Is Manufactured Owned Housing a Good Alternative for Low-Income Households? Evidence From the American Housing Survey

Thomas P. BoehmThe University of Tennessee

Alan Schlottmann University of Nevada, Las Vegas

Abstract

In terms of developing a housing policy that would improve the quality of housing for lower income households, it seems appropriate to explore the merits of an often-ignored alternative, namely manufactured owned housing. This article employs data from the American Housing Survey (AHS) collected between 1993 and 2001 to compare manufactured owned housing with rented housing and traditional owned housing as a tenure alternative for low-income households. Our results contradict several preconceived notions regarding manufactured owned housing. For example, manufactured owned housing is found to be a low-cost housing alternative. Importantly, it is observed to have higher average quality rankings across both the neighborhood and structural dimensions of housing services than rented housing does (even when the sample is stratified by metropolitan and nonmetropolitan location). Furthermore, those factors that contribute to lower structural quality or lower neighborhood quality, as well as changes in those quality measures over time, are similar between manufactured owned housing and traditional owned housing.

Introduction

Research on homelessness by Quigley, Raphael, and Smolensky (2001), Mansur et al. (2000), and others have focused on the crucial role of housing prices in denying access to housing services and homeownership. This literature reinforces the concerns by HUD (2001) and others about the availability of "affordable housing"; that is, housing that costs no more than 30 percent of the occupant's household income or is available for less than the median price in a given housing market. With the well-recognized increase in income inequality during the 1980s (see, for example, Reed, Glenn-Haber, and Mameesh, 1996) and the increases in rents in the 1990s for those in the bottom quarter of the income distribution who, in addition, faced falling real incomes (HUD, 2001), the issue of promoting homeownership among low-income households faces significant hurdles.²

These concerns about housing affordability for low-income households appear to be difficult to resolve by developing policy options that focus only on traditional owned housing and/or rented housing units. In terms of developing a housing policy that would improve the quality of housing for lower income households, it seems appropriate to explore the merits of an often-ignored alternative, namely manufactured owned housing.³

Although the manufactured housing industry has struggled over the years with excess inventory, manufactured housing generally has become an increasingly important part of the new housing mix; approximately 14 to 20 percent of new housing starts are manufactured housing (see Beamish et al., 2001; Manufactured Housing Institute, 2003).^{4, 5} Belsky and Duda (2002a) clearly document that manufactured housing was a significant factor in the low-income homeownership boom of the 1990s. As noted in Joint Center for Housing Studies (JCHS) (2003) and discussed in detail in Beamish et al. (2001) and Apgar et al. (2002), however, manufactured housing is still often viewed with caution in many communities.⁶ As discussed by Genz (2001), this bias has lead to neglect of issues that are important to this housing option and the households that it serves, particularly

¹ As noted by the U.S. Department of Housing and Urban Development (HUD), this 30-percent guideline is deceptive in that the remaining household income for low-income households is associated with minimal consumer expenditures.

 $^{^2}$ The studies discussed in Retsinas and Belsky (2002b) strongly suggest the efficacy of promoting homeownership for low-income households.

³ Manufactured housing is often termed "mobile homes" and represents a type of factory-built housing manufactured in compliance with HUD codes. It forms part of the spectrum of so-called factory homes that include modular homes, panelized homes, and precut homes. Although the manufacturing and construction distinction is often related to the percentage of the home completed on site versus off site, for public policy purposes, it is important to recognize that manufactured homes often face different local ordinances. For a discussion of these issues, see HUD (2001) and Apgar et al. (2002).

⁴ As a result of low interest rates making traditional "stick-built" housing more affordable, shipments of new manufactured housing units have recently reached a 45-year low. For more on this issue, see HUD (2004): p. 6. The U.S. Census Bureau maintains excellent website access to historical statistics on manufactured housing based on HUD-sponsored surveys.

⁵ The range of percentages reflects differences in the product mix of increasingly popular double-wide units versus single sections, the use of manufactured homes as vacation units that vary cyclically with the economy over time, and so on.

⁶ This caution is related to perceptions that manufactured housing is not "good" housing for the community. Most of the studies in this area are based on surveys and questionnaires of perceptions. Excellent summaries of these studies appear in Beamish et al. (2001) and Apgar et al. (2002) and, as noted previously, the consequences are explored in Genz (2001).

low-income households with little wealth. Most of the available literature, however, focuses on community perceptions of the manufactured housing alternative, resulting special (and often controversial) zoning provisions, and associated land use issues. The actual experience of households in manufactured owned housing, the mobility of these households, and documented effects on family wealth accumulation of this housing alternative are generally missing from the literature.

These observations provide the justification and point of departure for the research questions addressed in this article. Specifically, we employ recent versions of the American Housing Survey (AHS) over the period 1993 to 2001 to compare manufactured owned housing with conventional traditional owned housing and rented housing.

The economics literature on housing has done little to compare factors that influence households' overall ordinal ranking of either the structural quality of their dwelling or the quality of their neighborhood for manufactured owned housing compared with traditional tenure choice alternatives (site-built, owned housing and rented housing). This observation is particularly true for low-income households. As noted previously, the common perception from questionnaire studies and surveys is that manufactured housing is of low quality and is generally undesirable, even though the cost may be relatively low. These surveys, however, beg four important issues:

First, in general, are the same factors important in determining structural quality ranking across tenure type (that is, manufactured owned housing, traditional owned housing, and rented housing)? In this regard, the dynamics of the household's perception of housing quality should be addressed rather than relying on a single cross-section. It is possible that perceived structural quality could deteriorate more rapidly with manufactured owned housing than with the other tenure alternatives (traditional owned housing and rented housing). Such a change in perception could lead to increased mobility by low-income households, which itself is costly and may have negative implications for neighborhood stability in urban areas.

Second, are any differential factors determining neighborhood quality across tenure types? Certainly, neighborhood characteristics are just as important as structural characteristics in determining the level of services received by the occupants of a given residence.

Third, particularly for low-income households, is manufactured owned housing a relatively low-cost and high-quality source of housing services compared with traditional owned housing and rented housing?

Fourth, a fundamental perception of manufactured owned housing is that it will not perform well as an investment vehicle compared with traditional owned housing. To what extent is this perception true?

⁷ An exception is the study by Boehm (1995). This study, however, considers only a cross-section of units at a particular point in time and its underlying data are more than a decade old. In addition, it ignores neighborhood characteristics and other issues, such as the asset effect of manufactured owned housing.

Research Issues Addressed in This Article

Initially, we present comparisons of the housing and neighborhood quality rankings and total housing costs across the three tenure types and several time periods (specifically, 1993, 1997, and 2001). These comparisons enable us to see if manufactured owned housing generally appears to be a good value (average quality rankings relative to total housing cost per period) as compared with the other tenure types (traditional owned housing and rented housing) and the extent to which this relationship has remained stable over time. We also consider unit size (in square feet) and break out several individual components of housing cost and compare them as well.

In the second stage of the analysis, we consider the effect of various factors that might influence perceived housing and neighborhood quality for a given tenure type across time. An ordinal probit analysis is used to provide estimates of factors that determine the ordinal structural and neighborhood rankings. Separate equations are estimated for each tenure type: manufactured owned housing, traditional owned housing, and rented housing. In the structural quality equation, various measures of specific structural problems either reported by the resident or observed by the individual administering the survey are included as independent variables. Comparable measures of neighborhood problems make up the set of independent variables in the neighborhood quality equation. This analysis enables us to determine if any differences occur, on average, across tenure types and over time in the importance of various factors that determine how households feel about their structures and the associated neighborhoods.

Third, we consider changes in perceived structural quality and neighborhood quality over time and across tenure types. A practical consideration that arises is that structural and neighborhood ranking changes can only be observed for households that stay in the unit until the next interview period, because the AHS follows housing units rather than households. Given the nature of the AHS, however, it is insightful to observe changes in structural and neighborhood ranking over a longer interval than 2 years. Consequently, we consider 2-year intervals over the period 1993 to 2001 (1993 to 1995, 1995 to 1997, and so on) and 1993 to 1997 and 1997 to 2001 as 4-year intervals. Changes in the structural and neighborhood rankings are related to changes in the detailed structural and neighborhood characteristics included in the AHS.

In the fourth stage, household mobility is modeled to estimate the role of neighborhood stability across tenure type. Specifically, separate mobility equations are estimated for manufactured owned housing, traditional owned housing, and rented housing. Based on the literature, mobility is hypothesized to be a function of three factors: (1) disequilibrium in housing consumption (for example, overcrowding measured by a high persons-per-room ratio or high housing costs relative to household income), (2) factors affecting the cost of moving (for example, older individuals find it more difficult to move than younger ones do), and (3) the quality of the structure and neighborhood in which the household resides before the move. Duration modeling of the mobility choice made by households across housing type is used to investigate adjustments to the level and type of housing consumption as households move from their existing housing. Specifically, we are able

⁸ Specifically, the AHS follows housing units rather than households per se over time. Thus, the number of observations falls over the 4-year intervals if households move in 2 years.

to consider the ways in which the dynamics of this process differ for manufactured owned housing and traditional owned housing. In particular, we are able to consider the ways in which the dynamics of this process imply differentials in neighborhood stability.

In the final stage of the analysis, we compare appreciation in property value among three types of ownership: (1) manufactured owned housing in which both the land and structure are owned, (2) manufactured owned housing in which only the structure is owned, and (3) traditional owned housing. Using price data available over time in the AHS allows us to consider differences in appreciation across these ownership categories.

Major Empirical Results and Policy Implications: A Summary

The research results provide new evidence on the question about whether manufactured owned housing is a good alternative for low-income households. Information on area median income suggests that low-income households represent households at 80 percent or below the area median income. Our results contradict several preconceived notions regarding manufactured owned housing as revealed in survey studies. Several noteworthy results are presented in the following text.

- 1. Manufactured owned housing is a viable alternative for low-income households from the perspective of the consumption of housing services. This observation is true from the perceptions about both perceived structural quality and neighborhood quality.
- 2. Across all time periods, in terms of included measures of neighborhood quality and structural quality, owned manufactured owned housing is perceived to be (ranked) higher quality than rented housing. This observation holds true even when the sample is stratified by metropolitan and nonmetropolitan location.
 - In addition, the cost of manufactured owned housing, even for recent movers, is much lower than other alternatives, including renting.
- 3. Those factors that contribute to either lower structural quality or lower neighborhood quality are similar between manufactured owned housing and traditional owned housing.
 - Communities do not have to develop bifurcated public policies to include manufactured owned housing in the community housing mix. For example, crime is a perceived negative across all housing types.
 - Owners of manufactured housing have the same concerns about structural quality as do owners of traditional housing.
- 4. No evidence supports the idea that perceived structural quality deterioration occurs over time more with manufactured housing than with traditional housing.
 - A properly planned manufactured housing development does not "automatically" imply deterioration over time.

⁹ In the AHS, HUD assigns area median income status to every household in the national sample in each sampling year. It is important to note that results presented in this article do not vary for alternative definitions of low income, such as 75 or 90 percent of the area median income.

5. A major result of the analysis is that ownership of both manufactured housing and traditional housing is associated with neighborhood stability (that is, a decreasing likelihood to move over time).

If a tendency for a type of housing to be associated with high mobility relative to all housing choices is apparent, it is rented housing, not manufactured owned housing.

Manufactured owned housing does not lead to increased instability of neighborhoods.

6. The potential for appreciation of manufactured owned housing is clearly bifurcated on the ownership of the land (lot). Even recognizing the limitations of the price appreciation data in this article, three observations appear worthy of note.

As a general statement, manufactured owned housing in which the lot is not owned (with the unit) is not an investment in any sense.

In cases in which the land is owned, manufactured owned housing can yield appreciation amounts that are not dissimilar from those of traditional owned housing; however, data from the AHS suggests that rates of appreciation vary significantly across manufactured owned housing units, which may indicate these homes are riskier investments. This result might also be partially attributable to the smaller number of observations for these homes in the data.

In many cases, manufactured owned housing is a lower cost alternative for low-income households than rented housing. This housing option could enable low-income households to potentially save toward the preferred investment alternative, namely traditional owned housing.

The American Housing Survey 1993 to 2001: Quality, Size, and Cost of Housing by Tenure Type for Low-Income Households

According to data from the 1993-to-2001 national files of the AHS, manufactured owned housing appears to be providing many lower income households with a relatively low-cost, high-quality, alternative living environment. Exhibit 1 presents a comparison of housing quality and housing cost across tenure type for the full sample and a subsample of lower income households that have recently moved into their current housing unit. For comparison purposes, this information is provided separately for the three time periods (sample waves) of 1993, 1997, and 2001.

Exhibit 1 uses the unique characteristic of the AHS in that it provides measures of the household's perceptions of the quality of its living situation. Perceptions of the quality of its living situation. Perceptions on an ordinal scale from 1 to 10 (where a rank of 1 is worst and a rank of 10 is best). Although, as might be expected, traditional owned housing receives the highest rankings, on average, owners of manufactured housing ranked their

¹⁰ As noted, low-income households represent households at 80 percent or below the median income for any time period at a location. Modest changes in this definition do not alter results reported here.

¹¹ The appendix to this article provides basic data compilations similar to those presented in the three panels of exhibit 1 across the dimensions of metropolitan areas and nonmetropolitan areas. Basic results presented here are similar across these added dimensions.

Exhibit 1a

993 Quality, Size, and Cost of Housing by Tenure Type for Low-Income Households^a

Housing Tenure Type	Mean Housing Rank ^b	Mean Neighborhood Rank ^b	Opinion of House Poor	Opinion of Neighborhood Poor	Structures Moderately or Severely Inadequated	ures Mean ately Number erely of Rooms	Mean sr Square Feet ns in Unit
			(%)	(%)	(%)	0	
Traditional owned housing	8.588	8.258	0.864	3.028	2.140	40 5.893	3 1,751.15
Manufactured owned housing	8.109	8.134	2.211	4.643	1.8	1.842 4.798	3 1,003.45
Rented housing	7.600	7.298	3.955	8.574	2.792	92 4.162	5 989.29
Housing Tenure Type	Mean Monthly Housing Cost (\$)	Average Annual Spend > 30% of Household Income Income on Housing (\$)	al Spend > 30% of me Income on Housing (%)		Mean Monthly Housing Cost (\$)	Average Annual Household Income (\$)	Spend > 30% of Income on Housing (%)
		All Households	S			Recent In-Movers	Se
Traditional owned housing	420.61	18,331	34.55	10	555.41	21,816	45.02
Manufactured owned housing	305.13	15,783	30.06	"	339.25	16,817	33.22
Rented housing	461.04	15,753	56.05	10	478.07	17,088	56.88

Low-income households have incomes below 80 percent of the median for a particular year and area.

b Housing rank and neighborhood rank are measured using an ordinal scale from 1 to 10, with 10 being the best.

c A ranking of 1, 2, or 3 was deemed poor.

d Interviewers ranked structures as adequate, moderately inadequate, or severely inadequate.

Any household that moved into its dwelling unit in the last 2 years before the interview was deemed as a recent in-mover.

Exhibit 1b

997 Quality, Size, and Cost of Housing by Tenure Type for Low-Income Households^a

Housing Tenure Type	Mean Housing Rank ^b	Mean Neighborhood Rank ^b	Opinion of Ne House Poor	Opinion of Neighborhood Poor	Structures Moderately or Severely Inadequated	S Mean W Number Y of Rooms	Mean Square Feet in Unit
			(%)	(%)	(%)		
Traditional owned housing	8.405	8.168	0.949	2.357	1.554	5.930	1,805.96
Manufactured owned housing	7.832	7.920	3.649	4.809	2.156	4.661	1045.13
Rented housing	7.435	7.264	3.820	6.491	3.212	4.098	1,272.15
Housing Tenure Type	Mean Monthly Housing Cost (\$)	Average Annual Household Income I (\$)	Average Annual Spend > 30% of Household Income Income on Housing (\$)	of Mean Monthly sing Housing Cost (\$)	_	Average Annual Household Income (\$)	Spend > 30% of Income on Housing (%)
		All Households				Recent In-Movers	Φ
Traditional owned housing	484.81	18,422	40.75	637.80	0	23,233	51.31
Manufactured owned housing	355.20	15,835	34.17	406.64	4	18,535	37.18

" Low-income households have incomes below the 80 percent of the median for a particular year and area.

518.88

Rented housing

57.94

536.38

b Housing rank and neighborhood rank are measured using an ordinal scale from 1 to 10, with 10 being the best.

c A ranking of 1, 2, or 3 was deemed poor.

d Interviewers ranked structures as adequate, moderately inadequate, or severely inadequate.

e Any household that moved into its dwelling unit in the last 2 years before the interview was deemed as a recent in-mover.

Exhibit 1c

2001 Quality, Size, and Cost of Housing by Tenure Type for Low-Income Households^a

Housing Tenure Type	Mean Housing Rank ^b	Mean Neighborhood Rank ^b	Opinion of House Poor	Opinion of Neighborhood Poor	Structures Moderately or Severely Inadequated	res Mean tely Number rely of Rooms	Mean Square Feet s in Unit
			(%)	(%)	(%)		
Traditional owned housing	8.431	8.167	0.891	2.268	1.731	5.888	1,848.01
Manufactured owned housing	7.900	7.871	3.231	4.060	2.651	4.841	1,107.81
Rented housing	7.501	7.433	3.825	5.027	3.605	4.134	1,025.71
Housing Tenure Type	Mean Monthly Housing Cost (\$)	Average Annual Household Income (\$)	Average Annual Spend > 30% of Household Income Income on Housing (\$)		Mean Monthly Housing Cost F	Average Annual Household Income (\$)	Spend > 30% of Income on Housing (%)
		All Households	s			Recent In-Movers	90
Traditional owned housing	621.66	20,560	44.48		792.59	26,111	54.84
Manufactured owned housing	407.96	17,537	38.11		461.21	19,919	44.48
Rented housing	612.62	18,177	26.67		634.53	21,832	58.94

^a Low-income households have incomes below 80 percent of the median for a particular year and area.

b. Housing rank and neighborhood rank are measured using an ordinal scale from 1 to 10, with 10 being the best.

[°] A ranking of 1, 2, or 3 was deemed poor.

d Interviewers ranked structures as adequate, moderately inadequate, or severely inadequate.

Any household that moved into its dwelling unit in the last 2 years before the interview was deemed as a recent in-mover.

neighborhoods and structures higher than the households in rented housing did. In addition, only a very small percentage of the households living in manufactured owned housing (2.2 to 3.6 percent) ranked their structures as poor (that is, a quality ranking of 1, 2, or 3). Although traditional owned housing fared better, rented housing did worse across all three time periods. It is noteworthy that these relative rankings hold for both housing quality and neighborhood quality.

Initially, we might expect that owners of traditional or manufactured housing would have a higher level of satisfaction than renters would, for two reasons. First, because the adjustment costs of changing units are much greater for owners than for renters, owners typically search more extensively to ensure that they have found the most desirable unit possible. Second, because most households that rent aspire to homeownership, they may have purposely selected less desirable and less costly units in order to accumulate the downpayment required for homeownership. It is important to note, however, that exhibit 1 does not represent average-income households but rather low-income households. As is well appreciated, these households face a more limited set of housing choices and, in this context, the results noted previously are particularly encouraging.

The validity of these household perceptions is substantiated by structural adequacy rankings constructed from objective information gathered by the enumerators conducting the survey. In exhibit 1, we see that, for low-income households living in manufactured owned housing, only 1.8 to 2.6 percent of their dwelling units were deemed to be moderately or severely inadequate over the time period. These rates are actually lower than those for rented housing (2.8 to 3.6 percent) over the period.

This quality information becomes even more interesting when the average cost of the various housing tenure types is considered. When one examines the average cost of units in exhibit 1, one is immediately struck by fact that manufactured owned housing is much lower in cost than either of the other alternatives. This observation is true for all households and for households that have recently occupied the dwelling (recent in-movers in exhibit 1). For low-income households, mean monthly housing cost for manufactured owned housing compared with that for rented housing falls slightly when recent movers are compared with all households. Specifically, in exhibit 1a for recent movers, monthly housing cost for owned manufactured housing is approximately 71 percent of that for rental units (\$339.25 and \$478.07, respectively). Alternatively, for all households, this ratio drops to 66 percent (\$305.13 and \$461.04, respectively). These figures are consistent with the increases in rents for low-income households noted in HUD (2001). For the different housing categories, all of which are relatively comparable in size, if one factors in the annual cost of maintenance and repairs, owners of manufactured housing have the lowest total out-of-pocket housing cost.¹³

¹² A unit is considered moderately or severely inadequate if it has specific problems relating to plumbing, heating, upkeep, and/or electrical issues. For a detailed list of the problems and the specifics of how the adequacy categorizations are done, see the respective codebooks for the AHS database (Hadden and Leger, 1990; ICF Consulting, 2004).

¹³ One element of maintenance cost is not captured by the AHS and, therefore, total maintenance cost is underestimated. Specifically, the AHS does not measure the value of an occupant's contribution of labor for the maintenance of his or her unit. Typically, renters engage in very little, if any, maintenance of their own units; consequently, most maintenance cost should be capitalized in the rent that they pay. For owned units, whether traditional or manufactured, the owner-occupant often contributes a substantial amount of labor, although manufactured owned housing (particularly if it is relatively new) might be expected to require less maintenance than traditional owned housing. Although total maintenance cost for owners may be understated relative to that for renters, one should keep in mind that, for low-income households, this opportunity cost may be minimal. The same cannot be said for out-of-pocket expenditures.

Exhibit 1 also provides information on the issue of affordability. Although lower income households have a much greater likelihood of falling into the greather-than-30-percent ratio of housing cost to income category for all housing types, manufactured housing owners do (financially) better than any of the other tenure types. ¹⁴ Perhaps the most striking result is that, among lower income renters, more than 56 percent spend more than 30 percent of their income on housing as compared with 30 to 38 percent for owners of manufactured housing. When the lower average out-of-pocket housing costs for manufactured owned housing is also taken into account, low-income households certainly appear to reduce their housing expenditures with manufactured owned housing. In summary, the information presented in exhibit 1 on quality and cost suggests that manufactured owned housing provides a good value when compared with the more traditional housing alternatives (traditional owned housing and rented housing).

It is important, however, to examine how legitimate the previous comparisons of manufactured owned, traditional owned, and rented housing are if the manufactured units might be expected to have a very different geographic distribution than the other two tenure categories; that is, with more manufactured units likely to be located in nonmetropolitan areas of the South and West. Actually all tenure types were relatively evenly distributed regionally; however, quite a disparity was evident in the percentage of each tenure type located in metropolitan versus nonmetropolitan areas. Although, some variation occurs across sampling years, approximately 55 percent of manufactured owned units, 75 percent of traditional owned units, and 85 percent of rented units were in metropolitan areas. Consequently, as an experiment, exhibits 1a, 1b, and 1c were recalculated, stratified by metropolitan and nonmetropolitan area. These exhibits are presented in the appendix (A-1a, A-1b, A-1c, A-2a, A-2b, and A-2c).

Several general conclusions can be drawn from this experiment. First, regardless of which area one considers, manufactured owned housing continues to seem a good value; that is, it is low cost given the quality ranking and, in general, neighborhood and structural rankings are better for manufactured owned housing than for rented housing. Another general tendency apparent across these sets of exhibits (that is, all years) is that many of the differences across tenure type are more pronounced for metropolitan areas than for their nonmetropolitan counterparts. For example, consider mean monthly housing cost for recent in-movers in 1993 (exhibits A-1a and A-2a). In the metropolitan areas, mean monthly housing costs range from \$370 for manufactured owned units to \$604 for traditional owned housing; the latter figure represents a 63-percent increase relative to the manufactured unit cost. In nonmetropolitan areas, the same range is \$282 to \$365; the latter figure represents a 29-percent difference. Similarly, in 1993, 3.355 percent of the households in traditional owned housing in metropolitan areas had a poor opinion of their neighborhood and 9.166 percent of households in rented housing had a poor opinion, indicating a spread of 5.811 points. For nonmetropolitan areas, the range is 1.887 to 4.672, a spread of 2.785 points. In general, this comparison between metropolitan and nonmetropolitan areas suggests that

¹⁴ As noted previously, a 30-percent ratio of housing cost to income was selected here consistent with discussions in the literature on housing affordability. This rule of thumb is, of course, not an absolute rule. For example, HUD data from the Section 8 Housing Choice Voucher Program, which enables tenants to choose units that meet HUD standards, shows that many low-income families choose units requiring more than 30 percent of their income.

¹⁵ The AHS defines areas as metropolitan or nonmetropolitan according to whether a housing unit is within a standard metropolitan statistical area; both types of areas can have rural and urban subareas.

manufactured owned housing is a more attractive option, relative to rented housing, in metropolitan areas than in nonmetropolitan areas.

The Determinants of Structural Quality and Neighborhood Quality: Model and Estimation

Given the differences in structure satisfaction and neighborhood satisfaction addressed in exhibit 1, it would be beneficial to policymakers to understand more about the relative importance of various individual structural attributes in determining households' perceptions of overall dwelling and neighborhood quality. Most of the research considering the relative importance of individual structural and other (for example, neighborhood, public service, location) housing characteristics on household preferences has been implemented by estimating hedonic price models. In this approach, sales price or contract rent is regressed on a set of variables that describe the structure and its environment. Unfortunately, the hedonic approach has often been criticized because it assumes that consumer preferences are identical. In reality, however, consumer preferences may not be identical. For example, some individuals may not mind cracks in walls or peeling paint while others find them quite objectionable. On the margin, if the household that ends up occupying a given dwelling is indifferent to these structural defects, then the defects will be uncorrelated with rent or value even though most people would consider them to be bothersome.

In lieu of the hedonic approach, we employ the estimating technique discussed in Boehm and Ihlanfeldt (1991), which revealed the importance of individual neighborhood characteristics on the overall quality of the neighborhood. In this analysis, the AHS 10-point scale is interpreted to be an ordinal utility index. There are two primary advantages to this approach. First, for each household group, estimates will represent the group average rather than the preferences of the marginal purchaser of housing services. Second, by focusing on perceptions rather than the relationship between some objective characteristics and dwelling rent or price, we can identify more clearly the factors that influence the way people feel about their living environment.

The Model

Assuming that utility functions are strongly separable, the *j*th household's utility from its dwelling (U_i^N) can be expressed as a function of individual structural attributes $(X_i^N) = 1, \dots, k$,

$$U_{j}^{NG} = u_{j}(X_{1}, \dots, X_{k}) \quad (j = 1, \dots, s),$$
 (1)

where *G* represents a group identification variable. We hypothesize homogenous preference functions for households within a particular group but permit these functions to differ among groups. The utility function for households within the same group then can be defined over the set of structural attributes and, assuming it is linear in its parameters, can be expressed as:

$$U_{i}^{NG} = u_{i}^{G}(X) = \sum \beta_{i} X_{ij} + \varepsilon_{i}, \qquad (2)$$

with the stochastic term ε_j accounting for the influence of unobserved attributes of the neighborhood and random deviations in preferences from the average of the subgroup. It is assumed that the ε_i are distributed normally ($N(0, \sigma^2 I)$).

In principle, the ordinary least squares (OLS) regression model could be employed to estimate the relationship between utility and observed structural attributes. This model assumes an interval-level dependent variable, however, which would require a cardinal measure of utility. As is well known, such a measure is not available; however, our data do provide an ordinal version of U_j^N for which the OLS model is satisfied. Households were asked to rank the overall quality of their dwelling on a 10-point scale, with a "1" indicating worst and a "10" indicating best. We assume that greater utility levels from either the structure or the neighborhood are concomitant with higher rankings. This quality ranking, therefore, provides a utility measure of ordinal strength, namely I.

An estimating equation using I_j in lieu of U_j^N as the dependent variable can be derived by first noting that, in the general case, if there are Z distinct structure/neighborhood rankings (R_m , $m=1,\ldots,Z$), there must be Z + 1 hypothetical category boundaries (α_m , $m=0,\ldots,Z$) such that the j_{it} household ranks its dwelling or neighborhood as a "1" (R_j) if $\alpha_0 < U_j^N < \alpha_1$, as a "2" (R_j) if $\alpha_1 < U_j^N < \alpha_2$, and so on. In other words, we observe the mth ranking if the true (but nonobservable) value of cardinal utility falls within that category's boundaries (α_{m-1} , α_m). Because it has been assumed that U_j^N is normally distributed, the probability of observing the mth rank by the jth household can be expressed as:

$$P(R_{mi}) = F[(U_{i}^{N} - \alpha_{m,1})/\sigma] - F[(U_{i}^{N} - \alpha_{m})/\sigma]$$
(3)

where *F* is the cumulative standard normal density function. Following the convention of setting $\alpha_0 = -\infty$, $\alpha_1 = 0$, and $\sigma^2 = 1$ and substituting from (2), then (3) can be rewritten as:

$$P(R_{mi}) = F[\sum \beta_i X_{ii} - \alpha_{m.i}] - F[\sum \beta_i X_{ii} - \alpha_{m}]$$

$$(4)$$

Equation (4) estimates the conditional probability of observing a particular structure or neighborhood ranking. McKelvey and Zavoina (1975) have provided a model (namely N-chotomous multivariate probit) that simultaneously provides estimates of the $\boldsymbol{\beta}$ and $\boldsymbol{\alpha}$ vectors of (4) that are minimum variance and are consistent. Furthermore, because the parameter estimates are obtained by maximum likelihood techniques, they are known to be asymptotically normally distributed, allowing for standard statistical tests. ¹⁶

Data, Samples, and Variables

The primary AHS data, time periods of analysis, types of housing choice, and low-income sample are as defined in exhibit 1 and discussed previously. The first sample period from which observations are drawn is 1993. Although our analysis reported in the following text includes the 1997 AHS as representative of the middle of the study period and the 2001 survey as the latest sample period, we include units from the 1997 and 2001 samples that are not present in 1993 to maximize the number of observations (particularly for manufactured housing). The number of observations in the equations for each time period by housing type ranges from 1,200 to more than 12,000.

¹⁶ In surveys such as the AHS, household responses are preferences as expressed by an ordinal ranking. In this regard, there is no significance to the unit distance between the set of observed values (as contrasted with traditional statistical analyses of metric data). Thus, the estimation procedure uses an additional set of variables (breakpoints) that merely preserve the ranking criterion. These variables are shown in the exhibits in the following text (starting with exhibit 4) as a numbered set of parameters denoted as "Mu's." These parameters are included in the exhibits for purposes of completeness but have no economic or public policy interpretation themselves.

A great deal of structural information is provided for each unit included in the AHS, including structure age; unit size (used to construct a measure of crowding); availability and age of major appliances; type and condition of heating, air conditioning, plumbing, and electrical systems; and structural problems with the roof, internal and external walls, windows, and foundation. In addition, a detailed set of neighborhood factors is included in the questions that relate to issues such as crime, noise, litter, abandoned buildings, and general deterioration. Exhibit 2 contains variable names and definitions for all of the variables included in the analysis. Related information is shown in exhibit 3, which contains means for each variable by tenure type for both housing quality and neighborhood quality. The next section considers the effect of these structural characteristics on households' perceived housing quality and neighborhood quality.¹⁷

Exhibit 2

Variable Names and Definitions: Housing Quality and Neighborhood Quality (1 of 2)

Variable Name	Variable Definition
Structural	
how_h	Housing structural quality ranking: 0 = worst, 8 = best*
age_s	Age of the structure in years
n_porch	1 = housing unit has a porch; 0 = otherwise
n_garage	1 = housing unit has a garage or carport; 0 = otherwise
equipment	Number of the following items the housing unit has at least one of: refrigerator, garbage disposal, stove/oven, dishwasher, washer/dryer
bathroom	1 = unit has a private toilet; 0 = otherwise
water	1 = unit has hot and cold piped water; 0 = otherwise
sewage	1 = unit is connected to a public sewer or septic system; 0 = otherwise
cntrl_air	1 = unit has central air conditioning; 0 = otherwise
struc_prob	Number of structural problems observed by the enumerator: sagging roof, missing roof materials, holes in roof, missing wall material or siding, sloping exterior walls, broken windows, bars on windows, crumbling foundation
ext_leak	1 = exterior leak in last 12 months; 0 = otherwise
int_leak	1 = interior leak in last 12 months; 0 = otherwise
bad_int	1 = cracks or holes in walls or ceiling, holes in floor, or broken plaster or peeling paint more than 1 square foot; 0 = otherwise
wtr_prob	Number of water source breakdowns in last 90 days
tlt_prob	Number of toilet breakdowns in the last 90 days
sew_prob	Number of public sewer breakdowns in the last 90 days
wrg_prob	1 = inadequate electrical wiring; 0 = otherwise
fus_blow	Number of times fuses blew or breakers tripped in the last 90 days
heat_brk	Number of heat breakdowns last winter lasting 6 hours or more
heating1	1 = steam, electric, heat pump, or central warm air furnace; 0 = otherwise
heating2	1 = other built-in electric floor, wall, or heaters; 0 = otherwise
heating3	1 = space heaters, stoves, fireplaces or no heat; 0 = otherwise
vermin	1 = presence of rats or mice in building the last 90 days; 0 = otherwise

¹⁷ As is well appreciated, often, when one incorporates many structural variables in the estimation of an equation, multicollinearity can be a potential problem. Fortunately, this potential problem does not appear to be a significant issue in our low-income household samples.

Variable Names and Definitions: Housing Quality and Neighborhood Quality (2 of 2)

Variable Name	Variable Definition
Neighborhood	
how_n	Housing neighborhood quality ranking; 0 = worst, 8 = best *
e_low	1 = enumerator observed single-family or other lowrise buildings within 300 feet of unit; 0 = otherwise
e_mid	1 = enumerator observed midrise residential buildings within 300 feet of unit; 0 = otherwise
e_high	1 = enumerator observed highrise residential buildings within 300 feet of unit;0 = otherwise
e_mobil	1 = enumerator observed mobile homes within 300 feet of unit; 0 = otherwise
e_com	1 = enumerator observed commercial/institutional/industrial buildings within 300 feet of unit; 0 = otherwise
e_prkg	1 = enumerator observed residential parking lots within 300 feet of unit; 0 = otherwise
e_water	1 = enumerator observed a body of water within 300 feet of the unit; 0 = otherwise
e_green	1 = open space/park/woods/farm/ranch within 300 feet of the unit; 0 = otherwise
old_buildings	1 = buildings in the area are predominantly older than the unit;0 = otherwise
new_buildings	1 = buildings in the area are predominantly younger than the unit;0 = otherwise
aban	1 = abandoned buildings within 300 feet of the unit; 0 = otherwise
bars	1 = bars on windows of buildings within 300 feet of the unit; 0 = otherwise
road_prob	1 = roads within 300 feet of the unit in need of repairs; 0 = otherwise
junk	1 = trash litter or junk accumulated in the neighborhood; 0 = otherwise
nucrim_p	1 = crime in the neighborhood is bothersome; 0 = otherwise
noise_p	1 = noise in the neighborhood is bothersome; 0 = otherwise
litter_p	1 = litter or housing deterioration in the neighborhood is bothersome;0 = otherwise
badsrv_p	1 = poor city/county services in the neighborhood are bothersome;0 = otherwise
badprp_p	1 = undesirable nonresidential uses in the neighborhood are bothersome;0 = otherwise
odor_p**	1 = odor in the neighborhood is bothersome; 0 = otherwise
badper	1 = people in the neighborhood are bothersome; 0 = otherwise
othnhd_p	1 = some other feature in the neighborhood is bothersome; 0 = otherwise
schm_p	1 = schools in the area are inadequate; 0 = otherwise
shp_p	1 = shopping in the area is inadequate; 0 = otherwise
good_trn	1 = public transportation in the area is adequate; 0 = otherwise
mh_in_grp***	Number of mobile homes in group

^{*}In the American Housing Survey, these variables range between 1 and 10. Because of the lack of observations on the lower end of distribution options, 1 and 2 were collapsed to a single category. For LIMDEP to do the statistical analysis, these nine remaining rankings had to be coded 0–8.

^{**}Available only for 1997 and beyond.

^{***}Available only for manufactured housing.

4.6962

0.9960

0.9964 0.0438

3.1285

Exhibit 3a

Rented Housing 8,550 0.5622 0.2642 0.9966 0.9965 0.0512 0.3440 0.1043 0.1294 0.1258 0.0520 0.0502 0.0078 0.0367 0.1727 0.0532 0.7575 3.0022 0.3421 0.18571997 11,782 0.5793 0.9865 0.1614 0.0553 0.0860 0.0272 0.0548 0.2635 0.0652 0.6996 0.2552 3.0211 0.9985 0.0585 0.2889 0.0988 0.1417 0.1787 1993 0.0214 9,391 3.8433 0.9982 0.2456 0.5511 0.2589 0.1196 0.0618 0.0586 0.0136 0.0117 0.0150 0.1310 0.0243 0.9971 2001 **Traditional Owned Housing** 3.7116 0.0212 0.8379 9,141 6.4103 0.1312 0.0640 0.0265 0.0175 0.0105 0.0247 0.1347 13.9577 0.8133 0.6948 0.9977 0.9962 0.2629 0.4695 0.2391 0.0687 0.0962 1997 12,347 11.8054 0.8134 0.9842 0.0943 0.0204 0.0420 0.0196 0.7138 3.7121 0.9975 0.2360 0.3956 0.0344 0.2001 0.0823 0.0339 0.1930 0.0217 0.7984 0.1023 1,170 0.0145 0.0513 2.5402 0.3120 3.4410 0.9966 0.9932 0.4675 0.5333 0.2821 0.1350 0.1162 0.0821 0.0658 0.0085 0.0111 0.1504 0.9052 Manufactured Owned Housing Variable Means - Housing Structural Quality Ranking 0.0715 0.0258 0.8846 1,161 5.8570 21.2506 0.3187 3.2860 0.9991 0.5202 0.4780 0.2438 0.1645 0.1068 0.0706 0.0112 0.0284 0.1817 0.0258 0.0465 0.0689 0.9922 1997 1,317 7.3918 0.0243 0.0516 0.3538 0.9879 0.1116 0.0524 0.0243 3.3311 0.4184 0.1238 0.0532 0.0304 0.2422 0.8201 1993 0.9977 0.5103 0.0425 0.1860 Number of observations Variable Name struc_prob equipment n_garage pathroom sew_prob wrg_prob heat_brk cntrl_air wtr_prob wold_su sewage ext_leak heating1 neating2 neating3 n_porch bad_int nt_leak tlt_prob how_h water age_s vermin

0.1341 0.1125 0.0462 0.0455

0.0217 0.0221 0.1781

0.1006

0.3930

0.0515

0.0458

Exhibit 3b

Variable Means - Housing Neighborhood Quality Ranking	y Neighborl	hood Qualit	ty Ranking						
Variable	Manufac	Manufactured Owned Housing	Housing	Traditic	Traditional Owned Housing	ousing	Œ	Rented Housing	D
Name	1993	1997	2001	1993	1997	2001	1993	1997	2001
how_n	6.1519	5.9423	5.8872	6.2712	6.1778	6.1745	5.3398	5.2892	2.0542
e_low	Ϋ́	Ϋ́	ΑN	0.1009	0.1916	0.2006	0.5816	0.6194	0.4822
e_mid	Ϋ́	Ϋ́	ΑN	0.0144	0.0249	0.0260	0.1224	0.1483	0.3443
e_high	Ϋ́	ΑN	ΑN	0.0079	0.0127	0.0125	0.0540	0.0753	0.2549
e_mobil	0.3569	0.8174	0.8316	0.0166	0.0904	0.1039	0.0143	0.0467	0.2242
e_com	0.0615	0.1697	0.1744	0.0536	0.2082	0.2088	0.2609	0.5094	0.5000
e_prkg	0.0167	0.1068	0.1385	0.0245	0.1373	0.1329	0.2204	0.4949	0.4998
e_water	0.0175	0.2102	0.2051	0.0141	0.1454	0.1436	0.0257	0.1216	0.3141
e_green	0.1883	0.5349	0.4769	0.0880	0.3560	0.3323	0.1642	0.3244	0.4544
old_bldings	0.0357	0.1525	0.1940	0.0144	0.1145	0.1215	0.0512	0.1249	0.3628
new_bldings	0.0235	0.1972	0.1940	0.0172	0.0756	0.0762	0.0250	0.0786	0.2656
aban	0.0205	0.0439	0.0581	0.0186	0.0494	0.0479	0.0598	0.0874	0.2711
bars	0.0053	0.0215	0.0214	0.0471	0.0880	0.0735	0.1450	0.1620	0.3300
road_prob	0.1936	0.4384	0.4504	0.1016	0.3224	0.3399	0.2386	0.3929	0.4903
junk	0.1503	0.0879	0.0991	0.0932	0.0839	0.0788	0.2971	0.1662	0.3645
nucrim_p	0.0296	0.0792	0.0752	0.0553	9060.0	0.0786	0.1395	0.1551	0.3504
noise_p	0.0630	0.1240	0.1282	0.0707	0.1330	0.1219	0.1275	0.1839	0.3741
litter_p	0.0304	0.0138	0.0120	0.0524	0.0213	0.0211	0.0424	0.0204	0.1481
badsrv_p	0.0106	0.0043	0.0077	0.0133	0.0093	0.0100	0.0137	0.0077	0.1048
badprp_p	0.0114	0.0095	0.0026	0.0151	0.0079	0.0073	0.0149	0.0088	0.0855
odor_p	ΑN	0.0500	0.0487	NA	0.0427	0.0396	ΑN	0.0598	0.2326
badper_p	0.1488	0.0474	0.0342	0.1212	0.0439	0.0385	0.1698	0.0614	0.2232
othnhd_p	0.1147	0.0672	0.0684	0.0881	0.0668	0.0730	0.0775	0.0671	0.2629
schm_p	0.0251	0.0112	0.0188	0.0214	0.0094	0.0128	0.0314	0.0187	0.1350
d ⁻ dys	0.2688	0.3144	0.2974	0.1706	0.2022	0.1972	0.1040	0.1123	0.3177
good_trn	0.1048	0.1025	0.2248	0.2695	0.2472	0.3988	0.4793	0.4749	0.4829
mh_in_grp	0.5642	0.4746	0.4983	A A	Ν	Ϋ́Z	¥.	NA	Ν
Number of observations	1,317	1,161	1,170	12,347	9,141	9,391	11,782	8,550	8,291
NA = data not available.									

Empirical Results

Exhibit 4 contains the N-chotomous probit coefficients for each tenure type over each time period shown, relating structural characteristics to perceived housing quality. In an analogous manner, exhibit 5 focuses on the determinants of neighborhood quality rankings. Due to the number of individual equations reported in these exhibits, we present general findings of relevance to the topic at hand rather than discussing the individual equations.

Structural Quality

The results presented in exhibit 4 demonstrate not only that most of the variables describing the structural characteristics of the dwelling are significant, but also that a great deal of consistency occurs in their relative importance across *both* tenure types *and* time periods. ¹⁹ Specifically, factors such as structure age (age_s), the presence of new appliances (equipment), the presence of structural problems (struc_prob), the presence of leaks (ext_leak and int_leak), major deterioration of the interior of the dwelling (bad_ int), the presence of central air conditioning (centr_air), and neighborhood quality (how_n) are generally significant with the expected sign across not only all three tenure types but also across all time periods. Very few "peculiar" results are shown in exhibit 4.²⁰

The fundamental implication from exhibit 4 for manufactured owned housing is deceptively simple, namely that household satisfaction with manufactured owned housing is determined by exactly the same type of structural factors that are associated with other housing options. For example, interior and exterior leaks and structural problems are particularly important factors in affecting perceived structural quality. This assertion is robust in that it holds across all three time periods. Thus, communities do not need to devise special guidelines for manufactured owned housing as a special type that diverges from rented housing, stick-built owned housing, and so on. Households both act and react to structural characteristics in manufactured owned housing just as community residents in other types of housing act and react to structural characteristics in their respective environments.

¹⁸ As in Boehm (1995), we conducted basic pooling tests to determine if a single aggregate relationship was appropriate. This hypothesis was rejected. Based on the housing literature, this result is hardly surprising. Thus, our estimates are presented by tenure type. A similar comment applies to neighborhood quality rankings.

¹⁹ As noted previously (in footnote 13), the series of variables shown in exhibit 4 (and subsequent exhibits) as a set of Mu's are breakpoints required in the estimation procedure due to the ordinal ranking of the survey. They do not have any policy interpretation per se.

²⁰ For example, in the 1997 sample the presence of a garage or carport reduces the desirability of rental units. Somewhat unexpectedly, the presence of a porch appears to be an important feature for households residing in traditional owned housing and rented housing but not for households in manufactured owned housing.

Exhibit 4

 $N-Chotomous\ Probit\ Results\ by\ Housing\ Type\ and\ Time\ Period-Housing\ Quality\ Dependent\ Variable = how_h, Coefficient\ Estimates\ (1\ of\ 2)$

Variable	Manufac	Manufactured Owned Housing	Housing	Tradition	Traditional Owned Housing	using	Rei	Rented Housing	
Name	1993	1997	2001	1993	1997	2001	1993	1997	2001
age_s	-0.0127**	- 0.0089**	- 0.0058**	- 0.0016**	-0.0009*	- 0.0015**	- 0.0016**	- 0.0010**	- 0.0006
n_porch	0.0324	9960.0 –	0.0297	0.0874**	0.0422*	0.0971**	0.0515**	0.0521**	0.0414*
n_garage	0.2836**	0.1650**	0.1067*	0.1322**	0.0648**	0.0200	- 0.0263	- 0.0549**	0.0112
equipment	0.1037**	0.0439	0.0665**	0.0689**	0.0632**	0.0357**	0.0318**	0.0318**	0.0292**
bathroom	-0.1892	1.6418**	0.7596**	-0.0027	0.7364**	0.1831	0.1296**	0.6863**	0.3241**
water	1.5249**	-0.4035*	0.1544	1.3493**	0.2058	0.7459**	1.2844**	0.4131**	0.5101**
sewage	- 0.0936*	- 0.0740	0.0309	- 0.0688**	0.0019**	0.0038	- 0.1214**	- 0.1163**	- 0.0609
cntrl_air	0.1252**	0.1636**	0.2796**	0.0505**	0.0391**	0.0983**	0.0747**	- 0.0194	0.0360
struc_prob	-0.1011	- 0.1868**	- 0.1475**	-0.1370**	- 0.1119**	- 0.1135**	- 0.1133**	- 0.1163**	- 0.0977**
ext_leak	- 0.4405**	- 0.2570**	- 0.1916**	- 0.2551**	- 0.1855**	- 0.1060**	- 0.2933**	- 0.1723**	- 0.2157**
int_leak	-0.0116	- 0.1231	- 0.1921**	0.0187	-0.1157**	- 0.1400**	0.0846**	- 0.1539**	- 0.2317**
bad_int	- 0.3007**	- 0.3865**	- 0.2482**	- 0.3842**	- 0.3268**	- 0.3224**	- 0.4318**	- 0.4366**	- 0.4122**
wtr_prob	- 0.0040	- 0.0652	- 0.0737	- 0.0551	- 0.0056	0.0812*	- 0.0584**	- 0.0595**	- 0.0760**
tlt_prob	0.0102	0.1404	- 0.1254	-0.0376	0.0305	- 0.0285	- 0.1343**	- 0.0764**	- 0.0687**
sew_prob	- 0.0521	0.2282	- 0.0387	-0.0779**	0.1241	- 0.0674	- 0.0696**	- 0.0263	- 0.0821**
wrg_prob	- 0.0944	-0.1025	- 0.3079	-0.3171**	- 0.2644**	- 0.1495**	- 0.2404**	- 0.2544**	- 0.2396**
fus_blow	- 0.0889**	-0.0275	- 0.0484	- 0.0544**	- 0.0455**	- 0.0477**	- 0.0710**	- 0.0491**	- 0.0322**
heat_brk	-0.3258*	0.0342	0.0057	-0.1260**	0.0011	- 0.0933**	- 0.1133**	- 0.0461**	- 0.0319
heating2	0.0972	- 0.0377	- 0.1004	-0.0547**	- 0.0779**	0.0437	- 0.0379*	- 0.0586**	- 0.0499*
heating3	-0.1765**	0.0904	- 0.0956	-0.1733**	*6690.0 –	- 0.0183	- 0.1728**	- 0.1992**	- 0.0565
vermin	0.0892	- 0.1544**	- 0.1221	-0.1576**	- 0.0556**	- 0.0391*	- 0.3213**	- 0.0680**	- 0.1187**
Mu(1)	0.3970**	0.3589**	0.3870**	0.2807**	0.3251**	0.3312**	0.2799**	0.3738**	0.3387**
Mu(2)	0.6008**	0.6478**	0.7182**	0.5067**	0.6413**	0.6322**	0.5682**	0.7230**	0.6386**
Mu(3)	1.5428**	1.3980**	1.4560**	1.3674**	1.5159**	1.5296**	1.3362**	1.5864**	1.4385**
Mu(4)	1.7827**	1.6480**	1.7380**	1.6682**	1.8819**	1.8736**	1.6747**	1.9897**	1.8284**

Exhibit 4

N-Chotomous Probit Results by Housing Type and Time Period—Housing Quality Dependent Variable = how_h , Coefficient Estimates (2 of 2)

Variable	Manufa	Manufactured Owned Housing	d Housing	Tradit	Traditional Owned Housing	Housing	_	Rented Housing	Di .
Name	1993	1997	2001	1993	1997	2001	1993	1997	2001
Mu(5)	2.2462**	2.1372**	2.2436**	2.1411**	2.4442**	2.4844**	2.1900**	* 2.6047**	2.5004**
Mu(6)	3.0079**	2.8758**	2.9616**	2.9143**	3.3296**	3.4327**	2.9090**	* 3.4648**	3.3817**
Mu(7)	3.3169**	3.1890**	3.3752**	3.3339**	3.7732**	3.8992**	3.3084**	* 3.8632**	3.8243**
Log likelihood									
function	- 2,043.69	- 1,924.01	- 1,932.03	- 17,637.29	- 17,637.29 - 13,219.70	- 13,297.02	- 20,517.22	-20,517.22 $-14,322.13$ $-13,729.36$	- 13,729.36
Restricted									
log likelihood	- 2,265.32	-2,127.37	-2,157.86	- 19,281.68	- 19,281.68 - 14,983.13	- 15,210.61	- 22,538.36	- 22,538.36 - 16,434.32	- 15,831.94
Chi-squared	443.27	406.73	451.65	3,288.78	3,526.87	3,827.19	4,042.28	4,224.38	4,205.15

*Statistically significant at the 10-percent level (one-tailed test).

Neighborhood Quality

As shown in exhibit 5, variables that significantly affect the perceived quality of neighborhoods tend to be similar across *both* tenure types *and* time periods. In this regard, the results for neighborhood quality tend to reinforce the similar results for perceived structural quality. Specifically, factors such as open spaces and parks (e_green), neighborhood noise (noise_p), trash and litter (junk), the perception of bothersome crime (nucrim_p), and undesirable nonresidential property uses (badprp_p) generally are significant with the expected sign across not only all three tenure types but also for all time periods. As with structural quality, very few peculiar results occur.²¹

Once again, the fundamental implication from exhibit 5 for manufactured owned housing is deceptively simple, namely that owner households in manufactured owned housing view the determinants of neighborhood quality as resulting from the same neighborhood factors that are associated with traditional owned housing and rented housing. This observation is true across all three time periods. For example, resident owners of manufactured housing appreciate parks and open space and disapprove of criminal activity in their neighborhoods, just as other owners do. Thus, communities planning for future growth need only to focus on traditional determinants of resident satisfaction, irrespective of housing type. This idea is particularly important to communities facing growth in relatively low-wage service industries, where the potential need for planned neighborhoods is most acute. The key lesson from exhibit 5 is the need for proper planning to maximize the perceived quality of neighborhoods.

Changes in Structural Quality and Neighborhood Quality Over Time

To more fully explore changes in the perceptions of structural and neighborhood quality, in this section we extend the previous analysis to consider changes over time and across tenure types. This process enables us to investigate the factors driving the changes in quality rankings over time.

Data, Samples, and Variables

As is well known, changes in a household's structural and neighborhood rankings can only be observed for those who stay in the unit until the next interview period, because the American Housing Survey follows housing units rather than households. Our basic time period of analysis covers changes over the 2-year waves of the AHS from 1993 to 2001. Thus, we do separate analyses for changes over time for four intervals, namely 1993 to 1995, 1995 to 1997, 1997 to 1999, and 1999 to 2001. It could be insightful, however, to observe changes in structural and neighborhood rankings over a longer interval than 2 years, even though the sample size would be expected to decline somewhat and out-movers in the initial 2 years might be expected to have experienced the most dramatic changes during that period. Consequently, we also include the 4-year intervals of 1993 to 1997 and 1997 to 2001. Because six time intervals with regressions for two independent variables are cumbersome to examine, and because the results do not differ substantially across the

²¹ As shown in exhibit 5, enumerators' observations about surrounding properties (e_low, e_mid, e_high, and so on) follow no particular pattern. Also note that bars on windows on nearby properties (bars) always have the anticipated sign but tend to skip statistical significance across time period and housing type.

Exhibit 5

N-Chotomous Probit Results by Housing Type and Time Period—Neighborhood Quality Dependent Variable = how_n, Coefficient Estimates (1 of 2)

Occiliate Latimates (1 of 4)	ווווומובט (וו סוי	7							
Variable	Manufa	Manufactured Owned Housing	1 Housing	Tradit	Traditional Owned Housing	lousing		Rented Housing	ס
Name	1993	1997	2001	1993	1997	2001	1993	1997	2001
e_low	0.1819	Ϋ́Z	Ϋ́	-0.1379**	- 0.1287**	- 0.0905**	0.0594**	-0.0457**	- 0.0205
e_mid	0.3135	Ϋ́	Ϋ́	-0.0771	- 0.1368*	- 0.1041	0.0169	- 0.0817**	- 0.0435
e_high	0.8745	Ϋ́	Ϋ́	- 0.2302*	- 0.0060	0.2389**	- 0.0290	0.0719*	0.0857**
e_mobil	1.1074	0.1311*	- 0.0129	- 0.0068	0.0102	- 0.1047**	0.1010	0.1263**	0.1096**
e_com	1.5094*	- 0.0030	0.0588	0.0143	- 0.0582**	- 0.0381	-0.0037	- 0.0253	0.0298
e_prkg	2.2091	0.0004	- 0.1388	-0.0157	0.0107	0.0240	- 0.0509**	0.0238	0.0230
e_water	2.5974	0.0880	0.2306**	0.2296**	0.0395	0.0695**	- 0.0229	0.0716**	0.0582*
e_green	*	0.3305**	0.2321**	0.2085**	0.1963**	0.1722**	0.1476**	0.1532**	0.1124**
old_buildings	- 2,010.43	0.2849**	0.2342**	0.0608	0.0900**	0.0940**	-0.0587*	0.2232**	0.2184**
new_buildings	*	- 0.0578	- 0.1167*	0.2775**	- 0.1551**	- 0.0605*	0.2779**	- 0.0953**	- 0.0213
aban	- 2,300.56	- 0.0828	- 0.1397	-0.1325**	- 0.2493**	- 0.2650**	- 0.2229**	-0.1719**	- 0.1130**
bars	580.25	0.2072	- 0.3789*	- 0.0139	- 0.1890**	- 0.0749**	-0.1154**	- 0.0414	- 0.0083
road_prob	-0.1395*	- 0.0852	- 0.0940*	0.1112**	- 0.1136**	- 0.1239**	0.0635**	- 0.0368*	- 0.0784**
junk	- 0.0506	- 0.2704**	- 0.2844**	-0.1051**	- 0.3495**	- 0.4474**	- 0.0561**	- 0.1648**	- 0.2525**
nucrim_p	- 0.8724**	-0.7722**	- 0.3226**	- 0.9362**	- 0.5636**	- 0.5613**	- 0.8838**	- 0.6422**	- 0.6390**
noise_p	-0.4060**	- 0.2551**	- 0.4181**	- 0.3592**	- 0.3893**	- 0.3321**	- 0.3326**	- 0.2457**	- 0.2717**
litter_p	- 1.0118**	-0.1193	- 0.3686*	-0.8402**	- 0.6104**	- 0.3412**	- 0.3538**	-0.1922**	- 0.1586**
badsrv_p	0.0731	0.4456	0.1176	- 0.2615**	0.2246**	- 0.1218*	-0.1837**	- 0.0929**	- 0.1438*
badprp_p	-0.5262**	0.5917*	- 0.0270	- 0.4497**	- 0.2200**	- 0.1347**	- 0.2041**	- 0.0261**	- 0.0415
odor_p	Ϋ́	- 0.4343**	- 0.3517**	NA	- 0.1987**	- 0.1509	ΑN	- 0.0631**	- 0.0448
badper	- 0.8321**	- 0.8311**	- 0.3979**	- 0.8053**	- 0.5907**	- 0.5175**	- 0.6380**	-0.3750**	- 0.3606**
othnhd_p	- 0.5661**	- 0.2841**	- 0.0153	-0.5138**	- 0.3142**	- 0.3102**	- 0.3076**	-0.1470**	- 0.1666**
schm_p	-0.2691*	- 1.1862**	- 0.5164**	-0.1108**	- 0.2894**	- 0.2521**	- 0.0542	-0.1415**	- 0.1584**
d_dhs	0.1283**	*9960.0	0.1882**	0.0098	0.0549**	- 0.0003	0.0288	0.0485^{*}	0.0315
good_trn	0.0979	0.1008	0.2789**	-0.0515**	0.0119	- 0.0102	0.0641**	0.0605**	0.0550**
mh_in_grp	- 0.0857	-0.1683**	- 0.2719**	NA	ΑN		Ϋ́	Ϋ́	Ϋ́

Exhibit 5

N-Chotomous Probit Results by Housing Type and Time Period—Neighborhood Quality Dependent Variable = how_n, Coefficient Estimates (2 of 2)

Variable	Manufa	Manufactured Owned Housing	ed Housing	Trad	Traditional Owned Housing	Housing		Rented Housing	ing
Name	1993	1997	2001	1993	1997	2001	1993	1997	2001
Mu(1)	0.1819**	0.1769**	0.2120**	0.1472**	0.1662**	0.2146**	0.1878**	0.2401**	0.2296**
Mu(2)	0.3135**	0.3264**	0.3970**	0.3338**	0.3941**	0.4821**	0.4007**	0.4970**	0.4933**
Mu(3)	0.8745**	0.9142**	0.9986**	0.9395**	1.0861**	1.1751**	0.9903**	1.1891**	1.2000**
Mu(4)	1.1074**	1.1496**	1.2852**	1.2189**	1.4467**	1.5124**	1.2709**	1.5559**	1.5643**
Mu(5)	1.5094**	1.6381**	1.7945**	1.6683**	2.0023**	2.0984**	1.7180**	2.1439**	2.1909**
Mu(6)	2.2091**	2.4058**	2.5240**	2.4467**	2.9249**	3.0882**	2.3975**	2.9789**	3.0545**
Mu(7)	2.5974**	2.8083**	2.9280**	2.8809**	3.4546**	3.6207**	2.7997**	3.4769**	3.5658**
Log likelihood									
function	-2,010.43	- 1,873.34	- 1,940.351	- 18,478.11	- 13,532.43	- 13,781.72	- 20,710.02	- 14,638.85	- 13,859.85
Restricted									
log likelihood	- 2,300.56	- 2,115.94	-2,167.232	- 21,174.63	- 16,009.04	- 16,372.68	- 23,546.52	- 17,060.88	- 16,218.08
Chi-squared	580.25	485.20	453.763	5,393.05	4,953.22	5,181.91	5,673.00	4,844.07	4,716.46

NA = data not available.

*Statistically significant at the 10-percent level (one-tailed test),

**Statistically significant at the 5-percent level (one-tailed test).

period, results for the two longer intervals are presented in the text, while those for the four shorter intervals are provided for the interested reader in the appendix (exhibits A-3a, A-3b, A-4a, A-4b, A-5a, A-5b, A-6a, and A-6b).

The change in the structural and neighborhood rankings generally depends on the detailed structural and neighborhood characteristics included in the preceding estimation. Despite that observation, several variants in this analysis are important to note. First, very large changes in quality rankings rarely occur in the AHS due, in part, to the ordinal nature of the rankings. Thus, for estimation purposes, to have sufficient observations at the extreme ends of the scale, the few large positive changes (of more than plus four) were grouped together in the ordinal category "plus four." In a similar manner, the few large negative changes (of less than minus four) were included in the ordinal category "minus four." Thus, our ordinal change categories include nine categories, namely -4 or less, -3, -2, -1, 0, 1, 2, 3, and 4 or more, a progression from worst to best.²² Second, we also control for both crowding (ratio of persons to rooms) and housing cost to income. Third, the basic level of structural quality and neighborhood quality (how_h or how_n) is included in the appropriate changes equation as recognition of the fact that if a housing unit starts out as either very high or very low, it can really only change in the other direction.²³ Finally, a few variables such as age of structure and exterior leaks had to be included as a level (not a change) due to data issues. In this respect, a couple of variables are excluded, particularly for the smallest sample (manufactured owned housing), due to a lack of variance in the variable.

Exhibit 6 contains variable names and definitions for all of the variables included in the analysis of the change in structural quality. Exhibit 7 shows similar information for the change in neighborhood quality.

Empirical Results

The basic empirical findings are shown in a set of four exhibits, namely exhibits 8 through exhibit 11.²⁴ Exhibit 8 presents the N-chotomous probit coefficients for each tenure type over the first set of time periods (1993 to 1997), relating changes in perceived structural quality to the factors discussed previously. In a similar manner, exhibit 9 focuses on the determinants of changes in neighborhood quality rankings. The next two exhibits (exhibit 10 and exhibit 11) are analogous to the first two exhibits but are based on the later time period (1997 to 2001). Due to the large number of individual equations reported in these exhibits, including those for the shorter subintervals reported in the appendix, we present general findings of relevance to the topic at hand rather than discussing the individual equations.

²² For simplicity of interpretation, the categories were recoded in the ordinal probit estimation as 0, 1, 2, 3, 4, 5, 6, 7, and 8.

²³ The level of structural quality and level of neighborhood quality are determined, of course, by many of the same variables included in the analysis of changes in these measures. Thus, in this section we might expect less significance in the individual factors, although the analysis does provide additional insights to that presented previously.

²⁴ Not included as separate exhibits are the extensive mean values of all variables across housing type and time periods. Note that the changes in quality rankings between households in manufactured owned housing and traditional owned housing are statistically the same. For example, (traditional owned housing, manufactured owned housing) of (3.99, 3.93), (3.77, 3.80), and so on. In simple average terms, quality perceptions change in a similar manner.

The basic determinants of changes in either structural quality or neighborhood quality, where significant, tend to reinforce results reported previously. In general, not having an amenity (such as a garage) or gaining a negative feature (such as developing wiring problems) tends to increase the change in perceived structural quality in the anticipated direction. For changes in neighborhood quality, a similar observation can be made.

For changes in structural quality, a number of factors relatively consistently influence structural quality. In particular, interior and exterior leaks have a significant effect on the change in housing quality for each tenure type, as do interior and exterior structural problems. Also, concerns about crowding and structure age consistently affect the change in household ranking of the structural quality.

For changes in neighborhood quality, it is clear that the most consistent single influence on the level of change is the perception that crime has become a problem over the period.

Clearly, feedback occurs on the size of quality changes between changes in structural quality and changes in neighborhood quality. Owners of any housing type are willing to forgive some structural problems in neighborhoods that are perceived as becoming better (and vice versa).

The perceptions of owners of manufactured housing are similar to those of owners of traditional housing in terms of public policy issues such as changes in crime, noise, and litter and trash.

Communities do not appear to have to consider any special factors that affect manufactured owned housing relative to traditional owned housing.

Exhibit 6

Variable Name	es and Definitions—Change in Housing Quality (1 of 2)
Variable Name	Variable Definition
d_howh	Change in housing quality ranking over the period (range +4 to -4)*
how_h	Level of housing quality at the start of the period
age_s	Age of the housing the structure in years at the start of the period
crowding	Ratio of persons per room
zsmhc	Monthly housing costs (as defined by the AHS) at the beginning of the period
zinc2	Annual household income in dollars at the start of the period
hc2inc	Ratio of monthly housing costs to household income at the beginning of the period
get_porch	1 = porch added to the unit during the period; 0 = otherwise
lose_porch	1 = porch removed from the unit during the period; 0 = otherwise
get_garage	1 = garage added to the unit during the period; 0 = otherwise
lose_garage	1 = garage removed from the unit during the period; 0 = otherwise
d_equip	Change in the number of the following items during the period: refrigerator, garbage disposal, stove/oven, dishwasher, washer/dryer
get_bathroom	1 = bathroom added to the unit during the period; 0 = otherwise
lose_bathroom	1 = bathroom removed from the unit during the period; 0 = otherwise
get_water	1 = hot and cold piped water added to the unit during the period; 0 = otherwise
lose_water	1 = hot and cold piped water removed from the unit during the period; 0 = otherwise

Variable Names and Definitions—Change in Housing Quality (2 of 2) Variable Name Variable Definition ext leak 1 = exterior leak in the last 12 months: 0 = otherwise get_sewage 1 = unit connected to public sewer or septic system during the period; 0 = otherwise 1 = unit disconnected from public sewer or septic system during the period; lose_sewage 0 = otherwise 1 = central air conditioning added to the unit during the period; 0 = otherwise get_cntrl_air lose_cntrl_air 1 = central air conditioning removed from the unit during the period; 0 = otherwise d_struc_prob Change in the number of the following structural problems during the period: sagging roof, missing roof materials, holes in roof, missing wall materials or siding, slopping exterior walls, broken windows, bars on windows, and/or crumbling foundation get_int_leak 1 = interior leak developed during the period; 0 = otherwise 1 = interior leak eliminated during the period; 0 = otherwise lose_int_leak get_bad_int 1 = the following interior problems developed during the period: cracks or holes in walls or ceilings, holes in floor, broken plaster, and/or peeling paint more than 1 square foot: 0 = otherwise lose_bad_int 1 = the following interior problems corrected during the period: cracks or holes in walls or ceilings, holes in floor, broken plaster, and/or peeling paint over one square foot; 0 = otherwise d_wtr_prob Change in the reported number of water source breakdowns from the beginning to the end of the period d_tlt_prob Change in the reported number of toilet breakdowns from the beginning to the end of the period d_sew_prob Change in the reported number of sewer breakdowns from the beginning to the end of the period d_wrg_prob Change in the reported number of wiring problems from the beginning to the end of the period d_fus_blow Change in the reported number of times fuses blew from the beginning to the end of the period d heat brk Change in the reported number of heating breakdowns last winter from the beginning to the end of the period d_2goodheat 1 = changed to steam, electric, heat pump, or central warm air furnace from some other less desirable way of heating during the period; 0 = otherwise get_vermin 1 = rats or mice infested the unit during the period; 0 = otherwise lose_vermin 1 = rat or mouse infestation eliminated from the unit during the period; 0 = otherwise mh_in_grp** 1 = two or more mobile homes in group; 0 = otherwise ownlot** 1 = resident of manufactured housing owns the land on which the unit is located; 0 = otherwise

AHS = American Housing Survey.

^{*}A change of +4 or -4 represents a change of 4 or more in either direction.

^{**}Available only for manufactured housing.

Variable Nam	es and Definitions—Change in Neighborhood Quality (1 of 3)
Variable Name	Variable Definition
d_hown	Change in neighborhood quality ranking over the period (range +4 to -4)*
how_n	Level of neighborhood quality at the start of the period
age_s	Age of the housing the structure in years at the start of the period
crowding	Ratio of persons per room
zsmhc	Monthly housing costs (as defined by the AHS) at the beginning of the period
zinc2	Annual household income in dollars at the start of the period
hc2inc	Ratio of monthly housing costs to household income at the beginning of the period
get_e_low	1 = single-family or other lowrise buildings built within 300 feet of unit during the period; 0 = otherwise
lose_e_low	1 = single-family or other lowrise buildings removed from within 300 feet of unit during the period; 0 = otherwise
get_e_mid	1 = midrise residential buildings built within 300 feet of unit during the period;0 = otherwise
lose_e_mid	1 = midrise residential buildings removed from within 300 feet of unit during the period; 0 = otherwise
get_e_high	1 = highrise residential buildings built within 300 feet of unit during the period;0 = otherwise
lose_e_high	1 = highrise residential buildings removed from within 300 feet of unit during the period; 0 = otherwise
get_e_mobil	1 = mobile homes located within 300 feet of the unit during the period; 0 = otherwise
lose_e_mobil	1 = mobile homes removed from within 300 feet of the unit during the period;0 = otherwise
get_e_com	1 = commercial/institutional/industrial building built within 300 feet of the unit during the period; 0 = otherwise
lose_e_com	1 = commercial/institutional/industrial building removed from within 300 feet of the unit during the period; 0 = otherwise
get_e_prkg	1 = residential parking lots built within 300 feet of the unit during the period;0 = otherwise
lose_e_prkg	1 = residential parking lots removed from within 300 feet of the unit during the period; 0 = otherwise
get_e_water	1 = body of water established within 300 feet of the unit during the period;0 = otherwise
lose_e_water	1 = body of water removed from within 300 feet of the unit during the period;0 = otherwise
get_e_green	1 = green space/park/woods/farm/ranch established within 300 feet of the unit; 0 = otherwise
lose_e_green	1 = green space/park/woods/farm/ranch removed from within 300 feet of the unit; 0 = otherwise
get_aban	1 = housing units become abandoned within 300 feet of the unit during the period; 0 = otherwise
lose_aban	1 = abandoned housing units become occupied within 300 feet of the unit during the period; 0 = otherwise

Variable Nam	es and Definitions—Change in Neighborhood Quality (2 of 3)
Variable Name	Variable Definition
get_bars	1 = bars are placed on windows within 300 feet of the unit during the period;0 = otherwise
lose_bars	1 = bars are removed from windows within 300 feet of the unit during the period;0 = otherwise
get_rd_prob	1 = road problems develop within 300 feet of the unit during the period; 0 = otherwise
lose_rd_prob	1 = road problems are eliminated within 300 feet of the unit during the period;0 = otherwise
get_junk	1 = trash, litter, or junk has become a problem in the neighborhood during the period;0 = otherwise
lose_junk	1 = a trash, litter, or junk problem in the neighborhood has been eliminated during the period; 0 = otherwise
get_nucrim_p	1 = during the period residents have become concerned with crime as a problem;0 = otherwise
lose_nucrim_p	1 = during the period crime has been eliminated as a concern for the household;0 = otherwise
get_noise_p	1 = during the period noise has become bothersome in the neighborhood;0 = otherwise
lose_noise_p	1 = during the period noise has been eliminated as bothersome in the neighborhood; 0 = otherwise
get_litter_p	1 = during the period litter or housing deterioration has become a concern in the neighborhood; 0 = otherwise
lose_litter_p	1 = during the period litter or housing deterioration has been eliminated as a concern in the neighborhood; 0 = otherwise
get_badsrv_p	1 = during the period poor city or county services in the neighborhood has become a concern; 0 = otherwise
lose_badsrv_p	1 = during the period poor city or county services in the neighborhood has been eliminated as a concern; 0 = otherwise
get_badprp_p	1 = during the period undesirable residential uses have become a problem in the neighborhood; 0 = otherwise
lose_badprp_p	1 = during the period undesirable residential uses have been eliminated as a problem in the neighborhood; 0 = otherwise
get_badper	1 = during the period undesirable people in the neighborhood have become a problem; 0 = otherwise;
lose_badper	1 = undesirable people in the neighborhood are no longer a problem at the end of the period; 0 = otherwise
get_othnhd_p	1 = during the period some other feature has become a problem; 0 = otherwise
lose_othnhd_p	1 = during the period some other feature has been eliminated as a problem;0 = otherwise
get_schm_p	1 = during the period schools in the area have come to be viewed as inadequate;0 = otherwise
lose_schm_p	1 = during the period schools in the area have come to be viewed as adequate;0 = otherwise
get_shp_p	1 = during the period shopping in the area has come to be viewed as inadequate; 0 = otherwise

Exhibit 7

Variable Nam	Variable Names and Definitions—Change in Neighborhood Quality (3 of 3)						
Variable Name	Variable Definition						
lose_shp_p	1 = during the period shopping in the area has come to be viewed as adequate; 0 = otherwise						
get_good_trn	1 = during the period public transportation in the area has come to be viewed as inadequate; 0 = otherwise						
lose_good_trn	1 = during the period public transportation in the area has come to be viewed as adequate; 0 = otherwise						
mh_in_grp**	1 = two or more mobile homes in group; 0 = otherwise						
ownlot**	1 = resident of manufactured housing owns the land on which the unit is located; 0 = otherwise						

AHS = American Housing Survey.

Exhibit 8

N-Chotomous Probit Results—Change in Housing Quality, 1993-1997 (1 of 2)

	1993–1997							
Variable Name	Traditional Owned Housing		Manufactured Owned Housing		Rented Housing			
Name	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic		
Constant	5.342	47.924	4.490	12.420	4.241	28.128		
how_h	- 0.434	- 43.185	- 0.378	- 12.008	- 0.339	- 24.766		
age_s	- 0.003	- 6.023	- 0.001	- 0.126	- 0.003	- 2.884		
crowding	- 0.167	- 3.055	- 0.305	- 1.729	- 0.296	- 4.360		
hc2inc	0.000	- 0.010	- 0.001	- 1.052	0.000	- 1.121		
get_porch	0.036	0.739	- 0.149	- 0.894	0.023	0.288		
lose_porch	- 0.041	- 0.893	0.006	0.043	- 0.115	- 1.581		
get_garage	- 0.030	- 0.448	0.587	2.608	0.093	0.998		
lose_garage	0.017	0.315	- 0.475	- 2.618	0.032	0.292		
d_equip	0.026	1.159	0.133	1.995	0.108	2.988		
get_bathroom	- 0.012	- 0.118	- 0.131	- 0.131	0.173	0.751		
lose_bathroom	0.250	0.340	NA	NA	NA	NA		
get_water	0.046	0.133	NA	NA	8.259	1.000		
lose_water	- 0.194	- 0.771	1.545	0.711	- 0.338	0.496		
ext_leak	- 0.084	- 2.591	- 0.119	- 1.038	- 0.184	0.003		
get_sewage	0.109	0.908	0.329	1.509	0.039	0.880		
lose_sewage	0.036	0.407	0.021	0.122	0.201	0.184		
get_cntrl_air	0.083	1.412	0.330	1.790	- 0.007	0.952		
lose_cntrl_air	- 0.108	- 1.276	0.358	1.315	0.080	0.525		
d_struc_prob	- 0.140	- 7.729	- 0.207	- 3.002	- 0.136	0.000		
get_int_leak	- 0.024	- 0.402	- 0.092	- 0.529	- 0.167	0.027		
lose_int_leak	- 0.110	- 1.797	0.340	1.484	- 0.335	0.000		
get_bad_int	- 0.288	- 5.179	- 0.473	- 2.278	- 0.446	0.000		
lose_bad_int	- 0.037	- 0.647	- 0.258	- 1.154	0.250	0.001		
d_wtr_prob	0.013	0.267	- 0.212	- 1.494	- 0.130	0.003		
d_tlt_prob	0.015	0.426	0.141	0.774	- 0.083	0.047		
d_sew_prob	0.040	0.768	0.054	0.222	0.032	0.699		

^{*}A change of +4 or -4 represents a change of 4 or more in either direction.

^{**}Available only for manufactured housing.

Exhibit 8

N-Chotomous Probit Results—Change in Housing Quality, 1993–1997 (2 of 2)

	1993–1997								
Variable Name		Traditional Owned Housing		Manufactured Owned Housing		Housing			
	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic			
d_wrg_prob	- 0.111	- 2.023	- 0.024	- 0.113	0.160	0.048			
d_fus_blow	- 0.008	- 0.519	- 0.028	- 0.588	- 0.012	0.625			
d_heat_brk	- 0.004	- 0.100	- 0.186	- 0.837	- 0.055	0.133			
d_2goodheat	0.094	1.914	0.045	0.315	0.040	0.613			
get_vermin	- 0.119	- 3.597	- 0.106	- 0.999	- 0.077	0.172			
lose_vermin	- 0.041	- 0.354	0.076	0.007	0.125	0.339			
mh_in_grp	NA	NA	- 0.048	- 0.397	NA	NA			
ownlot	NA	NA	0.108	0.890	NA	NA			
Mu(1)	0.468	0.468	0.591	6.413	0.471	12.340			
Mu(2)	1.174	1.174	1.191	11.125	1.017	21.991			
Mu(3)	1.735	1.735	1.639	14.749	1.570	31.845			
Mu(4)	3.122	3.122	2.741	20.863	2.658	45.694			
Mu(5)	3.754	3.754	3.373	23.538	3.239	50.226			
Mu(6)	4.502	4.502	4.051	21.975	3.829	49.192			
Mu(7)	5.096	5.096	4.543	22.485	4.383	48.391			
Number of									
observations	6,344		602		2,196				
Log likelihood									
function	- 9,794.004	-	- 1,014.336		- 3,749.38				
Restricted log									
likelihood	- 11,372.28	-	- 1,190.434		- 4,324.191				
Chi-squared	3,156.542		352.1962		1,149.621				
Degrees of	33		33		32				
freedom									

NA = not applicable.

Exhibit 9

N-Chotomous Probit Results—Change in Neighborhood Quality, 1993–1997 (1 of 2)

						,	
	1993–1997						
Variable Name	Traditional Owned Housing		Manufactured Owned Housing		Rented Housing		
	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic	
Constant	5.166	56.546	4.734	12.566	4.118	29.842	
how_n	- 0.439	- 52.153	- 0.410	- 12.550	- 0.348	- 28.521	
hc2inc	0.000	- 0.327	- 0.004	- 4.877	0.000	0.215	
get_e_low	- 0.066	- 1.662	0.009	0.028	0.007	0.124	
lose_e_low	- 0.165	- 2.160	- 0.648	- 1.057	0.084	1.146	
get_e_mid	- 0.197	- 1.776	1.005	1.246	- 0.070	- 0.857	
lose_e_mid	0.418	2.482	- 7.939	0.000	- 0.045	- 0.438	
get_e_high	0.084	0.471	- 0.435	- 0.574	- 0.187	- 1.822	
lose_e_high	- 0.006	- 0.017	NA	NA	- 0.018	- 0.139	
get_e_mobil	- 0.078	- 1.729	0.043	0.404	0.063	0.515	
lose_e_mobil	0.081	0.465	0.463	1.757	- 0.189	- 0.679	
get_e_com	- 0.039	- 1.046	0.078	0.500	- 0.082	- 1.584	
lose_e_com	- 0.153	- 1.414	- 0.246	- 0.724	0.057	0.571	
get_e_prkg	- 0.022	- 0.521	- 0.104	- 0.554	0.007	0.131	
lose_e_prkg	- 0.049	- 0.293	- 0.444	- 0.730	- 0.088	- 0.810	
get_e_water	0.036	0.892	0.196	1.623	0.091	0.996	

Exhibit 9

N-Chotomous Probit Results—Change in Neighborhood Quality, 1993–1997 (2 of 2)

	1993–1997						
Variable Name	Traditiona Hou			Manufactured Owned Housing		Rented Housing	
Name	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic	
lose_e_water	- 0.053	- 0.135	- 0.070	- 0.025	0.326	1.328	
get_e_green	0.084	2.712	0.022	0.211	0.141	2.315	
lose_e_green	- 0.044	- 0.589	- 0.037	- 0.127	0.039	0.424	
get_aban	- 0.227	- 4.027	- 0.632	- 2.719	- 0.249	- 3.060	
lose_aban	0.051	0.378	- 0.178	- 0.405	- 0.125	- 1.105	
get_bars	- 0.157	- 3.261	- 0.080	- 0.226	0.004	0.050	
lose_bars	- 0.351	- 3.198	- 0.132	0.000	- 0.050	- 0.605	
get_rd_prob	- 0.117	- 3.927	- 0.217	- 2.055	- 0.093	- 1.752	
lose_rd_prob	0.041	0.650	0.062	0.331	- 0.009	- 0.118	
get_junk	- 0.363	- 7.837	- 0.265	- 1.231	- 0.093	- 1.109	
lose_junk	- 0.087	- 1.461	- 0.203 - 0.033	- 0.175	- 0.069	- 1.103 - 1.079	
get_nucrim_p	- 0.534	- 11.917	- 0.960	- 5.748	- 0.757	- 10.988	
·							
lose_nucrim_p	0.249	3.084	0.066	0.142	0.069	0.859	
get_noise_p	- 0.359	- 9.368	- 0.550	- 3.248	- 0.475	- 7.400	
lose_noise_p	- 0.102	- 1.635	- 0.609	- 2.602	0.021	0.260	
get_litter_p	- 0.772	- 9.328	- 0.649	- 1.056	0.066	0.384	
lose_litter_p	- 0.001	- 0.020	0.137	0.547	- 0.364	- 3.299	
get_badsrv_p	- 0.281	- 2.287	- 0.434	- 0.539	0.178	0.477	
lose_badsrv_p	0.302	2.216	- 0.106	- 0.158	0.229	1.311	
get_badprp_p	- 0.163	- 1.135	- 0.412	- 0.548	- 0.502	- 1.883	
lose_badprp_p	0.014	0.136	0.046	0.071	- 0.168	- 0.840	
get_badper	- 0.712	- 10.838	- 0.916	- 3.076	- 0.680	- 6.694	
lose_badper	0.000	- 0.005	0.167	0.984	- 0.017	- 0.261	
get_othnhd_p	- 0.376	- 6.851	- 0.073	- 0.337	- 0.280	- 2.920	
lose_othnhd_p	0.005	0.105	0.149	0.913	0.023	0.257	
get_schm_p	- 0.404	- 3.143	- 1.798	- 4.118	- 0.402	- 2.537	
lose_schm_p	- 0.226	- 2.677	0.439	1.335	- 0.004	- 0.030	
get_shp_p	- 0.001	- 0.029	0.004	0.028	- 0.128	- 1.426	
lose_shp_p	- 0.041	- 0.929	0.031	0.213	0.174	2.024	
get_good_trn	0.021	0.479	- 0.127	- 0.623	0.025	0.366	
lose_good_trn	0.028	0.605	0.045	0.201	0.031	0.414	
mh_in_grp	NA	NA	- 0.007	- 0.053	NA	NA	
ownlot	NA	NA	0.224	1.844	NA	NA	
Mu(1)	0.501	18.352	0.387	4.915	0.474	12.000	
Mu(2)	1.201	36.771	1.086	10.697	1.016	21.005	
Mu(3)	1.800	53.044	1.615	15.002	1.545	29.837	
Mu(4)	3.142	81.279	2.932	22.905	2.710	43.640	
Mu(5)	3.838	89.388	3.531	24.684	3.238	47.494	
	4.581	88.220	4.311				
Mu(6)				24.586	3.856 4.346	48.640	
Mu(7)	5.180	83.568	4.933	21.376	4.346	48.981	
Number of	6.044		000		0.400		
observations	6,344		602		2,196		
Log likelihood	0.774 :00		0.40.4000		0.040.000		
function	- 9,771.438		- 942.4089		- 3,649.236		
Restricted log							
likelihood	- 11,825.6		- 1,146.982	•	- 4,385.621		
Chi-squared	4,108.316		409.1458		1,472.769		
Degrees of							
freedom	47		48		47		
NA = not applicable	1						

NA = not applicable.

N-Chotomous Probit Results—Change in Housing Quality, 1997–2001 (1 of 2)

Name Coefficient t-Statistic A Na A A Na A 1.3305 4.1973 25.31 a 2.285 co.0320 coefficient t-Statistic coefficient t-Statistic coefficient t-Statistic coefficient t-Statistic A Na Coefficient t-Statistic Descatic 22.31 20.04 20.25 23.10 Coefficient t-Statistic to 22.31 20.004 20.251 20.251 20.251 20.251 20.251 20.251 20.251 20.251 20.251 20.251 20.251 20.251 20.251 20.252 20		1997–2001						
Constant 5.4113 48.175 5.0519 13.305 A.1973 25.88 how,h -0.4419 -43.577 -0.4141 -12.651 -0.3350 -23.16 age_s -0.0036 -5.584 -0.0058 -1.264 -0.0045 -3.98 crowding -0.1669 -2.935 -0.2723 -1.404 -0.2191 -2.88 hc2inc 0.0000 -0.539 -0.0004 -0.563 0.0000 0.18 pet_porch 0.0412 0.937 -0.0351 -0.249 0.0945 1.30 lose_porch -0.0322 -0.443 0.4407 1.911 -0.0674 -0.51 get_garage 0.0108 0.211 0.3101 2.033 -0.0111 -0.13 get_garage 0.0534 0.777 0.2510 1.089 0.0622 0.57 d_equip 0.0300 1.098 0.1934 2.183 0.0611 1.49 get_bathroom 1.6440 -1.509 NA NA NA							Rented Housing	
how_h - 0.4419 - 43.577 - 0.4141 - 12.651 - 0.3350 - 23.10 age_s - 0.0036 - 5.584 - 0.0058 - 1.264 - 0.0045 - 3.98 hc2inc 0.0000 - 0.539 - 0.0044 - 0.2193 0.0000 0.15 get_porch 0.0412 0.937 - 0.0351 - 0.249 0.0945 1.31 lose_porch - 0.0322 - 0.443 0.4407 1.911 - 0.0674 - 0.51 get_garage 0.0108 0.211 0.3101 2.033 - 0.0111 - 0.11 lose_garage 0.0534 0.777 0.2510 1.089 0.0622 0.57 d_equip 0.0300 1.098 0.1934 2.183 0.0611 1.45 get_bathroom 1.6440 - 1.509 NA NA NA lose_bathroom 1.6150 0.000 - 0.0897 - 0.136 NA NA lose_water - 1.6969 0.000 - 0.8997 - 1.360 0.0575	Name	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic	
age_s - 0.0036 - 5.584 - 0.0058 - 1.264 - 0.0045 - 3.95 crowding - 0.1669 - 2.935 - 0.2723 - 1.404 - 0.2191 - 2.86 hc2inc 0.0000 - 0.539 - 0.0004 - 0.563 0.0000 0.15 get_porch 0.0412 0.937 - 0.0351 - 0.249 0.0945 1.33 lose_porch - 0.0322 - 0.443 0.4407 1.911 - 0.0674 - 0.51 get_garage 0.0108 0.211 0.3101 1.089 0.0622 0.57 d_equip 0.0300 1.098 0.1934 2.183 0.0611 1.48 get_bathroom -0.6440 - 1.509 NA NA NA NA get_bathroom 1.6150 0.000 - 0.0897 - 0.136 NA N get_water 0.3017 0.891 0.9689 0.688 0.6371 0.77 lose_water - 1.6969 0.000 - 0.9897 - 1.360 0.0575 </td <td>Constant</td> <td>5.4113</td> <td>48.175</td> <td>5.0519</td> <td>13.305</td> <td>4.1973</td> <td>25.897</td>	Constant	5.4113	48.175	5.0519	13.305	4.1973	25.897	
crowding - 0.1669 - 2.935 - 0.2723 - 1.404 - 0.2191 - 2.86 hc2inc 0.0000 - 0.539 - 0.0004 - 0.563 0.0000 0.15 get_porch 0.0412 0.937 - 0.0351 - 0.249 0.0945 1.30 lose porch - 0.0322 - 0.443 0.4407 1.911 - 0.0674 - 0.51 get_garage 0.0108 0.211 0.3101 2.033 - 0.0111 - 0.16 d_equip 0.0300 1.098 0.1934 2.183 0.0611 1.45 get_bathroom - 0.6440 - 1.509 NA NA NA NA lose_bathroom 1.6150 0.000 - 0.0897 - 0.136 NA NA lose_water - 1.6969 0.000 - 0.8997 - 1.360 0.0575 0.00 ext_leak - 0.1553 - 4.004 - 0.1987 - 1.746 - 0.0870 - 1.12 get_sewage - 0.2553 - 4.004 - 0.1987 - 1.746	how_h	- 0.4419	- 43.577	- 0.4141	- 12.651	- 0.3350	- 23.106	
hc2inc 0.0000 - 0.539 - 0.0004 - 0.563 0.0000 0.15 get_porch 0.0412 0.937 - 0.0351 - 0.249 0.0945 1.30 lose_porch - 0.0322 - 0.443 0.4407 1.911 - 0.0674 - 0.51 get_garage 0.0108 0.211 0.3101 2.033 - 0.0111 - 0.16 d_equip 0.0300 1.098 0.1934 2.183 0.0611 1.48 get_bathroom - 0.6440 - 1.509 NA NA NA NA lose_bathroom - 0.6440 - 1.509 NA NA NA NA get_water 0.3017 0.891 0.9689 0.688 0.6371 0.77 lose_water - 1.6969 0.000 - 0.8997 - 1.360 0.0575 0.06 ext_leak - 0.1553 - 4.004 - 0.1987 - 1.746 - 0.0870 1.12 get_sewage - 0.2751 - 1.979 - 0.4363 - 1.530 0.1041 <td>age_s</td> <td>- 0.0036</td> <td>- 5.584</td> <td>- 0.0058</td> <td>- 1.264</td> <td>- 0.0045</td> <td>- 3.991</td>	age_s	- 0.0036	- 5.584	- 0.0058	- 1.264	- 0.0045	- 3.991	
get_porch 0.0412 0.937 - 0.0351 - 0.249 0.0945 1.30 lose_porch - 0.0322 - 0.4443 0.4407 1.911 - 0.0674 - 0.51 get_garage 0.0108 0.211 0.3101 2.033 - 0.0111 - 0.10 lose_garage 0.0534 0.777 0.2510 1.089 0.0622 0.57 d_equip 0.0300 1.098 0.1934 2.183 0.0611 1.48 get_bathroom -0.6440 -1.509 NA NA NA NA lose_bathroom 1.6150 0.000 -0.0897 -0.136 NA N get_water 0.3017 0.891 0.9689 0.688 0.68371 0.77 lose_water -1.6969 0.000 -0.8997 -1.360 0.0575 0.06 ext_leak -0.1553 -4.004 -0.1987 -1.746 -0.0870 -1.12 get_sewage -0.2751 -1.7979 -0.4363 -1.530 0.1041	crowding	- 0.1669	- 2.935	- 0.2723	- 1.404	- 0.2191	- 2.852	
lose_porch	hc2inc	0.0000	- 0.539	- 0.0004	- 0.563	0.0000	0.159	
get_garage 0.0108 0.211 0.3101 2.033 -0.0111 -0.10 lose_garage 0.0534 0.777 0.2510 1.089 0.0622 0.57 d_equip 0.0300 1.098 0.1934 2.183 0.0611 1.45 get_bathroom -0.6440 -1.509 NA NA NA NA lose_bathroom 1.6150 0.000 -0.0897 -0.136 NA NA get_water 0.3017 0.891 0.9689 0.688 0.6371 0.77 lose_water -1.6969 0.000 -0.8997 -1.360 0.0575 0.06 ext_leak -0.1553 -4.004 -0.1987 -1.746 -0.0870 -1.12 get_sewage -0.2751 -1.979 -0.4363 -1.530 0.1041 0.38 get_sexewage -0.0582 0.782 -0.2116 -1.291 0.5345 2.43 get_centrl_air -0.0492 0.906 0.0424 0.269 0.0920 <	get_porch	0.0412	0.937	- 0.0351	- 0.249	0.0945	1.309	
Disse_garage	lose_porch	- 0.0322	- 0.443	0.4407	1.911	- 0.0674	- 0.518	
d_equip 0.0300 1.098 0.1934 2.183 0.0611 1.46 get_bathroom -0.6440 -1.509 NA NA NA NA lose_bathroom 1.6150 0.000 -0.0897 -0.136 NA N get_water 0.3017 0.891 0.9689 0.688 0.6371 0.77 lose_water -1.6969 0.000 -0.8997 -1.360 0.0575 0.06 ext_leak -0.1553 -4.004 -0.1987 -1.746 -0.0870 -1.12 get_sewage -0.2751 -1.979 -0.4363 -1.530 0.1041 0.38 lose_sewage 0.0582 0.782 -0.2116 -1.291 0.5345 2.46 get_ntrl_air 0.0492 0.906 0.0424 0.269 0.0920 0.84 d_ser_int_leak -0.1721 -3.065 -0.4061 -2.457 -0.4651 -5.35 get_int_leak -0.1913 -3.299 0.0333 0.174 -0.2065	get_garage	0.0108	0.211	0.3101	2.033	- 0.0111	- 0.108	
get_bathroom - 0.6440 - 1.509 NA NA NA NA lose_bathroom 1.6150 0.000 - 0.0897 - 0.136 NA NA get_water 0.3017 0.891 0.9689 0.688 0.6371 0.77 lose_water - 1.6969 0.000 - 0.8997 - 1.360 0.0575 0.06 ext_leak - 0.1553 - 4.004 - 0.1987 - 1.746 - 0.0870 - 1.12 get_sewage 0.0252 0.782 - 0.2116 - 1.291 0.5345 2.45 get_cntrl_air 0.0492 0.906 0.0424 0.269 0.0920 0.84 d_struc_prob - 0.0905 - 6.259 - 0.1219 - 2.194 - 0.1059 - 5.13 get_int_leak - 0.1721 - 3.065 - 0.4061 - 2.457 - 0.4651 - 5.39 get_bad_int - 0.1971 - 3.340 - 0.7624 - 3.873 - 0.3025 - 3.34 d_wtr_prob 0.0245 0.597 - 0.0031	lose_garage	0.0534	0.777	0.2510	1.089	0.0622	0.571	
get_bathroom - 0.6440 - 1.509 NA NA NA NA lose_bathroom 1.6150 0.000 - 0.0897 - 0.136 NA NA get_water 0.3017 0.891 0.9689 0.688 0.6371 0.77 lose_water - 1.6969 0.000 - 0.8997 - 1.360 0.0575 0.06 ext_leak - 0.1553 - 4.004 - 0.1987 - 1.746 - 0.0870 - 1.12 get_sewage - 0.2751 - 1.979 - 0.4363 - 1.530 0.1041 0.38 lose_sewage 0.0582 0.782 - 0.2116 - 1.291 0.5345 2.45 get_contrl_air - 0.492 0.906 0.0424 0.269 0.0920 0.46 d_set_contrl_air - 0.1304 - 1.333 0.1070 0.546 0.1723 1.13 d_struc_prob - 0.0905 - 6.259 - 0.1219 - 2.194 - 0.0159 - 5.15 get_int_leak - 0.1721 - 3.065 - 0.4061	d_equip	0.0300	1.098	0.1934	2.183	0.0611	1.493	
Iose_bathroom		- 0.6440			NA	NA	NA	
lose_water		1.6150	0.000	- 0.0897	- 0.136	NA	NA	
lose_water	get_water	0.3017	0.891	0.9689	0.688	0.6371	0.774	
ext_leak - 0.1553 - 4.004 - 0.1987 - 1.746 - 0.0870 - 1.12 get_sewage - 0.2751 - 1.979 - 0.4363 - 1.530 0.1041 0.38 lose_sewage 0.0582 0.782 - 0.2116 - 1.291 0.5345 2.45 get_cntrl_air 0.0492 0.906 0.0424 0.269 0.0920 0.84 lose_cntrl_air - 0.1304 - 1.333 0.1070 0.546 0.1723 1.13 d_struc_prob - 0.0905 - 6.259 - 0.1219 - 2.194 - 0.1059 - 5.13 get_int_leak - 0.1721 - 3.065 - 0.4061 - 2.457 - 0.4651 - 5.38 lose_int_leak - 0.1913 - 3.299 0.0333 0.174 - 0.2065 - 2.83 get_bad_int - 0.1971 - 3.340 - 0.7624 - 3.873 - 0.3025 - 3.34 lose_bad_int - 0.0920 - 1.482 - 0.4247 - 2.000 - 0.0750 - 0.84 d_wtr_prob 0.0245 0	lose_water	- 1.6969	0.000	- 0.8997		0.0575	0.069	
lose_sewage				- 0.1987	- 1.746	- 0.0870	- 1.123	
lose_sewage	get_sewage	- 0.2751	- 1.979	- 0.4363	- 1.530	0.1041	0.385	
get_cntrl_air 0.0492 0.906 0.0424 0.269 0.0920 0.84 lose_cntrl_air - 0.1304 - 1.333 0.1070 0.546 0.1723 1.13 d_struc_prob - 0.0905 - 6.259 - 0.1219 - 2.194 - 0.1059 - 5.13 get_int_leak - 0.1721 - 3.065 - 0.4061 - 2.457 - 0.4651 - 5.38 lose_int_leak - 0.1913 - 3.299 0.0333 0.174 - 0.2065 - 2.83 get_bad_int - 0.1971 - 3.340 - 0.7624 - 3.873 - 0.3025 - 3.34 lose_bad_int - 0.0920 - 1.482 - 0.4247 - 2.000 - 0.0750 - 0.84 d_wtr_prob 0.0245 0.597 - 0.0031 - 0.035 0.0153 0.037 d_ttl_prob - 0.0664 - 0.887 0.0924 0.354 - 0.1127 - 2.14 d_sew_prob 0.0168 0.282 - 0.3877 - 0.815 0.0447 0.33 d_fus_blow - 0.0554 - 2.9	-		0.782	- 0.2116	- 1.291	0.5345	2.431	
d_struc_prob -0.0905 -6.259 -0.1219 -2.194 -0.1059 -5.13 get_int_leak -0.1721 -3.065 -0.4061 -2.457 -0.4651 -5.39 lose_int_leak -0.1913 -3.299 0.0333 0.174 -0.2065 -2.83 get_bad_int -0.1971 -3.340 -0.7624 -3.873 -0.3025 -3.34 lose_bad_int -0.0920 -1.482 -0.4247 -2.000 -0.0750 -0.84 d_wtr_prob 0.0245 0.597 -0.0031 -0.035 0.0153 0.37 d_sew_prob 0.0664 -0.887 0.0924 0.354 -0.1127 -2.14 d_sew_prob 0.0168 0.282 -0.3877 -0.815 0.0447 0.33 d_wrg_prob 0.0192 0.254 -0.0413 -0.168 0.0797 0.94 d_sus_blow -0.0554 -2.900 -0.0357 -0.538 -0.0245 -0.93 d_eta_brk -0.0513 -1.547 -0.0093 <td< td=""><td>-</td><td></td><td>0.906</td><td></td><td>0.269</td><td>0.0920</td><td>0.840</td></td<>	-		0.906		0.269	0.0920	0.840	
d_struc_prob -0.0905 -6.259 -0.1219 -2.194 -0.1059 -5.13 get_int_leak -0.1721 -3.065 -0.4061 -2.457 -0.4651 -5.39 lose_int_leak -0.1913 -3.299 0.0333 0.174 -0.2065 -2.83 get_bad_int -0.1971 -3.340 -0.7624 -3.873 -0.3025 -3.34 lose_bad_int -0.0920 -1.482 -0.4247 -2.000 -0.0750 -0.84 d_wtr_prob 0.0245 0.597 -0.0031 -0.035 0.0153 0.37 d_ttl_prob -0.0664 -0.887 0.0924 0.354 -0.1127 -2.14 d_sew_prob 0.0168 0.282 -0.3877 -0.815 0.0447 0.33 d_fus_blow -0.0554 -2.900 -0.0357 -0.538 -0.0245 -0.93 d_heat_brk -0.0513 -1.547 -0.0093 -0.091 -0.0771 -2.15 d_2goodheat 0.0120 0.148 -0.2818	lose cntrl air	- 0.1304	- 1.333	0.1070	0.546	0.1723	1.134	
get_int_leak - 0.1721 - 3.065 - 0.4061 - 2.457 - 0.4651 - 5.38 lose_int_leak - 0.1913 - 3.299 0.0333 0.174 - 0.2065 - 2.83 get_bad_int - 0.1971 - 3.340 - 0.7624 - 3.873 - 0.3025 - 3.34 lose_bad_int - 0.0920 - 1.482 - 0.4247 - 2.000 - 0.0750 - 0.84 d_wtr_prob 0.0245 0.597 - 0.0031 - 0.035 0.0153 0.37 d_ttl_prob - 0.0664 - 0.887 0.0924 0.354 - 0.1127 - 2.14 d_sew_prob 0.0168 0.282 - 0.3877 - 0.815 0.0447 0.33 d_wrg_prob 0.0192 0.254 - 0.0413 - 0.168 0.0797 0.94 d_sew_prob 0.0192 0.254 - 0.0413 - 0.168 0.0797 0.94 d_met_blow - 0.0554 - 2.900 - 0.0357 - 0.538 - 0.0245 - 0.93 d_leat_brk - 0.0513 - 1.547 <td></td> <td></td> <td>- 6.259</td> <td>- 0.1219</td> <td>- 2.194</td> <td>- 0.1059</td> <td>- 5.131</td>			- 6.259	- 0.1219	- 2.194	- 0.1059	- 5.131	
lose_int_leak					- 2.457		- 5.391	
get_bad_int - 0.1971 - 3.340 - 0.7624 - 3.873 - 0.3025 - 3.34 lose_bad_int - 0.0920 - 1.482 - 0.4247 - 2.000 - 0.0750 - 0.84 d_wtr_prob 0.0245 0.597 - 0.0031 - 0.035 0.0153 0.37 d_ttl_prob - 0.0664 - 0.887 0.0924 0.354 - 0.1127 - 2.14 d_sew_prob 0.0168 0.282 - 0.3877 - 0.815 0.0447 0.33 d_wrg_prob 0.0192 0.254 - 0.0413 - 0.168 0.0797 0.94 d_fus_blow - 0.0554 - 2.900 - 0.0357 - 0.538 - 0.0245 - 0.93 d_heat_brk - 0.0513 - 1.547 - 0.0093 - 0.091 - 0.0771 - 2.15 d_2goodheat 0.0120 0.148 - 0.2818 - 1.113 0.0810 0.58 get_vermin - 0.0223 - 0.523 - 0.1588 - 1.203 - 0.2310 - 3.00 lose_vermin - 0.0288 - 0.697 <td>0</td> <td></td> <td></td> <td>0.0333</td> <td></td> <td></td> <td>- 2.839</td>	0			0.0333			- 2.839	
lose_bad_int - 0.0920 - 1.482 - 0.4247 - 2.000 - 0.0750 - 0.84 d_wtr_prob 0.0245 0.597 - 0.0031 - 0.035 0.0153 0.37 d_ttt_prob - 0.0664 - 0.887 0.0924 0.354 - 0.1127 - 2.14 d_sew_prob 0.0168 0.282 - 0.3877 - 0.815 0.0447 0.33 d_wrg_prob 0.0192 0.254 - 0.0413 - 0.168 0.0797 0.94 d_fus_blow - 0.0554 - 2.900 - 0.0357 - 0.538 - 0.0245 - 0.93 d_heat_brk - 0.0513 - 1.547 - 0.0093 - 0.091 - 0.0771 - 2.15 d_2goodheat 0.0120 0.148 - 0.2818 - 1.113 0.0810 0.58 get_vermin - 0.0223 - 0.523 - 0.1588 - 1.203 - 0.2310 - 3.00 lose_vermin - 0.0288 - 0.697 0.1508 1.114 - 0.0376 - 0.42 mh_in_grp NA NA NA	get bad int	- 0.1971	- 3.340		- 3.873		- 3.349	
d_wtr_prob 0.0245 0.597 - 0.0031 - 0.035 0.0153 0.37 d_ttt_prob - 0.0664 - 0.887 0.0924 0.354 - 0.1127 - 2.14 d_sew_prob 0.0168 0.282 - 0.3877 - 0.815 0.0447 0.33 d_wrg_prob 0.0192 0.254 - 0.0413 - 0.168 0.0797 0.94 d_fus_blow - 0.0554 - 2.900 - 0.0357 - 0.538 - 0.0245 - 0.93 d_heat_brk - 0.0513 - 1.547 - 0.0093 - 0.091 - 0.0771 - 2.15 d_2goodheat 0.0120 0.148 - 0.2818 - 1.113 0.0810 0.58 get_vermin - 0.0223 - 0.523 - 0.1588 - 1.203 - 0.2310 - 3.00 lose_vermin - 0.0288 - 0.697 0.1508 1.114 - 0.0376 - 0.42 mh_in_grp NA NA - 0.1952 - 1.611 NA N Mu(1) 0.5529 15.850 0.4151 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>- 0.843</td></td<>							- 0.843	
d_tlt_prob - 0.0664 - 0.887 0.0924 0.354 - 0.1127 - 2.14 d_sew_prob 0.0168 0.282 - 0.3877 - 0.815 0.0447 0.33 d_wrg_prob 0.0192 0.254 - 0.0413 - 0.168 0.0797 0.94 d_fus_blow - 0.0554 - 2.900 - 0.0357 - 0.538 - 0.0245 - 0.93 d_heat_brk - 0.0513 - 1.547 - 0.0093 - 0.091 - 0.0771 - 2.15 d_2goodheat 0.0120 0.148 - 0.2818 - 1.113 0.0810 0.58 get_vermin - 0.0223 - 0.523 - 0.1588 - 1.203 - 0.2310 - 3.00 lose_vermin - 0.0288 - 0.697 0.1508 1.114 - 0.0376 - 0.42 mh_in_grp NA NA - 0.1059 - 0.848 NA N ownlot NA NA - 0.1952 - 1.611 NA N Mu(2) 1.2278 30.390 1.0337 10.648							0.372	
d_sew_prob 0.0168 0.282 -0.3877 -0.815 0.0447 0.33 d_wrg_prob 0.0192 0.254 -0.0413 -0.168 0.0797 0.94 d_fus_blow -0.0554 -2.900 -0.0357 -0.538 -0.0245 -0.93 d_heat_brk -0.0513 -1.547 -0.0093 -0.091 -0.0771 -2.15 d_2goodheat 0.0120 0.148 -0.2818 -1.113 0.0810 0.58 get_vermin -0.0223 -0.523 -0.1588 -1.203 -0.2310 -3.00 lose_vermin -0.0288 -0.697 0.1508 1.114 -0.0376 -0.42 mh_in_grp NA NA -0.1059 -0.848 NA N ownlot NA NA -0.1952 -1.611 NA N Mu(1) 0.5529 15.850 0.4151 5.661 0.4926 10.83 Mu(2) 1.2278 30.390 1.0337 10.648 1.1534 20.85							- 2.140	
d_wrg_prob 0.0192 0.254 -0.0413 -0.168 0.0797 0.94 d_fus_blow -0.0554 -2.900 -0.0357 -0.538 -0.0245 -0.93 d_heat_brk -0.0513 -1.547 -0.0093 -0.091 -0.0771 -2.15 d_2goodheat 0.0120 0.148 -0.2818 -1.113 0.0810 0.58 get_vermin -0.0223 -0.523 -0.1588 -1.203 -0.2310 -3.00 lose_vermin -0.0288 -0.697 0.1508 1.114 -0.0376 -0.42 mh_in_grp NA NA -0.1059 -0.848 NA N ownlot NA NA -0.1952 -1.611 NA N Mu(1) 0.5529 15.850 0.4151 5.661 0.4926 10.83 Mu(2) 1.2278 30.390 1.0337 10.648 1.1534 20.85 Mu(3) 1.8053 43.389 1.5101 14.737 1.7376 30.03 <							0.330	
d_fus_blow - 0.0554 - 2.900 - 0.0357 - 0.538 - 0.0245 - 0.93 d_heat_brk - 0.0513 - 1.547 - 0.0093 - 0.091 - 0.0771 - 2.15 d_2goodheat 0.0120 0.148 - 0.2818 - 1.113 0.0810 0.58 get_vermin - 0.0223 - 0.523 - 0.1588 - 1.203 - 0.2310 - 3.00 lose_vermin - 0.0288 - 0.697 0.1508 1.114 - 0.0376 - 0.42 mh_in_grp NA NA - 0.1059 - 0.848 NA N ownlot NA NA - 0.1952 - 1.611 NA N Mu(1) 0.5529 15.850 0.4151 5.661 0.4926 10.83 Mu(2) 1.2278 30.390 1.0337 10.648 1.1534 20.85 Mu(3) 1.8053 43.389 1.5101 14.737 1.7376 30.03 Mu(4) 3.1711 69.221 2.7729 21.326 2.8563							0.947	
d_heat_brk - 0.0513 - 1.547 - 0.0093 - 0.091 - 0.0771 - 2.15 d_2goodheat 0.0120 0.148 - 0.2818 - 1.113 0.0810 0.58 get_vermin - 0.0223 - 0.523 - 0.1588 - 1.203 - 0.2310 - 3.00 lose_vermin - 0.0288 - 0.697 0.1508 1.114 - 0.0376 - 0.42 mh_in_grp NA NA - 0.1059 - 0.848 NA N ownlot NA NA - 0.1952 - 1.611 NA N Mu(1) 0.5529 15.850 0.4151 5.661 0.4926 10.83 Mu(2) 1.2278 30.390 1.0337 10.648 1.1534 20.85 Mu(3) 1.8053 43.389 1.5101 14.737 1.7376 30.03 Mu(4) 3.1711 69.221 2.7729 21.326 2.8563 44.65 Mu(5) 3.9047 79.185 3.3636 23.429 3.4304 50.28<							- 0.938	
d_2goodheat 0.0120 0.148 - 0.2818 - 1.113 0.0810 0.58 get_vermin - 0.0223 - 0.523 - 0.1588 - 1.203 - 0.2310 - 3.00 lose_vermin - 0.0288 - 0.697 0.1508 1.114 - 0.0376 - 0.42 mh_in_grp NA NA - 0.1059 - 0.848 NA N ownlot NA NA - 0.1952 - 1.611 NA N Mu(1) 0.5529 15.850 0.4151 5.661 0.4926 10.83 Mu(2) 1.2278 30.390 1.0337 10.648 1.1534 20.85 Mu(3) 1.8053 43.389 1.5101 14.737 1.7376 30.03 Mu(4) 3.1711 69.221 2.7729 21.326 2.8563 44.65 Mu(5) 3.9047 79.185 3.3636 23.429 3.4304 50.28 Mu(6) 4.7650 81.306 4.0745 23.052 4.1794 50.94							- 2.154	
get_vermin - 0.0223 - 0.523 - 0.1588 - 1.203 - 0.2310 - 3.00 lose_vermin - 0.0288 - 0.697 0.1508 1.114 - 0.0376 - 0.42 mh_in_grp NA NA - 0.1059 - 0.848 NA NA ownlot NA NA - 0.1952 - 1.611 NA N Mu(1) 0.5529 15.850 0.4151 5.661 0.4926 10.83 Mu(2) 1.2278 30.390 1.0337 10.648 1.1534 20.85 Mu(3) 1.8053 43.389 1.5101 14.737 1.7376 30.03 Mu(4) 3.1711 69.221 2.7729 21.326 2.8563 44.65 Mu(5) 3.9047 79.185 3.3636 23.429 3.4304 50.28 Mu(6) 4.7650 81.306 4.0745 23.052 4.1794 50.94							0.584	
lose_vermin - 0.0288 - 0.697 0.1508 1.114 - 0.0376 - 0.42 mh_in_grp NA NA - 0.1059 - 0.848 NA NA ownlot NA NA - 0.1952 - 1.611 NA NA Mu(1) 0.5529 15.850 0.4151 5.661 0.4926 10.83 Mu(2) 1.2278 30.390 1.0337 10.648 1.1534 20.85 Mu(3) 1.8053 43.389 1.5101 14.737 1.7376 30.03 Mu(4) 3.1711 69.221 2.7729 21.326 2.8563 44.65 Mu(5) 3.9047 79.185 3.3636 23.429 3.4304 50.28 Mu(6) 4.7650 81.306 4.0745 23.052 4.1794 50.94							- 3.005	
mh_in_grp NA NA -0.1059 -0.848 NA NA ownlot NA NA -0.1952 -1.611 NA NA Mu(1) 0.5529 15.850 0.4151 5.661 0.4926 10.83 Mu(2) 1.2278 30.390 1.0337 10.648 1.1534 20.85 Mu(3) 1.8053 43.389 1.5101 14.737 1.7376 30.03 Mu(4) 3.1711 69.221 2.7729 21.326 2.8563 44.65 Mu(5) 3.9047 79.185 3.3636 23.429 3.4304 50.28 Mu(6) 4.7650 81.306 4.0745 23.052 4.1794 50.94	-						- 0.428	
ownlot NA NA -0.1952 -1.611 NA NA Mu(1) 0.5529 15.850 0.4151 5.661 0.4926 10.83 Mu(2) 1.2278 30.390 1.0337 10.648 1.1534 20.85 Mu(3) 1.8053 43.389 1.5101 14.737 1.7376 30.03 Mu(4) 3.1711 69.221 2.7729 21.326 2.8563 44.65 Mu(5) 3.9047 79.185 3.3636 23.429 3.4304 50.28 Mu(6) 4.7650 81.306 4.0745 23.052 4.1794 50.94							NA	
Mu(1) 0.5529 15.850 0.4151 5.661 0.4926 10.83 Mu(2) 1.2278 30.390 1.0337 10.648 1.1534 20.85 Mu(3) 1.8053 43.389 1.5101 14.737 1.7376 30.03 Mu(4) 3.1711 69.221 2.7729 21.326 2.8563 44.65 Mu(5) 3.9047 79.185 3.3636 23.429 3.4304 50.28 Mu(6) 4.7650 81.306 4.0745 23.052 4.1794 50.94	• .						NA	
Mu(2) 1.2278 30.390 1.0337 10.648 1.1534 20.85 Mu(3) 1.8053 43.389 1.5101 14.737 1.7376 30.03 Mu(4) 3.1711 69.221 2.7729 21.326 2.8563 44.65 Mu(5) 3.9047 79.185 3.3636 23.429 3.4304 50.28 Mu(6) 4.7650 81.306 4.0745 23.052 4.1794 50.94							10.837	
Mu(3) 1.8053 43.389 1.5101 14.737 1.7376 30.03 Mu(4) 3.1711 69.221 2.7729 21.326 2.8563 44.65 Mu(5) 3.9047 79.185 3.3636 23.429 3.4304 50.28 Mu(6) 4.7650 81.306 4.0745 23.052 4.1794 50.94							20.856	
Mu(4) 3.1711 69.221 2.7729 21.326 2.8563 44.65 Mu(5) 3.9047 79.185 3.3636 23.429 3.4304 50.28 Mu(6) 4.7650 81.306 4.0745 23.052 4.1794 50.94	` '						30.038	
Mu(5) 3.9047 79.185 3.3636 23.429 3.4304 50.28 Mu(6) 4.7650 81.306 4.0745 23.052 4.1794 50.94							44.652	
Mu(6) 4.7650 81.306 4.0745 23.052 4.1794 50.94							50.288	
							50.947	
							49.855	
Number of		2.0007		101		0 10		
observations 5,994 614 2,004		5.994		614		2,004		
Log likelihood		3,00 1		011		_,00 .		
function – 9,112.10 – 992.6159 – 3,311.410	•	- 9.112.10		- 992.6159		- 3.311,410		
2,		-,		,		-,- · · · · · ·		

Exhibit 10

N-Chotomous Probit Results—Change in Housing Quality, 1997–2001 (2 of 2)

	1997–2001							
Variable Name	Traditional Owned Housing		Manufactured Owned Housing		Rented Housing			
	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic		
Restricted log likelihood	- 10,817.53		- 1,202.662		- 3,930.412			
Chi-squared Degrees of	3,410.86		420.0928		1,238.005			
freedom	33		34		31			

NA = not applicable.

Exhibit 11

N-Chotomous Probit Results—Change in Neighborhood Quality, 1997–2001 (1 of 2)

	1997–2001							
Variable Name	Traditional Owned Housing		Manufactured Owned Housing		Rented Housing			
Name	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic		
Constant	4.5975	49.572	4.5991	14.941	4.2095	28.363		
how_n	- 0.3810	- 45.027	- 0.3878	- 12.991	- 0.3620	- 26.142		
hc2inc	0.0000	- 0.123	- 0.0004	- 0.895	0.0000	- 0.484		
get_e_low	0.0063	0.122	- 0.1185	- 0.556	0.0126	0.169		
lose_e_low	0.1338	2.455	0.1317	0.602	0.0250	0.372		
get_e_mid	- 0.3045	- 2.539	- 0.2043	0.000	- 0.0003	- 0.003		
lose_e_mid	0.1213	0.823	- 7.7943	0.000	- 0.0415	- 0.474		
get_e_high	0.2284	0.649	NA	NA	0.0339	0.233		
lose_e_high	0.4473	2.348	NA	NA	- 0.2696	- 2.171		
get_e_mobil	- 0.0795	- 1.438	0.1758	0.930	0.2243	1.584		
lose_e_mobil	- 0.0782	- 1.240	0.2964	1.401	- 0.0481	- 0.279		
get_e_com	- 0.0927	- 2.050	- 0.2266	- 1.246	- 0.0465	- 0.639		
lose_e_com	- 0.0109	- 0.210	- 0.0427	- 0.245	0.0654	0.951		
get_e_prkg	0.0542	0.993	- 0.0377	- 0.212	0.0477	0.584		
lose_e_prkg	- 0.0899	- 1.509	- 0.0171	- 0.073	0.0001	0.002		
get_e_water	0.0601	0.995	- 0.0185	- 0.128	0.0357	0.304		
lose_e_water	0.0065	0.108	- 0.0337	- 0.204	0.0427	0.398		
get_e_green	- 0.0494	- 1.208	0.0089	0.064	0.0111	0.154		
lose_e_green	0.0327	0.833	0.0438	0.361	- 0.0364	- 0.554		
get_aban	- 0.3306	- 5.234	- 0.3346	- 1.618	- 0.3426	- 3.416		
lose_aban	- 0.2179	- 3.345	0.2879	0.987	- 0.1198	- 1.304		
get_bars	0.0821	1.313	- 0.2888	- 0.730	- 0.0504	- 0.541		
lose_bars	- 0.0993	- 1.784	- 0.3373	- 0.967	- 0.0214	- 0.285		
get_rd_prob	- 0.1011	- 2.856	- 0.1281	- 1.015	- 0.1230	- 2.005		
lose_rd_prob	0.0144	0.392	- 0.0176	- 0.133	- 0.1002	- 1.673		
get_junk	- 0.5984	- 12.083	- 0.7349	- 3.877	- 0.3599	- 4.485		
lose_junk	- 0.0875	- 1.748	- 0.0532	- 0.209	- 0.1512	- 2.131		
get_nucrim_p	- 0.5507	- 10.110	- 0.2184	- 0.993	- 0.5783	- 7.230		
lose_nucrim_p	0.0914	1.748	0.1120	0.485	0.0347	0.435		
get_noise_p	- 0.2350	- 4.995	- 0.1079	- 0.608	- 0.3071	- 4.065		
lose_noise_p	- 0.0037	- 0.075	- 0.0346	- 0.205	0.0480	0.649		

N-Chotomous Probit Results—Change in Neighborhood Quality, 1997–2001 (2 of 2)

	1997–2001							
Variable Name	Traditional Owned Housing		Manufactured Owned Housing		Rented Housing			
	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic		
get_litter_p	- 0.4315	- 5.255	- 0.2433	- 0.499	- 0.1497	- 0.968		
lose_litter_p	- 0.0255	- 0.259	0.1081	0.103	- 0.1280	- 0.641		
get_badsrv_p	- 0.7115	- 6.338	- 0.0276	- 0.054	- 0.2948	- 1.038		
lose_badsrv_p	- 0.1328	- 0.876	7.0334	0.000	- 0.1291	- 0.419		
get_badprp_p	- 0.2464	- 1.900	0.7044	0.000	- 0.1727	- 0.677		
lose_badprp_p	0.0429	0.325	0.0116	0.007	0.1072	0.478		
get_badper	- 0.5272	- 8.560	- 0.8275	- 2.672	- 0.4186	- 3.757		
lose_badper	- 0.0476	- 0.757	- 0.1051	- 0.449	0.0944	0.974		
get_othnhd_p	- 0.3551	- 6.649	0.1360	0.612	- 0.2242	- 2.520		
lose_othnhd_p	- 0.1468	- 2.729	- 0.1704	- 0.850	- 0.0145	- 0.134		
get_schm_p	- 0.6356	- 5.483	0.1668	0.430	- 0.1723	- 0.671		
lose_schm_p	- 0.1973	- 1.404	0.2511	0.567	- 0.2345	- 1.278		
get_shp_p	- 0.0196	- 0.454	- 0.4373	- 2.653	- 0.0700	- 0.807		
lose_shp_p	0.0420	0.980	0.0938	0.689	0.0121	0.126		
get_good_trn	0.0079	0.221	0.2690	1.928	0.0007	0.011		
lose_good_trn	0.0093	0.156	0.0487	0.164	- 0.1327	- 1.445		
mh_in_grp	NA	NA	- 0.0569	- 0.476	NA	NA		
ownlot	NA	NA	0.0884	0.778	NA	NA		
Mu(1)	0.5373	17.155	0.4281	4.754	0.4725	10.075		
Mu(2)	1.1680	31.783	1.1233	10.008	1.0800	18.945		
Mu(3)	1.7743	46.576	1.6571	14.135	1.6667	27.615		
Mu(4)	3.0561	73.282	2.9473	21.486	2.7501	40.689		
Mu(5)	3.7865	84.436	3.6292	24.240	3.4178	46.953		
Mu(6)	4.5467	84.951	4.4129	24.654	4.1361	49.221		
Mu(7)	5.1490	82.494	4.8387	23.565	4.7238	48.894		
Number of								
observations	5,994		614		2,004			
Log likelihood	•							
function	- 9,365.427		- 963.6032	-	- 3,292.085			
Restricted	,				•			
log likelihood	- 11094.61	-	- 1,169.484	-	- 4,014.898			
Chi-squared	3,458.358		411.7607		1,445.626			
Degrees of	.,				,			
freedom	47		47		47			

NA = not applicable.

Household Mobility and Manufactured Owned Housing: Implications for Neighborhood Stability

The results presented previously indicate that households in manufactured owned housing and traditional owned housing are quite similar in their assessments of both the structural aspects of housing and neighborhood quality. Indeed, housing policy for low-income households is considerably simplified by the simple yet powerful observation that quality is invariant across low-income housing options.

Despite these observations, the questionnaire studies cited in the first section reveal a general belief that manufactured housing is somehow associated with less community stability. The purpose of the analysis in this section is to explore this conjecture.

In this section, we explore stability in terms of whether households that reside in manufactured owned housing tend to move more than households in traditional owned housing and rented housing do. Specifically, even if we adjust for the structural characteristics of housing options and characteristics of the neighborhood, is there a tendency to observe additional mobility due solely to an effect associated with manufactured owned housing? Is there a negative effect on community stability that is peculiar to the manufactured owned housing option for low-income households? In other words, does manufactured owned housing lead to movement of low-income households from one housing alternative to the next at a more rapid rate than that of low-income households in traditional owned housing and rented housing?

The Model

In much of the mobility literature, the traditional estimation approach to the likelihood of moving generally involves a regression format (as a logit or probit specification) with the likelihood of "moving-staying" subsequently evaluated at the mean values of the sample. This likelihood is an average value over the sample period. In contrast, our model specification provides the opportunity to calculate a cumulative probability that varies over time and across different household types. To obtain the likelihood of household mobility reported here, we use the duration modeling approach of the continuous time model (CTM) as extensively developed by James Heckman in such works as Heckman and Walker (1990, 1986) and recently used by Boehm and Schlottmann (2004). Continuous time duration models, and the CTM approach in particular, provide superior insights into the intertemporal dynamics of economic relationships. To estimate the hazard function, these models make use of all the information available in a panel data set on the timing of change from one economic state of existence to another, as well as the timing and magnitude of changes in the values of the independent variable hypothesized to influence the transition from one state of existence to another.²⁵ The critical feature of the CTM model for the issue of manufactured owned housing and neighborhood stability is that it allows for estimation of a so-called duration term (parameter) that represents the separate effect of time in residence in a specific type of housing on the likelihood of moving. This effect on mobility is independent of other factors included in the

²⁵ Heckman and Flinn (1982) present a good discussion of the practical advantages of using continuous time duration models to analyze a problem as opposed to regression approaches and discrete time probability models.

analysis, such as household structure and neighborhood characteristics, and represents a unique push or pull factor associated with the specific housing type.²⁶

Data, Samples, and Variables

The time period for the analysis of mobility among low-income households is the entire sample period; that is, 1991 to 2001. Over this period, mobility is estimated for households that reside in the three types of housing of interest (manufactured owned housing, traditional owned housing, and rented housing). Exhibit 12 shows the names and definitions of all the variables included in the analysis of household mobility. As shown in exhibit 12, mobility is hypothesized to be a function of three factors: (1) disequilibrium in housing consumption (for example, overcrowding measured by a high persons-per-room ratio, or high housing costs relative to household income), (2) factors affecting the cost of moving (for example, older individuals find it more difficult to move than younger ones do), and (3) the quality of the structure and neighborhood in which the household resides at a specific point in time.

Exhibit 13 shows the relative number of movers and stayers by housing option over the sample period. Not surprisingly, residents of traditional owned housing have the lowest (average) likelihood of moving over the period while residents of rented housing, not manufactured owned housing, have the highest probability of moving. Mobility rates among households that reside in manufactured owned housing fall in between these two extremes but, in percentage terms, are closer to traditional owned housing than to rented housing. These observations are, of course, based on average rates of mobility and do not necessarily reflect variation in causal factors. Exhibit 14 contains means for each included variable by tenure type. Most of the values shown appear to be consistent with prior work. For example, movers tend to be younger, with lower marital rates and higher incomes.

Empirical Results

Exhibit 15 contains the estimated coefficients in the CTM model for each tenure type. In general, the estimates are broadly consistent with expected results; for example, the age selectivity of mobility is shown across housing type (older households move less) and increased household size impedes mobility, where significant households with minority heads or single heads have lower mobility. Based on the previous discussions on structural quality and neighborhood quality, we would expect higher values for either of these factors to decrease household mobility. This scenario is indeed the case in exhibit 15, where both variables are consistently negative across all housing options (if not statistically significant).

²⁶ More formally, the technical literature refers to this effect as duration dependence. Positive duration dependence implies that a household is more likely to leave its current situation over time and negative duration dependence implies that the household is less likely to leave its current situation over time. In the current instance, negative duration dependence, given other factors included in the analysis, implies greater neighborhood stability; that is, less moving in and out by neighborhood residents.

²⁷ The education selectivity of migration (household heads with more education are more likely to move) is only partially seen in the results. This trend is due to the inclusion of income (which is generally significant), a factor obviously directly related to education.

A major point of interest in exhibit 15 is the results for duration dependence for the individual housing types; that is, what effect (if any) does time in residence have on mobility independent of traditional issues such as structural quality and neighborhood quality? As shown in exhibit 15, both manufactured owned housing and traditional owned housing exhibit statistically significant negative duration dependence. That is to say, controlling for the effects of all the independent variables included in the mobility equation, the likelihood of moving decreases over time for households residing in these housing options. In simple terms, no empirical evidence of neighborhood instability is associated with manufactured owned housing. Residents of manufactured owned housing tend toward stability of location in a manner quite similar to that of residents of traditional owned housing. To the best of our knowledge, this is the first time such an observation has been validated in the literature on either low-income housing or manufactured housing. In direct contrast, rented housing exhibits positive duration dependence; that is, a tendency for a household to move the longer it resides in a rented housing unit. This trend could, of course, reflect households purchasing homes, but, whatever the reason, it represents an attempt to leave an environment that has become less desirable over time. The main point, however, is that manufactured owned housing does not inherently generate movement over time by the low-income households residing in this type of housing unit.

Exhibit 12

Variable Nam	es and Definitions—Mobility Regression (1 of 2)
Variable Name	Variable Definition
how_h	Ranking of the overall quality of the structure by the household: 10 (best) to 1 (worst)
how_n	Ranking of the overall quality of the neighborhood by the household: 10 (best) to 1 (worst)
northeast	1 = current residence located in the northeastern United States; 0 = otherwise
midwest	1 = current residence located in the midwestern United States; 0 = otherwise
south	1 = current residence located in the southern United States; 0 = otherwise
rural	1 = current residence located in a rural area; 0 = otherwise
married	1 = household headed by husband and wife or partners; 0 = otherwise
s_male	1 = household headed by a single male; 0 = otherwise
s_female	1 = household headed by single female; 0 = otherwise
white	1 = race of household head is White; 0 = otherwise
black	1 = race of household head is Black; 0 = otherwise
hispanic	1 = race of household head is Hispanic; 0 = otherwise
other	1 = race of household head is other than White, Black, or Hispanic; 0 = otherwise
no_hs	1 = household head did not graduate from high school; 0 = otherwise
hs_grad	1 = household head is high school graduate without additional education;0 = otherwise
post_hs	1 = household head has additional education beyond high school, but is not a graduate of a 4-year college or university; 0 = otherwise
c_grad_p	1 = household head has a degree from a 4-year college or university, or more; 0 = otherwise

Exhibit 12

Variable Names	and Dafinitions	Mobility	Dograccion	(2 of 2)
variable marries	and Delinitions-		Regression	(2 0) 2)

variable ivam	es and Definitions—Mobility Regression (2 of 2)
Variable Name	Variable Definition
yrs_in_res91	Number of years the household head resided in current residence before 1991, the start of the observation period.
age	Age of the household head in years.
fsize	Number of people in the household
income	Annual income of the household measured in \$10,000 units
hc2inc	Monthly housing cost/monthly household income
per2rms	Persons per room for a given household
mf_ownlot	1 = if in manufactured owned housing and own lot; 0 = otherwise

Exhibit 13

Mobility Transition Matrix, 1991–2001

Housing Type	Stayed Entire Time	Moved During Period
Traditional Owned Housing		
Count	3,169	2,043
Percent of total	60.80%	39.20%
Mean duration in years	10	3.68
Manufactured Owned Housing		
Count	260	323
Percent of total	44.60%	55.40%
Mean duration in years	10	2.57
Rented Housing		
Count	761	5,248
Percent of total	12.66%	87.34%
Mean duration in years	10	1.98

Exhibit 14a

Variable Means—Owners Traditional Housing, 1991–2001 (1 of 2)

		3,	(
Variable Name	Movers 1991	Movers Year Moved	Stayers 1991	Stayers 1999
age	56.911	58.500	60.779	66.739
how_n	8.131	8.110	8.347	8.269
how_h	8.550	8.464	8.643	8.505
s_female	0.339	0.405	0.310	0.411
s_male	0.164	0.201	0.084	0.123
mar	0.496	0.394	0.606	0.466
fsize	2.267	2.137	2.382	2.087
income	2.905	2.589	2.590	3.114
zsmhc	469.415	488.357	371.287	448.369
black	0.063	0.062	0.113	0.115
white	0.879	0.876	0.824	0.816
hispanic	0.044	0.047	0.051	0.054

Exhibit 14a

Variable Means—Owners Traditional Housing, 1991–2001 (2 of 2)

Variable Name	Movers 1991	Movers Year Moved	Stayers 1991	Stayers 1999
other	0.015	0.015	0.012	0.014
yrs_in_res91	16.767	16.767	22.165	22.175
per2rms	0.398	0.378	0.413	0.366
northeast	0.174	0.174	0.208	0.208
midwest	0.322	0.322	0.296	0.296
south	0.321	0.321	0.345	0.345
west	0.183	0.183	0.151	0.151
msa_ccity	0.302	0.302	0.273	0.273
msa_suburban	0.352	0.352	0.326	0.326
msa_rural	0.113	0.113	0.141	0.141
non_rural	0.135	0.135	0.168	0.168
non_urban	0.098	0.098	0.092	0.092
no_hs	0.265	0.263	0.323	0.317
hs_grad	0.390	0.378	0.420	0.360
post_hs	0.175	0.194	0.145	0.210
c_grad_p	0.170	0.164	0.111	0.113
mf_ownlot	NA	NA	NA	NA
Number of observations		2,043		3,169

NA = not applicable.

Exhibit 14b

Variable Means—Manufactured Owned Housing, 1991–2001 (1 of 2)

		_		
Variable Name	Movers 1991	Movers Year Moved	Stayers 1991	Stayers 1999
age	49.576	50.573	58.185	64.892
how_n	7.960	7.833	8.435	8.419
how_h	8.149	7.947	8.250	8.169
s_female	0.356	0.372	0.331	0.415
s_male	0.183	0.186	0.146	0.173
mar	0.461	0.443	0.523	0.412
fsize	2.288	2.285	2.238	1.919
income	2.077	2.067	1.843	2.253
zsmhc	316.291	333.988	257.331	324.077
black	0.040	0.040	0.065	0.065
white	0.901	0.898	0.892	0.904
hispanic	0.040	0.040	0.031	0.027
other	0.019	0.022	0.012	0.004
yrs_in_res91	6.731	6.731	11.415	11.415
per2rms	0.504	0.503	0.463	0.402
northeast	0.115	0.115	0.150	0.150
midwest	0.248	0.248	0.192	0.192
south	0.372	0.372	0.427	0.427
west	0.266	0.266	0.231	0.231
msa_ccity	0.090	0.090	0.069	0.069
msa_suburban	0.269	0.269	0.200	0.200
msa_rural	0.313	0.313	0.281	0.281

Exhibit 14b

Variable Means—Manufactured Owned Housing, 1991–2001 (2 of 2)

Variable Name	Movers 1991	Movers Year Moved	Stayers 1991	Stayers 1999
non_rural	0.276	0.276	0.362	0.362
non_urban	0.053	0.053	0.088	0.088
no_hs	0.322	0.322	0.415	0.423
hs_grad	0.464	0.449	0.419	0.358
post_hs	0.161	0.170	0.127	0.181
c_grad_p	0.053	0.059	0.038	0.038
mf_ownlot	0.260	0.248	0.438	0.454
Number of observations		323		260

Exhibit 14c

Variable Mobility Means—Rented Housing Units, 1991-2001

Variable Name	Movers 1991	Movers Year Moved	Stayers 1991	Stayers 1999
age	40.133	40.910	54.368	61.319
how_n	7.318	7.254	7.691	7.737
how_h	7.513	7.427	8.058	7.883
s_female	0.453	0.460	0.531	0.568
s_male	0.250	0.254	0.201	0.201
mar	0.296	0.287	0.268	0.231
fsize	2.381	2.365	2.205	2.068
income	2.108	2.098	1.847	2.471
zsmhc	451.636	463.885	401.523	504.689
black	0.175	0.176	0.209	0.217
white	0.645	0.642	0.614	0.602
hispanic	0.137	0.137	0.142	0.148
other	0.044	0.045	0.035	0.033
yrs_in_res91	3.865	3.865	9.811	9.811
per2rms	0.580	0.577	0.517	0.485
northeast	0.200	0.200	0.382	0.382
midwest	0.237	0.237	0.210	0.210
south	0.310	0.310	0.226	0.226
west	0.253	0.253	0.181	0.181
msa_ccity	0.500	0.500	0.510	0.510
msa_suburban	0.324	0.324	0.302	0.302
msa_rural	0.046	0.046	0.038	0.038
non_rural	0.045	0.045	0.078	0.078
non_urban	0.086	0.086	0.072	0.072
no_hs	0.255	0.256	0.389	0.381
hs_grad	0.366	0.359	0.352	0.305
post_hs	0.208	0.215	0.138	0.197
c_grad_p	0.171	0.171	0.121	0.117
mf_ownlot	NA	NA	NA	NA
Number of observations		5,248		761

Exhibit 15

Mobility Coefficients and t-Statistics

Variable Name		al Owned sing	Manufactu Hou		Rented	Housing
Name	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic
intercept	0.8383	2.1827	1.8351	3.4629	3.3703	24.6842
duration	- 0.1856	- 6.0759	- 0.2463	- 3.0306	0.0670	3.2644
how_h	- 0.0272	- 0.3140	- 0.0184	- 0.5123	- 0.0365	- 4.5516
how_n	- 0.1282	- 2.1771	- 0.0115	- 0.3804	- 0.0470	- 1.6543
howh_sq	0.0016	0.2696	NA	NA	NA	NA
hown_sq	0.0071	1.6370	NA	NA	0.0040	1.8088
midwest	0.1544	2.3601	0.1146	0.5412	0.2768	7.7210
south	0.0810	1.2200	0.1339	0.6643	0.3264	9.5870
west	0.1582	2.1198	0.2759	1.2965	0.2929	8.1970
rural	- 0.1712	- 2.5681	- 0.1895	- 1.4523	- 0.3256	- 5.9115
s_female	0.4571	7.8776	0.1468	1.0087	- 0.0628	- 1.7810
s_male	0.7557	11.4036	- 0.0557	- 0.3106	- 0.0619	- 1.5298
black	- 0.6814	- 7.4451	- 0.3304	- 1.0757	- 0.1527	- 4.3637
hispanic	- 0.2281	- 2.1434	- 0.1969	- 0.6122	- 0.2568	- 6.2913
other	- 0.1561	- 0.8947	0.8249	1.7163	- 0.0542	- 0.8039
hs_grad	- 0.0622	- 1.0583	- 0.0455	- 0.3320	0.0072	0.2141
post_hs	- 0.0653	- 0.9297	- 0.2796	- 1.5803	- 0.0508	- 1.2914
c_grad_p	0.1696	2.2487	- 0.0444	- 0.1822	0.0365	0.8446
mf_ownlot	NA	NA	- 0.4005	- 2.9170	NA	NA
yrs_in_res91	- 0.0184	- 10.1395	- 0.0626	- 6.0176	- 0.0817	- 29.3149
age	- 0.0112	- 6.5826	- 0.0221	- 5.1270	- 0.0229	- 24.8623
fsize	- 0.0838	- 2.2938	- 0.2122	- 1.7572	- 0.0905	- 5.8619
income	0.0122	1.0654	0.0705	1.8318	0.0250	2.5290
hc2inc	0.4536	4.5113	0.4467	1.5578	0.2766	4.0225
per2rms	0.2638	1.4034	0.8169	1.4340	0.2440	3.8671
Number of observations	5,212			583		6,009

NA = not applicable.

Note: All equations statistically significant at 5 percent or better based on log likelihood test statistics.

Notes on Housing Appreciation: The Case for Manufactured Owned Housing

As is well documented in Retsinas and Belsky (2002b), low-income homeownership can, by its very nature, be a potentially risky investment. ²⁸ In this section, we present the evidence on price appreciation for manufactured owned housing and traditional owned housing based on the American Housing Survey for the period 1993 to 2001. We also distinguish between two types of manufactured owned housing, specifically, whether the household owns the lot or does not own the lot. Consistent with the time periods used in this article, we have computed this information for the 2-year intervals (1993 to 1995, 1995 to 1997, 1997 to 1999, and 1999 to 2001) and the 4-year intervals (1993 to1997 and 1997 to 2001).

²⁸ See the introduction to Part 3 (DeGiovanni, 2002) and associated papers (Belsky and Duda, 2002a, 2002b; Case and Marynchenko, 2002; and Goetzmann and Spiegel, 2002).

Exhibit 16 presents information on housing values (prices) and percent appreciation over the period.²⁹ As is well known, the distribution of housing values does not necessarily follow a normal (symmetric) distribution. Thus, exhibit 16 presents results computed for both average housing values (mean) and mid-range values (median). In our opinion, four basic observations can be made:

- 1. Traditional owned housing appears to be a reasonable investment, particularly when one considers that exhibit 16 focuses on low-income housing.
- 2. As a general rule, manufactured owned housing in which the lot is owned may offer an opportunity for appreciation, but such appreciation is highly variable and occurs on a much smaller base (value) than traditional owned housing.³⁰
- 3. In cases in which the land is owned, manufactured owned housing can yield (total) appreciation amounts that are not dissimilar from those of traditional owned housing. This trend can be seen by applying mean percentage changes to mean starting values in exhibit 16. In four of the six time periods shown, manufactured owned housing does well relative to traditional low-income housing. It must be noted, however, that significant variation occurs in rates of appreciation across manufactured owned housing units, which may indicate these homes are riskier investments. This result might also be partially attributable to the smaller number of observations for these homes in the data.
- 4. Manufactured owned housing in which the household does not own the lot is not an investment in any sense. It should be thought of as a type of consumer durable.

Regarding the last observation in the preceding text, it is important to note that the cost of manufactured owned housing over the time period 1993 to 2001 in the AHS is considerably lower than average rents (see exhibit 1). As pointed out by Belsky and Duda (2002b), one justification for efforts to support low-income homeownership is "its potential to insulate households from rent inflation." In particular, it might be possible for low-income households to use manufactured owned housing as a means to save for traditional owned housing, the most preferred alternative from a purely investment perspective.

²⁹ We experimented with running a regression to try to explain pricing differentials, but, given the information available to us, the results, particularly for manufactured owned housing units, did not merit presentation or comparison with traditional owned housing units.

³⁰ The reported values in the AHS represent owners' estimates of value. Perhaps this is one reason for the variability shown in the computations for manufactured owned housing. In addition, as shown for manufactured owned housing where the lot is also owned, the percentage changes (although applied to a low base) are high.

Exhibit 16

Value and Appreciation Comparison

Number of Observations	Period	Mean Percentage Change in Value	Mean Value Beginning of Period	Median Percentage Change in Value	Median Value Beginning of Period
		(%)	(\$)	(%)	(\$)
		Traditional Ow	ned Housing		
6,425	1993–1995	11.48	82,524	4.88	69,000
6,154	1995–1997	12.25	87,448	4.35	75,000
5,381	1993–1997	19.74	81,898	10.00	70,000
		40.0=			
6,115	1997–1999	13.97	88,347	6.67	78,000
6,057	1999–2001	14.87	96,049	7.14	85,000
5,109	1997–2001	27.65	87,761	15.79	79,000
	Man	ufactured Owned H	ousing—Lot Is	Owned	
302	1993-1995	77.10	17,192	13.81	12,000
258	1995–1997	27.43	20,147	- 1.39	16,000
225	1993–1997	106.52	17,151	7.14	12,000
334	1997–1999	30.81	24,166	0.00	15,000
335	1999–2001	150.28	20,970	2.56	15,000
267	1997–2001	155.48	23,382	30.00	17,000
	Manufa	actured Owned Hou	using—Lot Is N	ot Owned	
351	1993-1995	16.56	16,368	0.00	14,000
320	1995-1997	10.03	16,475	0.00	14,000
253	1993-1997	20.16	16,937	- 1.69	14,000
344	1997–1999	0.68	16,866	0.00	11,500
303	1999–2001	57.10	16,563	0.00	12,000
241	1997–2001	62.13	18,685	0.00	12,000

Appendix. Supplementary Exhibits

Exhibit A-1a

1993 Quality, Size, and Cost of Housing by Tenure Type for Low-Income Households^a in Metropolitan Areas

Housing Tenure Type	Mean Housing Rank ^b	Mean Neighborhood o Rank ^b	Opinion Opinion of of House Neighborhood Poor° Poor°	Structures on of Moderately inhood or Severely ire Inadequated	res Mean tely Number of rely Rooms	Mean Square Feet in Unit
			(%)			
Traditional owned housing	8.631	8.181	0.785 3.355	1.887	5.932	1,773.18
Manufactured owned housing	8.105	7.982	2.243 5.431	1.653		1,014.45
Rented housing	7.563	7.183	4.085 9.166	16 2.918	4.137	980.72
	Mean Monthly	Average Annual	Average Annual Spend > 30% of	Mean Monthly	Average Annual	Spend > 30% of
Housing Tenure Type	Housing Cost	Housenoid Income (\$)	Household Income Income on Housing (%)	Housing Cost (\$)	Housenoid income income on Housing (%)	Income on Housing (%)
		All Households			Recent In-Moverse	
Traditional owned housing	458.39	19,439	36.12	603.86	23,153	46.76
Manufactured owned housing	333.63	17,047	32.74	370.06	18,045	34.57
Rented housing	481.76	16,302	57.00	499.98	17,751	57.76

^a Low-income households have incomes below 80 percent of the median for a particular year and area.

b Housing rank and neighborhood rank are measured using an ordinal scale from 1 to 10, with 10 being the best.

[°] A ranking of 1, 2, or 3 was deemed poor.

d Structures were ranked by interviewers as adequate, moderately inadequate, or severely inadequate.

[°] Any household that moved into its dwelling unit in the last 2 years before the interview was deemed as a recent in-mover.

Exhibit A-1b

1997 Quality, Size, and Cost of Housing by Tenure Type for Low-Income Households^a in Metropolitan Areas

Housing Tenure Type	Mean Housing Rank ^b	Mean Neighborhood Rank ^b	Opinion Op of House Neig Poor	Opinion of Neighborhood OPOOL*	Structures Moderately or Severely nadequated	Mean Number of Rooms	Mean Square Feet in Unit
			(%)	(%)	(%)		
Traditional owned housing	8.417	8.081	0.899	2.726	1.293	5.997	1,838.33
Manufactured owned housing	7.802	7.693	3.582	5.671	1.791	4.616	1,079.01
Rented housing	7.402	7.172	3.861	6.895	3.389	4.078	1,267.96
Housing Tenure Type	Mean Monthly Housing Cost (\$)	Average Annual Household Income (\$)	Average Annual Spend > 30% of Household Income Income on Housing (\$)	f Mean Monthly ng Housing Cost (\$)		Average Annual Household Income 1 (\$)	Spend > 30% of Income on Housing (%)
		All Households			Recei	Recent In-Moverse	
Traditional owned housing	533.94	19,912	42.96	687.40		24,833	52.19
Manufactured owned housing	406.01	17,448	36.10	461.94		21,290	34.59
Rented housing	541.82	17,471	56.61	561.57		19,977	57.84

Housing rank and neighborhood rank are measured using an ordinal scale from 1 to 10, with 10 being the best.

c A ranking of 1, 2, or 3 was deemed poor.

d Structures were ranked by interviewers as adequate, moderately inadequate, or severely inadequate.

Any household that moved into its dwelling unit in the last 2 years before the interview was deemed as a recent in-mover.

Exhibit A-1c

2001 Quality, Size, and Cost of Housing by Tenure Type for Low-Income Households^a in Metropolitan Areas

Housing Tenure Type	Mean Housing Rank ^b	Mean Neighborhood Rank ^b	Opinion Opini of House Neighb Poor° Po	Opinion of Mode Mode or Sey Poor Inadec	Structures Mean Moderately Number of or Severely Rooms	Mean of Square Feet s in Unit
			6) (%)	(%) (%)	(9)	
Traditional owned housing	8.430	8.102	0.876 2.4	2.469 1.6	1.619 5.925	1,871.60
Manufactured owned housing	7.872	7.708	2.748 3.3	3.359 2.7	2.748 4.846	1,101.14
Rented housing	7.469	7.356	3.898 5.3	5.355 3.6	3.655 4.112	1,012.02
Housing Tenure Type	Mean Monthly Housing Cost (\$)	Average Annual Household Income I (\$)	Average Annual Spend > 30% of Household Income Income on Housing (\$)	Mean Monthly Housing Cost (\$)	Average Annual Household Income (\$)	Average Annual Spend > 30% of Household Income Income on Housing (\$)
		All Households			Recent In-Movers	.Se
Traditional owned housing	681.51	22,041	46.37	852.39	27,553	56.49
Manufactured owned housing	457.55	19,276	41.63	501.26	20,921	49.38
Rented housing	641.37	18,849	57.20	666.14	22,733	59.61

b Housing rank and neighborhood rank are measured using an ordinal scale from 1 to 10, with 10 being the best.

c A ranking of 1, 2, or 3 was deemed poor.

d Structures were ranked by interviewers as adequate, moderately inadequate, or severely inadequate.

Any household that moved into its dwelling unit in the last 2 years before the interview was deemed as a recent in-mover.

Exhibit A-2a

1993 Quality, Size, and Cost of Housing by Tenure Type for Low-Income Households^a in Nonmetropolitan Areas

Housing Tenure Type	Mean Housing Rank ^b	Mean Neighborhood Rank ^b	Opinion Opii of House Neigh Poor° P	Opinion of Struc Neighborhood or Se Poor [®] Inade	Structures Moderately Nur or Severely R	Mean Number of Rooms	Mean Square Feet in Unit
			(%)	3) (%)	(%)		
Traditional owned housing	8.437	8.531	1.139	1.887 3.	3.026	5.758	1,679.70
Manufactured owned housing	8.118	8.394	2.157 3	3.333	2.157	4.782	985.16
Rented housing	7.846	8.062	3.093	4.672 1.9	1.957	4.326	1,039.28
Housing Tenure Type	Mean Monthly Housing Cost (\$)	Average Annual Household Income Ir (\$)	Average Annual Spend > 30% of Household Income Income on Housing (\$)	Mean Monthly Housing Cost (\$)		nnual ncome In	Average Annual Spend > 30% of Household Income Income on Housing (\$)
		All Households			Recent In-Movers	lovers	
Traditional owned housing	293.49	14,463	29.35	365.22	16,569	•	38.20
Manufactured owned housing	257.85	13,684	25.58	281.88	14,533	~	30.69
Rented housing	324.36	12,128	49.87	341.66	12,966		51.39

Housing rank and neighborhood rank are measured using an ordinal scale from 1 to 10, with 10 being the best.

^c A ranking of 1, 2, or 3 was deemed poor.

ط Structures were ranked by interviewers as adequate, moderately inadequate, or severely inadequate.

Any household that moved into its dwelling unit in the last 2 years before the interview was deemed as a recent in-mover.

Exhibit A-2b

1997 Quality, Size, and Cost of Housing by Tenure Type for Low-Income Households^a in Nonmetropolitan Areas

Housing Tenure Type	Mean Housing Rank ^b	Mean Neighborhood Rank ^b	Opinion Opir of House Neighl Poor° Po	Opinion of Mo Neighborhood or Poor	Structures Moderately or Severely nadequated	Mean Number of Rooms	Mean Square Feet in Unit
) (%)	(%)	(%)		
Traditional owned housing	8.370	8.418	1.092	1.294	2.305	5.740	1,727.26
Manufactured owned housing	7.869	8.210	3.731 3.	3.731	2.612	4.716	1,002.45
Rented housing	7.636	7.816	3.571 4.	4.048	2.143	4.221	1,286.45
Housing Tenure Type	Mean Monthly Housing Cost (\$)	Average Annual Household Income (\$)	Average Annual Spend > 30% of Household Income Income on Housing (\$)	Mean Monthly Housing Cost (\$)		Average Annual ousehold Income Ir (\$)	Average Annual Spend > 30% of Household Income Income on Housing (\$)
		All Households			Recent	Recent In-Moverse	
Traditional owned housing	343.56	14,133	34.31	461.33	17	17,541	48.17
Manufactured owned housing	291.67	13,818	31.80	349.17	15	15,671	39.87
Rented housing	380.30	12,639	55.24	392.67	41	14,178	58.48

^a Low-income households have incomes below 80 percent of the median for a particular year and area.

b Housing rank and neighborhood rank are measured using an ordinal scale from 1 to 10, with 10 being the best.

^c A ranking of 1, 2, or 3 was deemed poor.

d Structures were ranked by interviewers as adequate, moderately inadequate, or severely inadequate.

Any household that moved into its dwelling unit in the last 2 years before the interview was deemed as a recent in-mover.

Exhibit A-2c

2001 Quality, Size, and Cost of Housing by Tenure Type for Low-Income Households^a in Nonmetropolitan Areas

Housing Tenure Type	Mean Housing Rank ^b	Mean Neighborhood Rank ^b	Opinion Opi of House Neigt Poor° F	Opinion of Mc Neighborhood or Poor Ins	Structures Moderately or Severely Inadequated	Mean Number of Rooms	Mean Square Feet in Unit
			(%)	(%)	(%)		
Traditional owned housing	8.435	8.359	0.934	1.665	2.071	5.775	1,779.01
Manufactured owned housing	7.931	8.066	3.804	4.891	2.536	4.835	1,115.91
Rented housing	7.694	7.892	3.387	3.065	3.306	4.265	1,102.04
Housing Tenure Type	Mean Monthly Housing Cost (\$)	Average Annual Household Income (\$)	Average Annual Spend > 30% of Household Income Income on Housing (\$)	Mean Monthly ig Housing Cost (\$)		Average Annual Household Income II (\$)	Spend > 30% of Income on Housing (%)
		All Households			Recen	Recent In-Moverse	
Traditional owned housing	441.58	16,101	38.78	577.08		20,916	48.92
Manufactured owned housing	349.12	15,474	33.86	404.00		18,487	37.50
Rented housing	440.85	14,163	53.52	461.51		16,904	55.28

⁵ Housing rank and neighborhood rank are measured using an ordinal scale from 1 to 10, with 10 being the best.

c A ranking of 1, 2, or 3 was deemed poor.

d Structures were ranked by interviewers as adequate, moderately inadequate, or severely inadequate.

Any household that moved into its dwelling unit in the last 2 years before the interview was deemed as a recent in-mover.

Exhibit A-3a
N-Chotomous Probit Results—Change in Housing Quality, 1993–1995

			1993	-1995		
Variable Name	Tradition: Hou	al Owned sing	Manufactu Hou	red Owned sing	Rented	Housing
Name	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic
Constant	5.253	53.835	4.027	13.349	4.073	33.827
now h	- 0.406	- 46.736	- 0.321	- 12.707	- 0.309	- 29.302
age_s	- 0.004	- 7.371	- 0.007	- 1.449	- 0.003	- 3.807
crowding	- 0.263	- 4.913	- 0.420	- 2.802	- 0.219	- 4.024
nc2inc	0.000	0.992	- 0.001	- 1.125	0.000	1.142
get_porch	0.062	1.267	- 0.023	- 0.169	0.054	0.821
ose_porch	- 0.093	- 2.038	- 0.149	- 1.220	- 0.102	- 1.574
	- 0.093 - 0.029	- 2.038 - 0.463	0.245	1.419	0.019	0.227
get_garage						
ose_garage	- 0.169	- 2.958	- 0.060	- 0.421	- 0.129	- 1.422
d_equip	0.023	0.791	0.165	2.082	0.107	3.082
get_bathroom	0.002	0.018	- 0.194	- 0.339	0.351	1.839
ose_bathroom	- 0.013	- 0.123	0.399	0.719	0.015	0.070
get_water	- 0.749	- 0.926	- 1.105	- 1.944	- 0.210	- 0.642
ose_water	- 1.578	- 2.357	NA	NA	- 0.798	- 1.304
ext_leak	- 0.061	- 1.976	- 0.105	- 1.092	- 0.163	- 3.416
get_sewage	- 0.253	- 2.310	- 0.144	- 0.676	- 0.104	- 0.662
ose_sewage	- 0.067	- 0.696	- 0.115	- 0.669	0.190	1.075
get_cntrl_air	0.279	4.039	0.148	0.863	0.158	1.404
ose_cntrl_air	- 0.258	- 2.729	0.127	0.591	0.116	0.989
d_struc_prob	- 0.236 - 0.077	- 2.729 - 2.914	- 0.139	- 1.590	- 0.052	- 1.652
get_int_leak	0.049	0.805	0.029	0.106	0.083	1.115
ose_int_leak	- 0.044	- 0.668	0.290	1.268	- 0.117	- 1.553
get_bad_int	- 0.414	- 7.232	- 0.275	- 1.051	- 0.438	- 6.128
ose_bad_int	- 0.009	- 0.145	- 0.133	- 0.520	0.005	0.062
d_wtr_prob	- 0.036	- 1.169	- 0.029	- 0.352	0.002	0.067
d_tlt_prob	0.001	0.050	0.005	0.035	- 0.085	- 3.332
d_sew_prob	0.092	2.949	- 0.001	- 0.007	- 0.061	- 1.593
d_wrg_prob	- 0.153	- 3.200	- 0.161	- 1.012	- 0.195	- 3.639
d_fus_blow	- 0.024	- 1.997	- 0.025	- 0.574	- 0.028	- 1.834
d_heat_brk	- 0.118	- 3.603	0.150	0.953	- 0.074	- 3.315
d_2goodheat	- 0.062	- 1.052	0.196	1.295	- 0.076	- 0.983
get_vermin	- 0.273	- 3.517	0.226	1.079	- 0.462	- 5.257
ose_vermin	0.079	1.115	0.190	0.898	- 0.026	- 0.304
_	0.079 NA	NA				
nh_in_grp			0.158	1.605	NA	NA
ownlot	NA	NA	0.007	0.067	NA	NA
Mu(1)	0.027	14.235	0.441	6.383	0.441	13.494
Mu(2)	0.034	29.743	0.821	10.261	0.958	24.144
Mu(3)	0.035	44.297	1.332	15.595	1.535	36.017
Mu(4)	0.040	77.782	2.680	25.541	2.630	54.716
Mu(5)	0.043	87.644	3.240	27.563	3.236	61.145
Mu(6)	0.053	85.700	3.794	27.383	3.902	61.386
Mu(7)	0.064	80.213	4.315	27.787	4.438	59.610
	7.061					
Number of	7,061		813		3,396	
observations						
_og likelihood						
function	- 10,347.82		- 1,322.02		- 5,759.376	
Restricted log						
likelihood	- 11,926.45		- 1,499.238		- 6,526.888	
Chi-squared	3,157.26		354.4366		1,535.024	
Degrees of	0,101.20		337.7300		1,000.024	
•	00		0.4		00	
freedom	33		34		33	

Exhibit A-3b

N-Chotomous Probit Results—Change in Housing Quality, 1995–1997

Name — Housing Housing			-1997	1995			
Coefficient	ted Housing	Rented					
how_h −0.417 −45.327 −0.314 −13.062 −0.295 age_s −0.003 −5.991 0.000 −0.066 −0.001 crowding −0.280 −5.402 −0.386 −2.480 −0.260 hc2inc 0.000 −1.086 0.000 0.099 0.000 get_porch 0.018 0.378 −0.178 −1.166 0.019 lose_porch −0.054 −1.202 −0.038 −0.269 −0.030 get_garage −0.013 −0.213 0.115 0.632 0.079 lose_garage 0.035 0.687 −0.064 −0.358 −0.011 d_equip 0.060 2.761 0.056 0.823 0.068 get_bathroom 0.123 1.210 −0.503 −1.538 −0.409 lose_bathroom 0.123 1.210 −0.503 −1.538 −0.409 lose_bathroom 0.123 1.210 −0.503 −1.538 −0.409 lose_batestarre −0.568	ent t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	Name
age_s - 0.003 - 5.991 0.000 - 0.066 - 0.001 crowding - 0.280 - 5.402 - 0.386 - 2.480 - 0.260 hc2Inc 0.000 - 1.086 0.000 0.099 0.000 get_porch 0.018 0.378 - 0.178 - 1.166 0.019 lose_porch - 0.054 - 1.202 - 0.038 - 0.269 - 0.030 get_garage - 0.013 - 0.213 0.115 0.632 0.079 lose_garage - 0.035 0.687 - 0.064 - 0.358 - 0.011 d_equip 0.060 2.761 0.056 0.823 0.068 get_bathroom 0.123 1.210 - 0.503 - 1.538 - 0.401 lose_bathroom 2.145 0.353 NA NA NA 1.78 lose_bathroom 2.145 0.353 NA NA NA 1.78 lose_water - 0.568 - 2.943 - 0.001 - 0.003 0.612 <td< td=""><td>2 29.678</td><td>3.712</td><td>14.680</td><td>4.098</td><td>51.255</td><td>5.202</td><td>Constant</td></td<>	2 29.678	3.712	14.680	4.098	51.255	5.202	Constant
crowding - 0.280 - 5.402 - 0.386 - 2.480 - 0.260 nc2inc 0.000 - 1.086 0.000 0.099 0.000 get_porch 0.018 0.378 - 0.178 - 1.166 0.019 gose_porch - 0.054 - 1.202 - 0.038 - 0.269 - 0.030 get_garage - 0.013 - 0.213 0.115 0.632 0.079 d_equip 0.060 2.761 0.056 0.823 0.068 d_equip 0.060 2.761 0.056 0.823 0.068 get_bathroom 0.123 1.210 -0.503 -1.538 -0.409 get_water 0.069 0.168 NA NA NA 1.783 get_water -0.568 -2.943 -0.001 -0.003 0.612 get_sewage 0.066 0.585 0.317 1.522 0.248 get_seyenge 0.111 1.252 0.223 1.263 0.064 get_seyenge 0.111	5 – 26.289	- 0.295	- 13.062	- 0.314	- 45.327	- 0.417	how_h
crowding - 0.280 - 5.402 - 0.386 - 2.480 - 0.260 nc2inc 0.000 - 1.086 0.000 0.099 0.000 get_porch 0.018 0.378 - 0.178 - 1.166 0.019 gose_porch - 0.054 - 1.202 - 0.038 - 0.269 - 0.030 get_garage - 0.013 - 0.213 0.115 0.632 0.079 d_equip 0.060 2.761 0.056 0.823 0.068 d_equip 0.060 2.761 0.056 0.823 0.068 get_bathroom 0.123 1.210 -0.503 -1.538 -0.409 get_water 0.069 0.168 NA NA NA 1.783 get_water -0.568 -2.943 -0.001 -0.003 0.612 get_sewage 0.066 0.585 0.317 1.522 0.248 get_seyenge 0.111 1.252 0.223 1.263 0.064 get_seyenge 0.111	1 – 1.809	- 0.001	- 0.066	0.000	- 5.991	- 0.003	age s
Decine Color Col							
get_porch ose_porch ose_get_garage							•
ose_porch -0.054 -1.202 -0.038 -0.269 -0.030 get_garage -0.013 -0.213 0.115 0.632 0.079 ose_garage 0.035 0.687 -0.064 -0.358 -0.011 d_equip 0.060 2.761 0.056 0.823 0.068 get_bathroom 0.123 1.210 -0.503 -1.538 -0.409 get_bathroom 0.168 NA NA 0.459 get_water 0.069 0.168 NA NA 1.783 ose_water -0.568 -2.943 -0.001 -0.003 0.612 ext_leak -0.087 -2.784 -0.109 -1.148 -0.104 ose_set swage 0.0111 1.252 0.223 1.253 0.064 get_set_leak -0.0108 1.718 0.308 1.667 0.002 ose_cntrl_air 0.033 0.382 0.180 0.753 0.021 d_struc_prob -0.125 -8.021 -0.223<							
get_garage							
lose_garage 0.035 0.687 - 0.064 - 0.358 - 0.011 d_equip 0.060 2.761 0.056 0.823 0.068 get_bathroom 0.123 1.210 - 0.503 - 1.538 - 0.409 get_water 0.069 0.168 NA NA 0.456 get_water - 0.069 0.168 NA NA 1.783 ose_water - 0.568 - 2.943 - 0.001 - 0.003 0.612 set_leak - 0.087 - 2.784 - 0.109 - 1.148 - 0.104 get_sewage 0.066 0.585 0.317 1.522 0.248 ose_sexede 0.111 1.252 0.223 1.253 0.064 get_cntrl_air 0.108 1.718 0.308 1.667 0.002 ose_ent_leak - 0.021 - 0.392 0.089 0.567 - 0.119 get_istruc_prob - 0.125 - 8.021 - 0.223 - 4.274 - 0.119 get_istruc_prob - 0.1							
d_equip 0.060 2.761 0.056 0.823 0.068 get_bathroom 0.123 1.210 -0.503 -1.538 -0.409 lose_bathroom 2.145 0.353 NA NA 0.456 get_water 0.069 0.168 NA NA 1.783 lose_water -0.568 -2.943 -0.001 -0.003 0.612 ext_leak -0.087 -2.784 -0.109 -1.148 -0.104 get_sewage 0.066 0.585 0.317 1.522 0.248 lose_sewage 0.111 1.252 0.223 1.253 0.064 get_contrl_air 0.108 1.718 0.308 1.667 0.002 lose_contrl_air 0.033 0.382 0.180 0.753 0.021 d_struc_prob -0.125 -8.021 -0.223 -4.274 -0.119 get_bad_int -0.030 -6.005 -0.367 -2.190 -0.443 lose_bad_int 0.072 1.25							
See Dathroom 0.123 1.210 -0.503 -1.538 -0.409							_0 0
Ose_bathroom							
get_water 0.069 0.168 NA NA 1.783 lose_water -0.568 -2.943 -0.001 -0.003 0.612 ext_leak -0.087 -2.784 -0.109 -1.148 -0.104 get_sewage 0.066 0.585 0.317 1.522 0.248 lose_sewage 0.111 1.252 0.223 1.253 0.064 get_cntrl_air 0.108 1.718 0.308 1.667 0.002 lose_cntrl_air 0.033 0.382 0.180 0.753 0.021 d_struc_prob -0.125 -8.021 -0.223 -4.274 -0.119 get_int_leak -0.021 -0.392 0.089 0.567 -0.182 lose_int_leak -0.101 -1.703 -0.264 -1.575 -0.230 get_bad_int -0.072 1.258 0.139 0.831 0.083 d_wtr_prob 0.011 0.289 -0.111 -1.050 -0.129 d_tt_prob -0.038							
Ose_water				NA	0.353		lose_bathroom
ext_leak	3 0.000	1.783		NA	0.168	0.069	get_water
get_sewage 0.066 0.585 0.317 1.522 0.248 lose_sewage 0.111 1.252 0.223 1.253 0.064 get_entrl_air 0.108 1.718 0.308 1.667 0.002 lose_entrl_air 0.033 0.382 0.180 0.753 0.021 d_struc_prob -0.125 -8.021 -0.223 -4.274 -0.119 get_int_leak -0.021 -0.392 0.089 0.567 -0.182 lose_int_leak -0.101 -1.703 -0.264 -1.575 -0.230 get_bad_int -0.033 -6.005 -0.367 -2.190 -0.443 lose_bad_int 0.072 1.258 0.139 0.831 0.083 d_wtr_prob 0.011 0.289 -0.111 -1.050 -0.129 d_ttt_prob -0.038 -1.126 0.114 0.970 -0.056 d_sew_prob 0.066 1.249 -0.113 -0.367 -0.061 d_wrg_prob -0.183	2 0.092	0.612	- 0.003	- 0.001	- 2.943	- 0.568	lose_water
0.058_sewage 0.111	4 – 1.989	- 0.104	- 1.148	- 0.109	- 2.784	- 0.087	ext_leak
0.000 0.00	1.393	0.248	1.522	0.317	0.585	0.066	get sewage
get_cntrl_air 0.108 1.718 0.308 1.667 0.002 lose_cntrl_air 0.033 0.382 0.180 0.753 0.021 d_struc_prob -0.125 -8.021 -0.223 -4.274 -0.119 get_int_leak -0.021 -0.392 0.089 0.567 -0.182 lose_int_leak -0.101 -1.703 -0.264 -1.575 -0.230 get_bad_int -0.303 -6.005 -0.367 -2.190 -0.443 lose_bad_int 0.072 1.258 0.139 0.831 0.083 d_wtr_prob 0.011 0.289 -0.111 -1.050 -0.129 d_tlt_prob -0.038 -1.126 0.114 0.970 -0.056 d_wtr_prob 0.066 1.249 -0.113 -0.367 -0.061 d_wrg_prob -0.183 -3.399 -0.159 -1.020 0.020 d_tws_blow -0.016 -1.107 -0.019 -0.532 -0.007 d_leat_brk <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0 – 0</td></t<>							0 – 0
Dose_cntrl_air							
d_struc_prob - 0.125 - 8.021 - 0.223 - 4.274 - 0.119 get_int_leak - 0.021 - 0.392 0.089 0.567 - 0.182 lose_int_leak - 0.101 - 1.703 - 0.264 - 1.575 - 0.230 get_bad_int - 0.303 - 6.005 - 0.367 - 2.190 - 0.443 lose_bad_int 0.072 1.258 0.139 0.831 0.083 d_wtr_prob 0.011 0.289 - 0.111 - 1.050 - 0.129 d_twr_prob 0.066 1.249 - 0.113 - 0.367 - 0.056 d_sew_prob 0.066 1.249 - 0.113 - 0.367 - 0.061 d_wr_prob - 0.183 - 3.399 - 0.159 - 1.020 0.020 d_tus_blow - 0.016 - 1.107 - 0.019 - 0.532 - 0.007 d_leat_brk - 0.022 - 0.754 - 0.034 - 0.265 - 0.022 d_leat_brk - 0.004 0.088 - 0.056 - 0.428 - 0.018							
get_int_leak - 0.021 - 0.392 0.089 0.567 - 0.182 lose_int_leak - 0.101 - 1.703 - 0.264 - 1.575 - 0.230 get_bad_int - 0.303 - 6.005 - 0.367 - 2.190 - 0.443 lose_bad_int 0.072 1.258 0.139 0.831 0.083 d_wtr_prob 0.011 0.289 - 0.111 - 1.050 - 0.129 d_ttl_prob - 0.038 - 1.126 0.114 0.970 - 0.056 d_sew_prob 0.066 1.249 - 0.113 - 0.367 - 0.061 d_wrg_prob - 0.183 - 3.399 - 0.159 - 1.020 0.020 d_ts_blow - 0.016 - 1.107 - 0.019 - 0.532 - 0.007 d_leat_brk - 0.022 - 0.754 - 0.034 - 0.265 - 0.022 d_leat_brk - 0.002 - 0.754 - 0.034 - 0.265 - 0.022 d_leat_brk - 0.015 - 3.381 - 0.062 - 0.707 - 0.073							
lose_int_leak - 0.101 - 1.703 - 0.264 - 1.575 - 0.230 get_bad_int - 0.303 - 6.005 - 0.367 - 2.190 - 0.443 lose_bad_int 0.072 1.258 0.139 0.831 0.083 d_wrt_prob 0.011 0.289 - 0.111 - 1.050 - 0.129 d_ttt_prob - 0.038 - 1.126 0.114 0.970 - 0.056 d_wrg_prob 0.066 1.249 - 0.113 - 0.367 - 0.061 d_wrg_prob - 0.183 - 3.399 - 0.159 - 1.020 0.020 d_ts_blow - 0.016 - 1.107 - 0.019 - 0.532 - 0.007 d_esodheat brk - 0.022 - 0.754 - 0.034 - 0.265 - 0.022 d_2goodheat 0.004 0.088 - 0.056 - 0.428 - 0.018 get_vermin - 0.105 - 3.381 - 0.062 - 0.707 - 0.073 lose_vermin 0.133 1.242 0.390 1.169 0.231 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>							
get_bad_int - 0.303 - 6.005 - 0.367 - 2.190 - 0.443 lose_bad_int 0.072 1.258 0.139 0.831 0.083 d_wtr_prob 0.011 0.289 - 0.111 - 1.050 - 0.129 d_ttl_prob - 0.038 - 1.126 0.114 0.970 - 0.056 d_sew_prob 0.066 1.249 - 0.113 - 0.367 - 0.061 d_wrg_prob - 0.183 - 3.399 - 0.159 - 1.020 0.020 d_ftus_blow - 0.016 - 1.107 - 0.019 - 0.532 - 0.007 d_beat_brk - 0.022 - 0.754 - 0.034 - 0.265 - 0.022 d_2goodheat 0.004 0.088 - 0.056 - 0.428 - 0.018 get_vermin - 0.105 - 3.381 - 0.062 - 0.707 - 0.073 lose_vermin 0.133 1.242 0.390 1.169 0.231 mh_in_grp NA NA 0.017 0.172 NA Mu(1)							•
lose_bad_int 0.072 1.258 0.139 0.831 0.083 d_wtr_prob 0.011 0.289 -0.111 -1.050 -0.129 d_tlt_prob -0.038 -1.126 0.114 0.970 -0.056 d_sew_prob 0.066 1.249 -0.113 -0.367 -0.061 d_wrg_prob -0.183 -3.399 -0.159 -1.020 0.020 d_ts_blow -0.016 -1.107 -0.019 -0.532 -0.007 d_pet_branch -0.022 -0.754 -0.034 -0.265 -0.022 d_pet_branch 0.004 0.088 -0.056 -0.428 -0.018 get_vermin -0.105 -3.381 -0.062 -0.707 -0.073 lose_vermin 0.133 1.242 0.390 1.169 0.231 mh_in_grp NA NA -0.098 -0.982 NA band NA NA 0.017 0.172 NA Mu(1) 0.495 18.777							
d_wtr_prob 0.011 0.289 -0.111 -1.050 -0.129 d_tlt_prob -0.038 -1.126 0.114 0.970 -0.056 d_sew_prob 0.066 1.249 -0.113 -0.367 -0.061 d_wrg_prob -0.183 -3.399 -0.159 -1.020 0.020 d_ts_blow -0.016 -1.107 -0.019 -0.532 -0.007 d_pet_brk -0.022 -0.754 -0.034 -0.265 -0.022 d_2goodheat 0.004 0.088 -0.056 -0.428 -0.018 get_vermin -0.105 -3.381 -0.062 -0.707 -0.073 lose_vermin 0.133 1.242 0.390 1.169 0.231 mh_in_grp NA NA -0.098 -0.982 NA sownlot NA NA 0.017 0.172 NA Mu(1) 0.495 18.777 0.385 5.940 0.436 Mu(2) 1.152 36.603 0.							
d_tlt_prob -0.038 -1.126 0.114 0.970 -0.056 d_sew_prob 0.066 1.249 -0.113 -0.367 -0.061 d_wrg_prob -0.183 -3.399 -0.159 -1.020 0.020 d_ts_blow -0.016 -1.107 -0.019 -0.532 -0.007 d_heat_brk -0.022 -0.754 -0.034 -0.265 -0.022 d_2goodheat 0.004 0.088 -0.056 -0.428 -0.018 get_vermin -0.105 -3.381 -0.062 -0.707 -0.073 lose_vermin 0.133 1.242 0.390 1.169 0.231 mh_in_grp NA NA -0.098 -0.982 NA sownlot NA NA 0.017 0.172 NA Mu(1) 0.495 18.777 0.385 5.940 0.436 Mu(2) 1.152 36.603 0.950 11.419 0.989 Mu(3) 1.758 53.702 1.432 16.057 1.565 Mu(4) 3.156 83.879 2.							
d_sew_prob 0.066 1.249 -0.113 -0.367 -0.061 d_wrg_prob -0.183 -3.399 -0.159 -1.020 0.020 d_fus_blow -0.016 -1.107 -0.019 -0.532 -0.007 d_heat_brk -0.022 -0.754 -0.034 -0.265 -0.022 d_2goodheat 0.004 0.088 -0.056 -0.428 -0.018 get_vermin -0.105 -3.381 -0.062 -0.707 -0.073 lose_vermin 0.133 1.242 0.390 1.169 0.231 mh_in_grp NA NA -0.098 -0.982 NA ownlot NA NA 0.017 0.172 NA Mu(1) 0.495 18.777 0.385 5.940 0.436 Mu(2) 1.152 36.603 0.950 11.419 0.989 Mu(3) 1.758 53.702 1.432 16.057 1.565 Mu(4) 3.156 83.879 2.621							
d_wrg_prob - 0.183 - 3.399 - 0.159 - 1.020 0.020 d_fus_blow - 0.016 - 1.107 - 0.019 - 0.532 - 0.007 d_heat_brk - 0.022 - 0.754 - 0.034 - 0.265 - 0.022 d_2goodheat 0.004 0.088 - 0.056 - 0.428 - 0.018 get_vermin - 0.105 - 3.381 - 0.062 - 0.707 - 0.073 lose_vermin 0.133 1.242 0.390 1.169 0.231 mh_in_grp NA NA - 0.098 - 0.982 NA ownlot NA NA 0.017 0.172 NA Mu(1) 0.495 18.777 0.385 5.940 0.436 Mu(2) 1.152 36.603 0.950 11.419 0.989 Mu(3) 1.758 53.702 1.432 16.057 1.565 Mu(4) 3.156 83.879 2.621 25.080 2.654 Mu(5) 3.815 91.011							
d_fus_blow - 0.016 - 1.107 - 0.019 - 0.532 - 0.007 d_heat_brk - 0.022 - 0.754 - 0.034 - 0.265 - 0.022 d_2goodheat 0.004 0.088 - 0.056 - 0.428 - 0.018 get_vermin - 0.105 - 3.381 - 0.062 - 0.707 - 0.073 lose_vermin 0.133 1.242 0.390 1.169 0.231 mh_in_grp NA NA - 0.098 - 0.982 NA ownlot NA NA 0.017 0.172 NA Mu(1) 0.495 18.777 0.385 5.940 0.436 Mu(2) 1.152 36.603 0.950 11.419 0.989 Mu(3) 1.758 53.702 1.432 16.057 1.565 Mu(4) 3.156 83.879 2.621 25.080 2.654 Mu(5) 3.815 91.011 3.103 27.661 3.264 Mu(6) 4.539 86.787 3.684<	1 – 0.762	- 0.061	- 0.367	- 0.113	1.249	0.066	
d_heat_brk - 0.022 - 0.754 - 0.034 - 0.265 - 0.022 d_2goodheat 0.004 0.088 - 0.056 - 0.428 - 0.018 get_vermin - 0.105 - 3.381 - 0.062 - 0.707 - 0.073 lose_vermin 0.133 1.242 0.390 1.169 0.231 mh_in_grp NA NA - 0.098 - 0.982 NA ownlot NA NA 0.017 0.172 NA Mu(1) 0.495 18.777 0.385 5.940 0.436 Mu(2) 1.152 36.603 0.950 11.419 0.989 Mu(3) 1.758 53.702 1.432 16.057 1.565 Mu(4) 3.156 83.879 2.621 25.080 2.654 Mu(5) 3.815 91.011 3.103 27.661 3.264 Mu(6) 4.539 86.787 3.684 27.896 3.869 Mu(7) 5.126 81.424 4.221	0.313	0.020	- 1.020	- 0.159	- 3.399	- 0.183	d_wrg_prob
d_2goodheat 0.004 0.088 - 0.056 - 0.428 - 0.018 get_vermin - 0.105 - 3.381 - 0.062 - 0.707 - 0.073 lose_vermin 0.133 1.242 0.390 1.169 0.231 mh_in_grp NA NA - 0.098 - 0.982 NA ownlot NA NA 0.017 0.172 NA Mu(1) 0.495 18.777 0.385 5.940 0.436 Mu(2) 1.152 36.603 0.950 11.419 0.989 Mu(3) 1.758 53.702 1.432 16.057 1.565 Mu(4) 3.156 83.879 2.621 25.080 2.654 Mu(5) 3.815 91.011 3.103 27.661 3.264 Mu(6) 4.539 86.787 3.684 27.896 3.869 Mu(7) 5.126 81.424 4.221 27.760 4.363 Number of observations 7.203 762 3,143 <td>7 - 0.434</td> <td>- 0.007</td> <td>- 0.532</td> <td>- 0.019</td> <td>- 1.107</td> <td>- 0.016</td> <td>d_fus_blow</td>	7 - 0.434	- 0.007	- 0.532	- 0.019	- 1.107	- 0.016	d_fus_blow
get_vermin - 0.105 - 3.381 - 0.062 - 0.707 - 0.073 lose_vermin 0.133 1.242 0.390 1.169 0.231 mh_in_grp NA NA - 0.098 - 0.982 NA ownlot NA NA 0.017 0.172 NA Mu(1) 0.495 18.777 0.385 5.940 0.436 Mu(2) 1.152 36.603 0.950 11.419 0.989 Mu(3) 1.758 53.702 1.432 16.057 1.565 Mu(4) 3.156 83.879 2.621 25.080 2.654 Mu(5) 3.815 91.011 3.103 27.661 3.264 Mu(6) 4.539 86.787 3.684 27.896 3.869 Mu(7) 5.126 81.424 4.221 27.760 4.363 Number of observations 7,203 762 3,143 observations Log likelihood - 1,301.995 - 5,337.673	2 – 0.818	- 0.022	- 0.265	-0.034	- 0.754	- 0.022	d_heat_brk
get_vermin - 0.105 - 3.381 - 0.062 - 0.707 - 0.073 lose_vermin 0.133 1.242 0.390 1.169 0.231 mh_in_grp NA NA - 0.098 - 0.982 NA ownlot NA NA 0.017 0.172 NA Mu(1) 0.495 18.777 0.385 5.940 0.436 Mu(2) 1.152 36.603 0.950 11.419 0.989 Mu(3) 1.758 53.702 1.432 16.057 1.565 Mu(4) 3.156 83.879 2.621 25.080 2.654 Mu(5) 3.815 91.011 3.103 27.661 3.264 Mu(6) 4.539 86.787 3.684 27.896 3.869 Mu(7) 5.126 81.424 4.221 27.760 4.363 Number of observations 7,203 762 3,143 observations Log likelihood - 1,301.995 - 5,337.673	8 – 0.288	- 0.018	- 0.428	- 0.056	0.088	0.004	d 2goodheat
lose_vermin 0.133 1.242 0.390 1.169 0.231 mh_in_grp NA NA -0.098 -0.982 NA ownlot NA NA 0.017 0.172 NA Mu(1) 0.495 18.777 0.385 5.940 0.436 Mu(2) 1.152 36.603 0.950 11.419 0.989 Mu(3) 1.758 53.702 1.432 16.057 1.565 Mu(4) 3.156 83.879 2.621 25.080 2.654 Mu(5) 3.815 91.011 3.103 27.661 3.264 Mu(6) 4.539 86.787 3.684 27.896 3.869 Mu(7) 5.126 81.424 4.221 27.760 4.363 Number of observations 7,203 762 3,143 observations Log likelihood -1,301.995 -5,337.673							
mh_in_grp NA NA -0.098 -0.982 NA ownlot NA NA 0.017 0.172 NA Mu(1) 0.495 18.777 0.385 5.940 0.436 Mu(2) 1.152 36.603 0.950 11.419 0.989 Mu(3) 1.758 53.702 1.432 16.057 1.565 Mu(4) 3.156 83.879 2.621 25.080 2.654 Mu(5) 3.815 91.011 3.103 27.661 3.264 Mu(6) 4.539 86.787 3.684 27.896 3.869 Mu(7) 5.126 81.424 4.221 27.760 4.363 Number of observations 7,203 762 3,143 observations Log likelihood function -11,057.66 -1,301.995 -5,337.673							
ownlot NA NA 0.017 0.172 NA Mu(1) 0.495 18.777 0.385 5.940 0.436 Mu(2) 1.152 36.603 0.950 11.419 0.989 Mu(3) 1.758 53.702 1.432 16.057 1.565 Mu(4) 3.156 83.879 2.621 25.080 2.654 Mu(5) 3.815 91.011 3.103 27.661 3.264 Mu(6) 4.539 86.787 3.684 27.896 3.869 Mu(7) 5.126 81.424 4.221 27.760 4.363 Number of observations 7,203 762 3,143 observations Log likelihood function - 1,301.995 - 5,337.673							
Mu(1) 0.495 18.777 0.385 5.940 0.436 Mu(2) 1.152 36.603 0.950 11.419 0.989 Mu(3) 1.758 53.702 1.432 16.057 1.565 Mu(4) 3.156 83.879 2.621 25.080 2.654 Mu(5) 3.815 91.011 3.103 27.661 3.264 Mu(6) 4.539 86.787 3.684 27.896 3.869 Mu(7) 5.126 81.424 4.221 27.760 4.363 Number of observations 7,203 762 3,143 observations Log likelihood function -1,301.995 -5,337.673							
Mu(2) 1.152 36.603 0.950 11.419 0.989 Mu(3) 1.758 53.702 1.432 16.057 1.565 Mu(4) 3.156 83.879 2.621 25.080 2.654 Mu(5) 3.815 91.011 3.103 27.661 3.264 Mu(6) 4.539 86.787 3.684 27.896 3.869 Mu(7) 5.126 81.424 4.221 27.760 4.363 Number of observations Log likelihood function 7,203 762 3,143 - 5,337.673							
Mu(3) 1.758 53.702 1.432 16.057 1.565 Mu(4) 3.156 83.879 2.621 25.080 2.654 Mu(5) 3.815 91.011 3.103 27.661 3.264 Mu(6) 4.539 86.787 3.684 27.896 3.869 Mu(7) 5.126 81.424 4.221 27.760 4.363 Number of observations Log likelihood function 7,203 762 3,143 - 5,337.673							
Mu(4) 3.156 83.879 2.621 25.080 2.654 Mu(5) 3.815 91.011 3.103 27.661 3.264 Mu(6) 4.539 86.787 3.684 27.896 3.869 Mu(7) 5.126 81.424 4.221 27.760 4.363 Number of observations Log likelihood function 7,203 762 3,143 - 1,301.995 - 5,337.673							` '
Mu(5) 3.815 91.011 3.103 27.661 3.264 Mu(6) 4.539 86.787 3.684 27.896 3.869 Mu(7) 5.126 81.424 4.221 27.760 4.363 Number of observations Log likelihood function 7,203 762 3,143 - 1,301.995 - 5,337.673							
Mu(6) 4.539 86.787 3.684 27.896 3.869 Mu(7) 5.126 81.424 4.221 27.760 4.363 Number of observations Log likelihood function 7,203 762 3,143 - 1,301.995 - 5,337.673							
Mu(7) 5.126 81.424 4.221 27.760 4.363 Number of 7,203 762 3,143 observations Log likelihood function -11,057.66 -1,301.995 -5,337.673							` '
Number of 7,203 762 3,143 observations Log likelihood							
observations Log likelihood function – 11,057.66 – 1,301.995 – 5,337.673	3 56.710	4.363	27.760	4.221	81.424	5.126	Mu(7)
observations Log likelihood function – 11,057.66 – 1,301.995 – 5,337.673	3	3.143		762		7.203	Number of
Log likelihood function - 11,057.66 - 1,301.995 - 5,337.673		0,110		7.02		1,200	
function - 11,057.66 - 1,301.995 - 5,337.673							
	n	E 007 070		1 001 005		11 057 00	J
Hestricted log	3	- 5,337.673	-	1,301.995	-	- 11,057.66	
likelihood – 1,2802.7 – 1,447.644 – 6,072.802	2	- 6,072.802	-	1,447.644	-	- 1,2802.7	likelihood
Chi-squared 3,490.088 291.2984 1,470.256				291.2984		3,490.088	Chi-squared
Degrees of							
freedom 33 33 33	3	33		33		33	-
NA = not applicable.							

Exhibit A-4a

N-Chotomous Probit Results—Change in Neighborhood Quality, 1993–1995 (1 of 2)

			1993-	-1995		
Variable	Tradition:		Manufactu Hou		Rented	Housing
Name	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic
Constant	4.354	55.248	3.973	16.339	3.455	33.483
how_n	- 0.353	- 50.405	- 0.307	- 14.600	- 0.278	- 29.583
hc2inc	0.000	0.575	0.001	1.046	0.000	- 0.038
get_e_low	0.101	1.350	- 0.731	- 1.105	- 0.076	- 1.352
lose_e_low	- 0.003	- 0.045	- 0.153	- 0.106	- 0.040	- 0.690
get_e_mid	- 0.132	- 0.837	0.133	0.000	- 0.004	- 0.048
lose_e_mid	0.006	0.030	NA	NA	0.006	0.078
get_e_high	- 1.046	- 2.950	1.852	0.000	- 0.057	- 0.571
lose_e_high	0.201	0.585	NA	NA	0.129	1.167
get_e_mobil	- 0.020	- 0.216	0.030	0.244	0.224	0.877
lose_e_mobil	0.025	0.227	0.025	0.195	- 0.139	- 0.989
get_e_com	- 0.103	- 1.461	0.259	0.765	- 0.016	- 0.260
lose_e_com	- 0.103	- 1.479	- 0.128	- 0.517	- 0.030	- 0.532
get_e_prkg	0.007	0.073	0.339	0.310	- 0.097	- 1.528
lose_e_prkg	0.130	0.903	- 0.960	- 2.183	- 0.091	- 1.573
get_e_water	- 0.157	- 1.149	0.563	1.748	0.274	1.445
lose_e_water	- 0.278	- 1.708	- 0.469	- 0.941	0.238	1.622
get_e_green	0.223	3.648	0.065	0.506	0.118	1.704
lose_e_green	0.001	0.027	0.017	0.118	0.042	0.680
get_aban	- 0.294	- 2.916	0.456	1.695	- 0.019	- 0.229
lose_aban	- 0.007	- 0.063	- 0.098	- 0.315	- 0.283	- 3.520
get_bars	0.027	0.325	0.184	0.092	- 0.157	- 1.948
lose_bars	- 0.094	- 1.032	0.098	0.000	0.129	1.941
get_rd_prob	- 0.008	- 0.151	- 0.200	- 1.226	0.036	0.639
lose_rd_prob	- 0.126	- 2.264	0.091	0.554	0.111	1.954
get_junk	- 0.210	- 3.585	0.045	0.289	- 0.160	- 2.836
lose_junk	- 0.065	- 1.084	- 0.212	- 1.197	- 0.153	- 2.729
get_nucrim_p	- 0.943	– 17.079	- 1.238	- 5.454	- 0.918	- 14.733
lose_nucrim_p	0.066	1.102	- 0.358	- 3.434 - 1.212	0.255	3.806
get_noise_p	- 0.498	- 9.208	- 0.338 - 0.499	- 1.212 - 3.008	- 0.424	- 6.950
•	- 0.498 - 0.186	- 3.604	0.261	1.238	0.012	0.206
lose_noise_p	- 0.166 - 0.661	- 3.004 - 11.263	- 0.509	- 2.360	- 0.462	- 5.346
get_litter_p						
lose_litter_p	0.040	0.672	0.780	2.833	0.103	1.047
get_badsrv_p	- 0.431	- 2.928	- 0.887	- 1.306	- 0.534	- 3.023
lose_badsrv_p	0.060	0.553	0.003	0.002	0.099	0.741
get_badprp_p	- 0.477	- 5.009	- 0.924	- 1.068	- 0.232	- 1.307
lose_badprp_p	- 0.055	- 0.570	0.480	1.097	0.209	1.499
get_badper	- 0.687	- 16.356	- 0.968	- 7.023	- 0.564	- 9.572
lose_badper	0.160	3.688	0.556	3.993	0.026	0.466
get_othnhd_p	- 0.389	- 9.205	- 0.252	- 1.766	- 0.249	- 3.538
lose_othnhd_p	- 0.006	- 0.138	0.094	0.719	- 0.118	- 1.753
get_schm_p	- 0.021	- 0.190	0.158	0.405	- 0.392	- 3.256
lose_schm_p	- 0.253	- 2.859	- 0.125	- 0.339	- 0.219	- 2.151
get_shp_p	0.017	0.398	- 0.113	- 1.078	- 0.095	- 1.287

Exhibit A-4a

N-Chotomous Probit Results—Change in Neighborhood Quality, 1993–1995 (2 of 2)

			1993-	-1995		
Variable Name	Tradition:		Manufactu Hou		Rented	Housing
Name	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic
lose_shp_p	- 0.033	- 0.794	0.004	0.032	- 0.026	- 0.399
get_good_trn	0.010	0.221	0.151	0.786	0.061	1.117
lose_good_trn	0.007	0.160	- 0.070	- 0.327	0.065	1.200
mh_in_grp	NA	NA	- 0.194	- 1.885	NA	NA
ownlot	NA	NA	0.064	0.664	NA	NA
Mu(1)	0.375	15.561	0.439	6.148	0.402	13.596
Mu(2)	0.950	31.261	0.965	10.892	0.956	25.733
Mu(3)	1.520	47.169	1.463	15.566	1.449	36.503
Mu(4)	2.969	81.305	2.921	27.092	2.573	55.932
Mu(5)	3.630	91.650	3.558	29.730	3.115	62.147
Mu(6)	4.334	90.744	4.202	29.786	3.691	63.062
Mu(7)	4.840	85.782	4.907	27.222	4.132	62.902
Number of observations	7,061		813		3,396	
Log likelihood						
function	- 10,696.2		– 1,248.47	-	- 5,760.979	
Restricted log						
likelihood	- 12,520.53	-	- 1,493.735		- 6,699.628	
Chi-squared	3,648.65		490.5308		1,877.297	
Degrees of						
freedom	47		47		47	

Exhibit A-4b

N-Chotomous Probit Results—Change in Neighborhood Quality, 1995–1997 (1 of 2)

			1995-	-1997		<u> </u>
Variable Name	Traditiona Hou		Manufactu Hou	red Owned sing	Rented	Housing
Name	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic
Constant	4.818	57.428	4.264	16.707	3.840	33.090
how_n	- 0.400	- 52.291	- 0.341	- 14.921	- 0.321	- 31.631
hc2inc	0.000	- 0.393	0.000	0.343	0.000	0.425
get_e_low	- 0.106	- 2.905	- 0.281	- 1.256	0.029	0.587
lose_e_low	- 0.176	- 2.325	0.835	0.545	0.041	0.721
get_e_mid	- 0.212	- 2.301	- 0.099	- 0.161	- 0.132	- 1.935
lose_e_mid	0.143	0.581	NA	NA	0.031	0.336
get_e_high	0.399	2.017	- 0.652	- 0.373	0.031	0.334
lose_e_high	0.153	0.401	0.445	0.000	- 0.067	- 0.553
get_e_mobil	- 0.065	- 1.523	0.092	0.978	- 0.055	- 0.568
lose_e_mobil	- 0.148	- 1.024	0.311	1.335	- 0.001	- 0.003
get_e_com	0.013	0.370	0.067	0.531	- 0.061	- 1.479
lose_e_com	- 0.046	- 0.431	0.028	0.064	0.125	1.439
get_e_prkg	- 0.083	- 2.084	- 0.043	- 0.259	0.052	1.210
lose_e_prkg	0.054	0.369	0.327	0.664	- 0.016	- 0.172
get_e_water	0.019	0.526	0.067	0.621	0.047	0.725
lose_e_water	0.118	0.483	0.446	0.691	0.317	1.214
get_e_green	0.059	2.011	- 0.061	- 0.690	0.012	0.256
lose_e_green	- 0.056	- 0.826	0.015	0.086	- 0.062	- 0.781
get_aban	- 0.348	- 6.545	- 0.154	- 0.771	- 0.277	- 3.942
lose_aban	- 0.320	- 2.678	- 0.293	- 0.970	- 0.011	- 0.110
get_bars	- 0.171	- 3.763	- 0.089	- 0.291	0.007	0.099
lose_bars	- 0.252	- 2.724	0.122	0.154	- 0.203	- 2.754
get_rd_prob	- 0.132	- 4.747	- 0.031	- 0.330	- 0.196	- 4.466
lose_rd_prob	- 0.055	- 0.912	0.132	0.755	0.049	0.793
get_junk	- 0.343	- 7.886	- 0.403	- 2.423	- 0.187	- 2.808
lose_junk	- 0.009	- 0.174	- 0.096	- 0.710	- 0.069	- 1.385
get_nucrim_p	- 0.570	- 13.446	- 0.814	- 5.517	- 0.573	- 10.251
lose_nucrim_p	0.120	1.863	0.160	0.562	0.100	1.447
get_noise_p	- 0.432	- 11.894	- 0.317	- 2.339	- 0.350	- 6.567
lose_noise_p	0.016	0.243	0.135	0.646	0.092	1.289
get_litter_p	- 0.558	- 6.232	- 0.173	- 0.499	- 0.516	- 3.597
lose_litter_p	- 0.026	- 0.453	- 0.164	- 0.714	0.053	0.610
get_badsrv_p	- 0.156	- 1.262	- 1.275	- 0.816	- 0.055	- 0.303
lose_badsrv_p	- 0.226	- 2.007	- 0.089	- 0.206	0.053	0.289
get_badprp_p	- 0.396	- 3.702	0.446	0.895	- 0.378	- 2.061
lose_badprp_p	- 0.309	- 3.395	- 0.578	- 1.235	- 0.286	– 1.897
get_badper	- 0.608	- 9.162	- 0.301	- 1.154	- 0.309	- 3.557
lose_badper	- 0.047	- 1.196	0.337	2.110	- 0.070	- 1.292
get_othnhd_p	- 0.290	- 5.842	- 0.250	- 1.509	- 0.231	- 2.987
lose_othnhd_p	0.070	1.613	- 0.075	- 0.517	- 0.074	- 0.994
get_schm_p	- 0.152	- 1.251	- 2.109	- 3.877	- 0.568	- 4.161
lose_schm_p	- 0.161	- 1.520	- 0.674	- 2.456	0.034	0.282
get_shp_p	- 0.091	- 2.359	- 0.037	- 0.314	- 0.041	- 0.573
lose_shp_p	0.033	0.781	- 0.105	- 0.846	- 0.019	- 0.250
get_good_trn	0.033	0.781	0.355	1.693	0.033	0.604
lose_good_trn	- 0.004	- 0.092	0.174	0.771	0.105	1.662
mh_in_grp	NA	NA	- 0.254	- 2.408	NA	NA
ownlot	NA	NA	0.122	1.133	NA	NA
Mu(1)	0.514	19.674	0.356	5.270	0.527	14.601

Exhibit A-4b

N-Chotomous Probit Results—Change in Neighborhood Quality, 1995–1997 (2 of 2)

			1995-	-1997		
Variable Name	Traditiona Hou		Manufactu Hou		Rented	Housing
Ivaille	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic
Mu(2)	1.176	38.053	1.003	11.253	1.122	25.930
Mu(3)	1.796	55.832	1.549	16.104	1.695	36.687
Mu(4)	3.147	85.798	2.794	24.573	2.762	52.221
Mu(5)	3.808	94.067	3.384	26.702	3.378	58.154
Mu(6)	4.549	92.973	3.878	26.731	3.989	58.692
Mu(7)	5.133	88.506	4.547	25.433	4.500	58.171
Number of						
observations	7,203		762		3,143	
Log likelihood		-	- 1,239.578			
function	- 11,148.78			-	- 5,272.048	
Restricted log		-	- 1,448.692			
likelihood	- 13,195.51			-	- 6,277.065	
Chi-squared	4,093.451		418.2289		2,010.034	
Degrees of						
freedom	47		48		47	

Exhibit A-5a

N-Chotomous Probit Results—Change in Housing Quality, 1997–1999 (1 of 2)

			1997-	-1999		
Variable	Tradition:		Manufactu Hou		Rented	Housing
Name	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic
Constant	5.087	50.129	4.8001	16.580	4.0510	31.225
how_h	- 0.403	- 46.016	- 0.3899	- 15.476	- 0.3282	- 28.894
age_s	- 0.003	- 5.508	- 0.0061	- 1.625	- 0.0031	- 3.578
crowding	- 0.336	- 6.729	- 0.0012	- 0.009	- 0.2526	- 4.444
hc2inc	0.000	0.715	- 0.0002	- 0.828	0.0000	- 0.543
get_porch	- 0.110	- 2.416	- 0.0322	- 0.242	- 0.0062	- 0.108
lose_porch	- 0.180	- 2.536	- 0.3101	- 1.254	0.1720	1.509
get_garage	0.023	0.445	0.1385	0.816	0.0049	0.058
lose_garage	- 0.008	- 0.146	0.3121	1.747	- 0.0925	- 0.986
d_equip	0.048	1.641	0.1509	1.396	0.0285	0.685
get_bathroom	- 1.113	- 1.943	NA	NA	- 0.8724	- 0.792
lose_bathroom	- 0.349	- 0.905	NA	NA	- 1.8499	0.000
get_water	0.704	1.845	- 0.2654	- 0.317	1.2563	1.150
lose_water	- 0.213	- 0.538	0.7705	0.285	1.6109	0.000
ext_leak	- 0.128	- 3.442	- 0.2579	- 2.532	- 0.0531	- 0.957
get_sewage	- 0.054	- 0.479	0.1225	0.460	0.3551	1.543
lose_sewage	0.005	0.054	- 0.2479	- 1.036	0.0923	0.636
get_cntrl_air	0.076	1.285	0.2391	1.542	0.1836	1.680
lose_cntrl_air	0.138	1.142	- 0.2336	- 1.168	- 0.0425	- 0.327
d_struc_prob	- 0.038	- 2.639	- 0.0478	- 0.993	- 0.0864	- 5.144
get_int_leak	- 0.129	- 2.344	- 0.1281	- 0.837	- 0.2326	- 3.783
lose_int_leak	- 0.213	- 3.803	- 0.2851	- 2.100	- 0.1487	- 2.451
get_bad_int	- 0.355	- 6.855	- 0.4695	- 2.468	- 0.6613	- 10.629
lose_bad_int	- 0.037	- 0.635	- 0.1312	- 0.644	- 0.1458	- 1.949
d_wtr_prob	- 0.008	- 0.188	0.0558	0.875	- 0.0191	- 0.521
d_tlt_prob	- 0.031	- 0.575	0.2356	1.412	- 0.0667	- 1.831
d_sew_prob	- 0.009	- 0.213	- 0.4664	- 3.182	- 0.0605	- 0.852
d_wrg_prob	- 0.082	- 1.305	- 0.1490	- 0.731	0.0691	0.957
d_fus_blow	- 0.036	- 2.174	- 0.0011	- 0.024	- 0.0030	- 0.148
d_heat_brk	- 0.050	- 1.241	0.0247	0.159	- 0.0280	- 0.943
d_2goodheat	- 0.080	- 1.036	0.5787	2.587	0.1173	1.055
get_vermin	- 0.158	- 3.959	- 0.3893	- 3.244	- 0.1852	- 2.938
lose_vermin	- 0.045	- 1.116	- 0.0854	- 0.740	- 0.0090	- 0.129
mh_in_grp	NA	NA	- 0.0926	- 0.970	NA	NA
ownlot	NA	NA	0.0095	0.100	NA	NA
Mu(1)	0.446	14.699	0.4173	6.353	0.4602	12.994
Mu(2)	1.168	31.542	0.9910	12.264	1.0187	23.724
Mu(3)	1.777	46.481	1.5345	18.150	1.5700	34.368
Mu(4)	3.199	76.170	2.6969	26.709	2.7018	52.271
Mu(5)	3.934	87.263	3.2805	30.110	3.3159	59.493
Mu(6)	4.773	88.334	4.0689	30.009	4.0301	60.410
Mu(7)	5.344	83.729	4.5472	29.529	4.5041	60.115

Exhibit A-5a

N-Chotomous Probit Results—Change in Housing Quality, 1997–1999 (2 of 2)

		1997–1999						
Variable Name	Traditional Owned Housing		Manufactured Owned Housing		Rented Housing			
	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic		
Number of observations	7,117		809		3,136			
Log likelihood function Restricted log	- 10,574.02	-	- 1,338.067	-	- 5,219.503			
likelihood	- 12,476.99	_	- 1,566.364	-	- 6,101.015			
Chi-squared Degrees of	3,805.929		456.5944		1,763.023			
freedom	33		33		33			

Exhibit A-5b

N-Chotomous Probit Results—Change in Housing Quality, 1999–2001 (1 of 2)

	1999–2001							
Variable Name	Traditional Owned Housing		Manufactured Owned Housing		Rented Housing			
Name	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic		
Constant	5.1145	50.203	4.2721	13.683	4.0469	31.185		
how_h	- 0.4181	- 45.502	- 0.3278	- 12.569	- 0.3155	- 27.711		
age_s	- 0.0038	- 6.564	- 0.0049	- 1.394	- 0.0042	- 4.991		
crowding	- 0.1761	- 3.198	- 0.3219	- 2.051	- 0.2640	- 4.478		
hc2inc	0.0000	- 0.996	- 0.0003	- 0.329	0.0000	- 0.095		
get_porch	- 0.0041	- 0.067	- 0.0002	- 0.001	- 0.0478	- 0.666		
lose_porch	0.0141	0.194	0.4463	1.993	0.0065	0.059		
get_garage	- 0.1230	- 2.430	- 0.1871	- 1.336	0.1888	2.111		
lose_garage	- 0.0104	- 0.189	0.1904	0.715	0.2130	2.395		
d_equip	0.0043	0.130	0.2121	1.984	0.0496	1.284		
get_bathroom	- 1.7303	0.000	- 0.6840	0.000	0.3118	0.482		
lose_bathroom	- 0.0707	- 0.068	- 0.2010	- 0.115	0.0206	0.040		
get_water	1.4820 0.2395	0.000 0.246	– 0.6394 NA	0.000 NA	0.1593 0.5147	0.263 0.716		
lose_water ext_leak	- 0.1644	- 4.510	– 0.2960	– 2.606	- 0.2194	- 3.769		
get_sewage	0.1057	0.953	0.4338	1.192	- 0.2194 - 0.0605	- 0.338		
lose_sewage	0.1037	1.299	0.4550	0.84	- 0.0005 - 0.3205	- 0.338 - 1.892		
get_cntrl_air	0.0800	1.166	0.1957	0.51	- 0.0123	- 0.119		
lose_cntrl_air	- 0.0144	- 0.157	- 0.1308	- 0.484	0.1151	0.958		
d_struc_prob	- 0.0697	- 4.805	- 0.0758	- 1.673	- 0.0686	- 4.121		
get_int_leak	- 0.1719	- 3.258	- 0.2212	- 1.598	- 0.2562	- 3.960		
lose_int_leak	- 0.1164	- 2.302	0.2476	1.689	- 0.2033	- 3.175		
get_bad_int	- 0.1998	- 3.453	- 0.4802	- 2.655	- 0.4319	- 7.435		
lose_bad_int	- 0.1217	- 2.102	- 0.2537	- 1.39	- 0.1049	- 1.420		
d_wtr_prob	0.0670	1.970	0.0704	0.769	- 0.0985	- 2.336		
d_tlt_prob	0.0264	0.440	- 0.6238	- 1.132	- 0.0739	- 1.600		
d_sew_prob	- 0.0572	- 1.580	- 0.1898	- 0.462	- 0.1171	- 2.434		
d_wrg_prob	- 0.0626	- 0.755	- 0.6788	- 3.374	- 0.0448	- 0.575		
d_fus_blow	- 0.0301	- 1.890	- 0.0075	- 0.15	0.0010	0.051		
d_heat_brk	- 0.1165	- 2.950	0.0189	0.11	- 0.0762	- 2.573		
d_2goodheat	0.0522	0.441	- 0.1498	- 0.467	0.4836	2.861		
get_vermin	- 0.0094	- 0.231	- 0.0536	- 0.493	- 0.0932	- 1.544		
lose_vermin	- 0.0349	- 0.875	0.1160	0.967	- 0.0305	- 0.448		
mh_in_grp	NA	NA	0.0808	0.825	NA	NA		
ownlot	NA	NA	0.0703	0.751	NA	NA		
Mu(1)	0.423	14.833	0.5931	6.104	0.4879	12.795		
Mu(2)	1.130	32.150	1.2033	10.843	1.1177	23.994		
Mu(3)	1.741	47.671	1.7205	14.899	1.6918	34.333		
Mu(4)	3.182	77.895	2.8376	21.745	2.8074	51.504		
Mu(5)	3.898	88.944	3.3425	24.293	3.4337	58.367		
Mu(6)	4.814	88.560	4.0569	25.320	4.1870	60.079		
Mu(7)	5.392	81.314	4.5539	24.248	4.7315	55.708		

Exhibit A-5b

N-Chotomous Probit Results—Change in Housing Quality, 1999–2001 (2 of 2)

		1999–2001						
Variable Name	Traditional Owned Housing		Manufactured Owned Housing		Rented Housing			
	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic		
Number of								
observations	7,132		761		3,077			
Log likelihood								
function	- 10,542.48	-	- 1,289.091		5090.007			
Restricted log								
likelihood	- 12,462.53	-	- 1,464.814	-	- 5,936.899			
Chi-squared	3,840.094		351.4468		1,693.784			
Degrees of								
freedom	33		34		33			

Exhibit A-6a

N-Chotomous Probit Results—Change in Housing Quality, 1997–1999 (1 of 2)

	1997–1999							
Variable	Traditional Owned Housing		Manufactured Owned Housing		Rented Housing			
Name	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic		
Constant	4.3353	50.846	4.9963	16.571	4.0383	35.395		
how_n	- 0.3679	- 47.861	- 0.3895	- 13.780	- 0.3283	- 30.927		
hc2inc	0.0000	0.851	0.0002	0.539	0.0000	- 0.017		
get_e_low	- 0.0101	- 0.215	- 0.2077	- 0.791	- 0.0676	- 1.252		
lose_e_low	0.0508	1.027	- 0.1749	- 0.817	- 0.1446	- 2.749		
get_e_mid	- 0.1945	- 2.029	- 0.5925	- 0.903	0.0233	0.264		
lose_e_mid	0.0173	0.159	0.5872	0.961	0.0269	0.350		
get_e_high	- 0.0375	- 0.179	- 0.2309	0.001	0.0065	0.060		
lose_e_high	0.1685	0.910	0.8681	0.000	- 0.0565	- 0.515		
get_e_mobil	0.0287	0.481	- 0.0571	- 0.397	- 0.1066	- 0.831		
lose_e_mobil	- 0.0523	- 0.834	0.0519	0.304	0.0884	0.635		
get_e_com	- 0.0748	- 1.706	- 0.0350	- 0.264	- 0.0084	- 0.149		
lose_e_com	- 0.0110	- 0.238	0.1401	0.802	0.0229	0.413		
get_e_prkg	- 0.0721	- 1.393	0.3387	1.892	- 0.0485	- 0.820		
lose_e_prkg	- 0.0346	- 0.721	- 0.2248	- 1.262	- 0.0560	- 0.993		
get_e_water	0.0298	0.560	0.0663	0.419	0.0031	0.035		
lose_e_water	- 0.0275	- 0.524	0.1685	1.245	- 0.0125	- 0.132		
get_e_green	0.0546	1.409	0.0122	0.108	- 0.0458	- 0.853		
lose_e_green	0.0228	0.595	0.0546	0.503	0.0082	0.149		
get_aban	- 0.2858	- 4.927	0.0837	0.360	- 0.1941	- 2.619		
lose_aban	- 0.0693	- 1.072	0.3962	1.699	- 0.2064	- 2.687		
get_bars	- 0.0341	- 0.606	0.2196	0.513	- 0.0404	- 0.569		
lose_bars	- 0.0360	- 0.702	- 1.4088	- 3.440	0.0002	0.004		
get_rd_prob	- 0.1054	- 3.068	- 0.1773	- 1.561	- 0.1008	- 2.022		
lose_rd_prob	0.0239	0.694	- 0.1965	- 1.852	- 0.0419	- 0.849		
get_junk	- 0.3362	- 7.334	- 0.7872	- 3.908	- 0.2482	- 3.957		
lose_junk	- 0.0142	- 0.290	0.1091	0.620	- 0.0790	- 1.301		
get_nucrim_p	- 0.4765	- 8.589	- 0.4174	- 2.123	- 0.3584	- 5.207		
lose_nucrim_p	0.1140	2.282	0.0160	0.071	0.1717	2.667		
get_noise_p	- 0.2671	- 5.948	- 0.3789	- 2.314	- 0.4280	- 7.262		
lose_noise_p	0.0618	1.418	- 0.0405	- 0.249	- 0.0764	- 1.319		
get_litter_p	- 0.3813	- 4.922	- 0.1857	- 0.537	- 0.3188	- 2.744		
lose_litter_p	- 0.0725	- 0.921	0.0818	0.204	- 0.2638	- 1.765		
get_badsrv_p	- 0.2720	- 2.353	- 1.2489	- 2.148	- 0.0866	- 0.488		
lose_badsrv_p	- 0.1141	- 0.959	0.6059	0.860	0.0133	0.067		
get_badprp_p	- 0.4056	- 3.289	- 2.9020	- 2.270	0.0415	0.196		
lose_badprp_p	- 0.1683	- 1.250	- 0.2362	- 0.466	0.1797	1.054		
get_badper	- 0.3229	- 5.714	- 0.7322	- 4.065	- 0.4724	- 6.103		
lose_badper	- 0.0680	- 1.111	- 0.2001	- 0.983	0.0090	0.104		
get_othnhd_p	- 0.1989	- 4.133	- 0.6027	- 3.485	- 0.3599	- 5.068		
lose_othnhd_p	- 0.0171	- 0.338	- 0.2916	- 1.758	- 0.1627	- 1.943		
get_schm_p	- 0.1941	- 1.446	- 0.4153	- 1.507	- 0.4309	- 3.112		
lose_schm_p	0.0508	0.313	- 0.9231	- 2.226	- 0.0622	- 0.461		
						- 2.216		
o – . –.						- 1.300		
get_shp_p lose_shp_p	- 0.0704 0.0380	- 1.711 0.900	- 0.1755 0.0934	- 1.386 0.737	- 0.1577 - 0.0907	-2.2		

Exhibit A-6a

N-Chotomous Probit Results—Change in Housing Quality, 1997–1999 (2 of 2)

	1997–1999							
Variable	Traditional Owned Housing		Manufactured Owned Housing		Rented Housing			
Name	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic		
get_good_trn	- 0.0785	- 1.841	- 0.1304	- 0.856	- 0.0100	- 0.168		
lose_good_trn	- 0.1046	- 2.643	- 0.1291	- 0.729	- 0.0346	- 0.627		
mh_in_grp	NA	NA	- 0.0744	- 0.713	NA	NA		
ownlot	NA	NA	- 0.0378	- 0.379	NA	NA		
Mu(1)	0.4527	16.553	0.3698	4.804	0.4733	12.323		
Mu(2)	1.0836	32.877	1.0024	10.038	1.0922	23.368		
Mu(3)	1.7336	50.395	1.5632	14.616	1.6684	33.879		
Mu(4)	3.0264	79.894	2.8655	22.825	2.7291	50.424		
Mu(5)	3.7782	91.854	3.4987	25.631	3.3747	57.979		
Mu(6)	4.5221	93.940	4.3409	25.595	4.0432	60.750		
Mu(7)	5.1504	89.118	4.8038	26.137	4.5768	61.361		
Number of			809		3,136			
observations	7,117							
Log likelihood								
function	- 11,004.04		- 1,264.497		- 5,233.982			
Restricted log								
likelihood	- 12,999.61		- 1,504.027		- 6,208.414			
Chi-squared	3,991.153		479.0597		1,948.864			
Degrees of								
freedom	47		49		47			

Exhibit A-6b

N-Chotomous Probit Results—Change in Housing Quality, 1999–2001 (1 of 2)

		1999–2001						
Variable	Traditional Owned Housing		Manufactured Owned Housing		Rented Housing			
Name	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic		
Constant	4.3400	49.909	4.1806	15.055	3.6959	30.377		
how_n	- 0.3666	- 46.260	- 0.3367	- 12.675	- 0.3106	- 28.429		
hc2inc	0.0000	1.168	0.0009	0.993	0.0000	0.333		
get_e_low	- 0.0731	- 1.587	0.2061	1.126	0.1263	2.174		
lose_e_low	0.0608	1.169	0.0223	0.091	0.0696	1.220		
get_e_mid	- 0.1068	- 0.943	0.2337	0.302	0.0772	1.057		
lose_e_mid	- 0.0348	- 0.230	0.4599	0.785	0.1630	1.975		
get_e_high	- 0.1233	- 0.553	NA	NA	- 0.0300	- 0.349		
lose_e_high	- 0.2278	- 1.112	- 1.4563	0.000	- 0.0836	- 0.816		
get_e_mobil	- 0.0634	- 1.180	0.0339	0.238	0.1178	1.045		
lose_e_mobil	- 0.0301	- 0.485	- 0.0340	- 0.170	- 0.0335	- 0.216		
get_e_com	- 0.0408	- 0.974	0.0253	0.156	- 0.0632	- 1.149		
lose_e_com	0.0001	0.002	0.1004	0.669	0.0031	0.058		
get_e_prkg	0.0198	0.382	- 0.1667	- 0.985	0.1363	2.191		
lose_e_prkg	- 0.0301	- 0.567	- 0.2591	- 1.070	- 0.0055	- 0.101		
get_e_water	0.0289	0.562	0.0704	0.493	- 0.0777	- 0.905		
lose_e_water	0.0228	0.438	0.0677	0.454	- 0.0196	- 0.237		
get_e_green	0.0450	1.154	0.1060	0.814	0.0092	0.155		
lose_e_green	0.0135	0.359	0.1020	0.900	0.0660	1.165		
get_aban	- 0.3343	- 5.614	- 0.6210	- 3.793	- 0.2078	- 2.853		
lose aban	- 0.3124	- 5.012	- 0.1101	- 0.509	- 0.0831	- 1.122		
get_bars	- 0.1023	- 1.688	0.0196	0.064	- 0.1268	- 1.832		
lose_bars	- 0.0990	- 1.767	0.1559	0.348	- 0.0425	- 0.667		
get_rd_prob	- 0.1310	- 3.982	0.0587	0.526	- 0.0157	- 0.326		
lose_rd_prob	0.0459	1.323	0.0792	0.684	0.1356	2.522		
get_junk	- 0.4490	- 9.566	- 0.3462	- 2.405	- 0.2760	- 4.524		
lose_junk	- 0.0348	- 0.693	- 0.0116	- 0.054	- 0.1187	- 1.807		
get_nucrim_p	- 0.5877	- 11.530	- 0.1566	- 0.991	- 0.6406	- 11.171		
lose_nucrim_p	- 0.0142	- 0.247	- 0.2614	- 1.179	0.0177	0.256		
get_noise_p	- 0.3363	- 8.012	- 0.3523	- 2.394	- 0.4409	- 7.183		
lose_noise_p	0.0045	0.099	0.0399	0.248	- 0.0552	- 0.906		
get_litter_p	- 0.3846	- 4.659	- 0.5101	- 1.874	- 0.3245	- 2.853		
lose_litter_p	- 0.0821	- 0.965	- 0.1573	- 0.376	- 0.1933	- 1.595		
get_badsrv_p	- 0.4241	- 3.588	- 0.2009	- 0.464	- 0.2821	- 1.753		
lose_badsrv_p	- 0.0734	- 0.502	- 0.0445	- 0.090	0.1411	0.662		
get_badprp_p	- 0.2997	- 2.342	0.7741	0.000	- 0.1258	- 0.654		
lose_badprp_p	- 0.3816	- 3.032	- 0.3430	- 0.581	0.3238	1.563		
get_badper	- 0.4927	- 8.197	- 0.8318	- 3.723	- 0.5683	- 6.983		
lose_badper	- 0.0636	- 1.053	- 0.0503	- 0.272	- 0.0798	- 0.957		
get_othnhd_p	- 0.2756	- 5.655	- 0.0076	- 0.039	- 0.2071	- 2.859		
lose_othnhd_p	- 0.0116	- 0.239	- 0.1366	- 0.709	- 0.0492	- 0.591		
get_schm_p	- 0.5855	- 4.125	- 0.2650	- 0.845	- 0.1708	- 1.040		
lose_schm_p	- 0.1174	- 0.933	- 0.3765	- 1.141	0.1268	0.937		
get_shp_p	0.0085	0.218	- 0.1519	- 1.266	- 0.0872	- 1.124		
lose_shp_p	0.0013	0.032	- 0.0227	- 0.190	0.0590	0.875		
1000_311P_P	0.0010	0.002	0.0221	0.100	0.0000	0.070		

Exhibit A-6b

N-Chotomous Probit Results—Change in Housing Quality, 1999–2001 (2 of 2)

		1999–2001							
Variable Name	Traditional Owned Housing		Manufactured Owned Housing		Rented Housing				
Name	Coefficient	t-Statistic	Coefficient	t-Statistic	Coefficient	t-Statistic			
get_good_trn	0.0315	0.993	0.1383	1.171	- 0.0084	- 0.181			
lose_good_trn	- 0.0609	- 1.117	- 0.2718	- 1.158	- 0.0350	- 0.454			
mh_in_grp	NA	NA	- 0.2906	- 2.912	NA	NA			
ownlot	NA	NA	0.0211	0.228	NA	NA			
Mu(1)	0.4504	16.697	0.418	5.913	0.4587	12.662			
Mu(2)	1.1130	33.757	1.148	12.632	1.1169	24.824			
Mu(3)	1.7477	50.790	1.712	18.103	1.6984	36.037			
Mu(4)	3.0519	80.421	2.765	26.641	2.7665	52.524			
Mu(5)	3.7719	92.592	3.338	28.849	3.4342	60.662			
Mu(6)	4.6044	91.636	4.121	27.593	4.1415	62.121			
Mu(7)	5.2086	84.774	4.607	24.689	4.6170	58.733			
Number of									
observations	7,132		761		3,077				
Log likelihood									
function	- 10,990.79	-	- 1,282.765		- 5,116.507				
Restricted log									
likelihood	- 12,936.77	-	- 1,456.395		- 6,035.134				
Chi-squared	3,891.961		347.260		1,837.253				
Degrees of									
freedom	47		48		47				

Acknowledgments

The authors thank Chris Herbert for helpful suggestions in developing the research concept of this article. They also acknowledge the suggestions of anonymous reviewers from the U.S. Department of Housing and Urban Development whose insights substantially improved the quality of the research.

Authors

Thomas P. Boehm is a professor of finance and Regions Bank Scholar at The University of Tennessee.

Alan Schlottmann is a professor of economics at the University of Nevada, Las Vegas and a senior research fellow at Claremont Graduate University.

References

Apgar, William, Allegra Calder, Michael Collins, and Mark Duda. 2002. *An Examination of Manufactured Housing as a Community and Asset Building Strategy.* Report to the Ford Foundation by Neighborhood Reinvestment Corporation in collaboration with the Joint Center for Housing Studies of Harvard University. Report Number W02-11. Cambridge, MA: Joint Center for Housing Studies.

Beamish, Julia O., Rosemary C. Goss, Jorge H. Attiles, and Younggioo Kim. 2001. "Not a Trailer Anymore: Perceptions of Manufactured Housing," *Housing Policy Debate* (12) 2: 373–392.

Belsky, Eric S., and Mark Duda. 2002a. "Anatomy of the Low-Income Homeownership Boom in the 1990s." In *Low Income Homeownership*, edited by Nicolas P. Retsinas and Eric S. Belsky. Washington, DC: The Brookings Institution and Joint Center for Housing Studies of Harvard University: 15–63.

Belsky, Eric S., and Mark Duda. 2002b. "Asset Appreciation, Timing of Purchases and Sales, and Returns to Low-Income Homeownership." In *Low Income Homeownership*, edited by Nicolas P. Retsinas and Eric S. Belsky. Washington, DC: The Brookings Institution and Joint Center for Housing Studies of Harvard University: 208–238.

Boehm, Thomas P. 1995. "A Comparison of the Determinants of Structural Quality Between Manufactured Housing and Conventional Tenure Choices: Evidence From the American Housing Survey," *Journal of Housing Economics* (4) 4: 373–391.

Boehm, Thomas P., and Keith R. Ihlanfeldt. 1991. "The Revelation of Neighborhood Preferences: An N-Chotomous Multivariate Probit Approach," *Journal of Housing Economics* (1) 1: 33–59.

Boehm, Thomas P., and Alan M. Schlottmann. 2004. "The Dynamics of Race, Income and Homeownership," *Journal of Urban Economics* (55) 1: 113–130.

Case, Karl, and Maryna Marynchenko. 2002. "Home Price Appreciation in Low- and Moderate-Income Markets." In *Low Income Homeownership*, edited by Nicolas P. Retsinas and Eric S. Belsky. Washington, DC: The Brookings Institution and Joint Center for Housing Studies of Harvard University: 239–256.

DeGiovanni, Frank. 2002. "Introduction to Part 3: Returns to Home Ownership." In *Low Income Homeownership*, edited by Nicolas P. Retsinas and Eric S. Belsky. Washington, DC: The Brookings Institution and Joint Center for Housing Studies of Harvard University: 201–207.

Genz, Richard. "Why Advocates Need to Rethink Manufactured Housing," *Housing Policy Debate* (12) 2: 393–414.

Goetz, William, and Matthew Spiegel. 2002. "Policy Implications of Portfolio Choice in Underserved Markets." In *Low Income Homeownership*, edited by Nicolas P. Retsinas and Eric S. Belsky. Washington, DC: The Brookings Institution and Joint Center for Housing Studies of Harvard University: 257–274.

Hadden, Louise, and Mirielle Leger. 1990. *Codebook for the American Housing Survey:* 1973–1993. Cambridge, MA: prepared by Abt and Associates and revised by HUD and the Census Bureau.

Heckman, James, and Christopher Flinn. 1982. "Models for the Analysis of Labor Force Dynamics," *Advances in Econometrics* (1) 35–95.

Heckman, James, and James Walker. 1990. "The Relationship Between Wages and Income and the Timing and Spacing of Births: Evidence from Swedish Longitudinal Data," *Econometrica* 58: 1411–1441.

——. 1986. Using Goodness of Fit and Other Criteria to Choose Among Competing Duration Models: A Case Study of Hutterite Data. Unpublished paper. University of Chicago. (A shorter, published version appears in *Sociological Methodology* 87.)

ICF Consulting. 2004. Codebook for the American Housing Survey, Public Use File: 1997 and Later. Version 1.77. Fairfax, VA: ICF Consulting.

Joint Center for Housing Studies (JCHS) of Harvard University. 2003. *The State of the Nation's Housing*. Cambridge, MA: Harvard University, John F. Kennedy School of Government.

Mansur, Erin, John M. Quigley, Steven Raphael, and Eugene Smolensky. 2000. Examining Policies to Reduce Homelessness in California Using a General Equilibrium Model of the Housing Market. Working paper. University of California, Berkeley.

Manufactured Housing Institute. 2003. *Consumer Statistics* and *Quarterly Economic Report*. Arlington, VA: Manufactured Housing Institute

McKelvey, Richard, and William Zavoina. 1975. "A Statistical Model for the Analysis of Ordinal Level Dependent Variables," *Journal of Mathematical Sociology* 4: 103–120.

Quigley, John, Steven Raphael, and Eugene Smolensky. 2001. "Homeless in America, Homeless in California," *Review of Economics and Statistics*, 83: 37–51.

Reed, Deborah, Melissa Glenn-Haber, and Laura Mameesh. 1996. *The Distribution of Income in California*. San Francisco: Public Policy Institute of California.

Retsinas, Nicolas P., and Eric S. Belsky, eds. 2002. *Low Income Homeownership*. Washington, DC: The Brookings Institution and Joint Center for Housing Studies of Harvard University.

U.S. Department of Housing and Urban Development (HUD). 2004. "Manufactured Housing: Past, Present, and Future," *Recent Research Works* (1): 2–7.

——. 2001. *A Community Guide to Factory-Built Housing*. Washington, DC: U.S. Department of Housing and Urban Development, Office of Policy Development and Research.