TABLE (SDT) A table within a DBCB which maps

out the physical location of each

segment which an application program using that DBCB can access.

77

SEGMENT DESCRIPTOR TABLE ENTRY (SDTE) An entry in the segment
‘ ‘ descriptor table which
contains a segment descriptor and linkage information for one

segment.

SEGMENT DICTIONARY A TCDMS system file which contains the seg-

ment descriptions for the segments in the data
base.

SEGMENT ID A two-digit hexadecimal valve which identifies a

segment on one hierarchical level within a TCDMS file.

SEGMENT LAYOUT A segment definition, followed by data element
definitions for each data element in the segment.
For segments "pointed to" from other files, a segment layout also

includes one or more segment redefinitions to complete the linkages.

SEGMENT PROCESSOR The set of modules within the Data Management
component of TCDMS which handle segment level

requests from the request manager.

SEGMENT PROCESSOR WORK AREA (SPWA) A work area within a DBCB

used by the segment processor.

SEGMENT WORK AREA (SWA) A portion of the DBCB which TCDMS uses
to construct segments from data elements
for insertion, or to hold segments from which it retrieves indiv-

idual data elements for an application program.
SHARED FILE A multiple-chain file.

SORTED SEGMENTS Segments stored in a collating sequence based on

one data element within each segment.

78

E 3

SPE See scan point element.
SPWA See segment processor work area.
SWA See segment work area.

THREAD An area of main storage available for an executing on-

line application program.

VERTICAL PATH A set of segments which includes one segment on

each level between the lowest-level segment request-
ed-and the root segment for that file. Also called hierarchical
path.

79

