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SpAM
SpAM (Spatial Analysis and Methods) presents short articles on the use of spatial sta-
tistical techniques for housing or urban development research. Through this department 
of Cityscape, the Office of Policy Development and Research introduces readers to the 
use of emerging spatial data analysis methods or techniques for measuring geographic 
relationships in research data. Researchers increasingly use these new techniques to 
enhance their understanding of urban patterns but often do not have access to short 
demonstration articles for applied guidance. If you have an idea for an article of no 
more than 3,000 words presenting an applied spatial data analysis method or technique, 
please send a one-paragraph abstract to rwilson@umbc.edu for review.

Geographically weighted regression (GWR) has been shown to greatly increase the 
performance of ordinary least squares-based appraisal models, specifically regarding 
industry standard measurements of equity, namely the price-related differential and the 
coefficient of dispersion (COD; Borst and McCluskey, 2008; Lockwood and Rossini, 2011; 
McCluskey et al., 2013; Moore, 2009; Moore and Myers, 2010). Additional spatial 
regression models, such as spatial lag models (SLMs), have shown to improve multiple 
regression real estate models that suffer from spatial heterogeneity (Wilhelmsson, 2002). 
This research is performed using arms-length residential sales from 2010 to 2012 in 
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Introduction
Ad valorem property taxes are a prominent source of government revenue in jurisdictions 
around the world. Taxing authorities are held accountable to ensure that these valuations are 
fair and equitable. In such roles, the optimization of the accuracy of mass real estate valuation 
approaches is critical.

Because of their precision and time- and cost-saving advantages, real estate mass appraisal 
methods that employ multiple regression-based models, known as automated valuation models 
(AVMs), are becoming increasingly prominent in industry practice and have received attention 
from the academic community. AVMs are used in a host of industries—both public and private—
including loan origination, fraud detection, and portfolio valuation (Downie and Robson, 2007), 
and are promoted and advanced by such organizations as the International Association of As-
sessing Officers (IAAO). Statistical standards of equity established by such organizations give 
additional benchmarks by which modelers may test various approaches and methodologies.

Academic research has expanded regression models using geographically specific dummy 
variables and distance coefficients, and, although this approach has been shown to improve 
ordinary least squares (OLS)-based regression models, they often still suffer from biased coeffi-
cients and t-scores (Berry and Bednarz, 1975; Fotheringham, Brunsdon, and Charlton, 2002; 
McMillen and Redfearn, 2010). Some researchers (Fotheringham, Brunsdon, and Charlton, 
2002) have used geographically weighted regression (GWR), a locally weighted regression 
technique, which has improved model performance by employing a spatial weighting function 
and allowing for coefficients to fluctuate across geographic space (Huang, Wu, and Barry, 2010;  
LeSage, 2004). Similarly, the spatial lag model (SLM)—a spatial autoregressive (SAR) model—
addresses spatial heterogeneity by including an autocorrelation coefficient and spatial weights 
matrix (Anselin, 1988).

Because real estate markets behave differently across geographic space, AVMs free of spatial con - 
sideration often produce inaccurate, misleading results (Anselin and Griffith, 1988; Ball, 1973; 
Berry and Bednarz, 1975). GWR is prominently demonstrated throughout literature as a more  
accurate alternative to multiple regression analysis (MRA) AVMs (for example, Borst and Mc -
Cluskey, 2008; Lockwood and Rossini, 2011; McCluskey et al., 2013; Moore, 2009; Moore and  
Myers, 2010). Similarly, SAR models have been sufficiently demon strated to increase the 
predictive accuracy of such models (Borst and McCluskey, 2007; Conway et al., 2010; Quintos, 
2013; Wilhelmsson, 2002). Descriptions of their methods and findings are summarized in 
exhibit 1.

Abstract (continued)

Norfolk, Virginia, and compares the performance of GWR and SLM by extrapolating 
each model’s performance to aggregate and subaggregate levels. Findings indicate that 
GWR achieves a lower COD than SLM.
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Wilhelmsson, 2002 Compared OLS, SAR, and SEM. SAR model improves model 
predictability of OLS model with 
spatial dummies but does not  
correct for spatial dependency.

Borst and McCluskey, 2007 Compared OLS-based and GWR 
alternatives with CSM.

CSM methodology is similar to the 
weights matrix used in an SLM 
and reduces baseline COD more 
than specified GWR model.

Conway et al., 2010 Developed spatial lag hedonic 
model to capture price effects of 
urban green space.

SLM improves OLS performance 
by helping to account for spatial 
autocorrelation.

Quintos, 2013 Used SLMs to create location-
based base prices and location 
adjustment factors.

Spatial lags significantly improve 
OLS model performance.

Despite the popularity of both GWR and SLM models in housing research, to our knowledge, a 
study that simultaneously compares the performance of GWR and SLM using industry-accepted 
IAAO standards and that extrapolates each model’s performance to aggregate and subaggregate 
levels has yet to be published. Farber and Yeates (2006) found GWR to have more accuracy and 
produce less spatially biased coefficients than SAR models, but no comparison has been made 
of how each performs against the other in the context of mass appraisal for tax assessments. A 
major finding of Bidanset and Lombard (2013)1 is that traditional measures of hedonic model 
performance (for example, the Akaike Information Criterion [AIC], R2) do not necessarily indicate 
which model will perform the best given the assessment industry standards of uniformity (that is, 
coefficient of dispersion [COD]).2 This article compares spatial regression techniques of the SLM 
and GWR and compares not only their prediction accuracy ability but also their attainment 
of IAAO equity and uniformity standards. Given the increasing availability of Geographic Infor-
mation System, or GIS, data and advances incomputational ability to perform spatial AVMs, the 
understanding of the capability that each method lends to governments in reaching more accurate 
value estimations is critical.

Paper Methodology Results/Conclusions

Exhibit 1

Select Survey of Previous SAR Real Estate Research

COD = coefficient of dispersion. CSM = comparable sales method. GWR = geographically weighted regression.  
OLS = ordinary least squares. SAR = spatial autoregressive. SEM = spatial error model. SLM = spatial lag model.

1 The final paper of this research, Bidanset and Lombard (forthcoming), is scheduled to be published in the Journal of 
Property Tax Assessment and Administration, volume 11, issue 3.
2 AIC is a commonly used goodness-of-fit test of models applied to the same sample. It has the following calculation:  
  AIC
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 is the maximum likelihood of the ith model, and K

i
 is the number of free parameters of the ith model.
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Model Descriptions and Estimation Details
The traditional OLS regression model is represented by
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is the error term of the ith sale. The GWR extension is depicted by the following—
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i
) indicates the latitude-longitude (xy) coordinates of the ith regression point. GWR 

creates a local regression allowing coefficients to vary at each observation. In this article, the xy 
coordinates of the respective sale represent each observation.

In matrix notation, the OLS model and GWR model are represented by equations 3 and 4, 
respectively.

Y = Xβ + ε, and        (3)

Y = (β⨂X)1 + ε,   (4)

where ⊗ denotes a logical multiplication operator; β is multiplied by the respective and cor-
responding value of X. This differentiates GWR from the constant vector of parameters (β ) of  
the OLS model. 

The GWR model will employ a Gaussian spatial kernel and a fixed bandwidth. Bidanset and Lom-
bard (forthcoming) show that kernel and bandwidth combinations should be examined during the 
model calibration phase—specifically regarding effect on IAAO ratio study standards—to examine 
which produces the optimal results. With the current variables and data, the Gaussian kernel 
with a fixed bandwidth achieves the lowest COD and is used in comparison against other spatial 
weighting functions tested (that is, bisquare kernel with adaptive bandwidth, bisquare kernel with 
fixed bandwidth, and Gaussian kernel with adaptive bandwidth).

During model calibration, the fixed bandwidth used in the GWR model is selected by a procedure 
that identifies the bandwidth that will achieve the lowest AIC corrected value (Fotheringham, 
Brunsdon, and Charlton, 2002).

The Gaussian kernel incorporates a distance decay function that places a higher weight on proper-
ties more closely situated to the observation point (exhibit 2). 
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Gaussian weight—

w
ij
 = exp [-1/2(d

ij
/b)2].            (5)

The SLM is represented by the following equation (Borst and McCluskey, 2007; Can, 1992)—

Y = ρWY + Xβ + ε, (6)

where W is a spatial weights matrix indicating distance relationship between observations i and j. 
The weights matrix establishes the effect nearby observations have on the subject property. The 
spatially lagged dependent variable is represented by the coefficient ρ. The weights matrix and the 
spatially lagged dependent variable help capture “spillover” effects from neighboring observations. 
In this article, a nearest neighbor matrix is derived to create a row standardized weights matrix.

Exhibit 2

Spatial Kernel Used in Geographically Weighted Regression

Source: Fotheringham, A. Stewart, Chris Brunsdon, and Martin Charlton. 2002. Geographically Weighted Regression: The Analysis 
of Spatially Varying Relationships. Chichester, United Kingdom: John Wiley & Sons

where  
   X is the regression point, 
   ● is a data point, 
   w

ij
 is the weight applied to the jth property at regression point i, 

   b is the bandwidth, and 
   d

ij
 is the geographic distance between regression point i and property j.
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Equity and Uniformity Measurement Standards
IAAO created and maintains standards that promote equity and fairness in real estate appraisals 
and assessments. The COD and the price-related differential (PRD) are two coefficients by which 
accuracy and fairness are measured.

For single-family homes, the IAAO set a maximum acceptability value of 15.0 for COD scores 
(IAAO, 2013). Values under 5.0 are indications of sales-chasing (cherry-picking sales that will 
produce optimal results) or sampling error (properties and areas more difficult to model are 
underrepresented; IAAO, 2013). The COD calculation is as follows—

where EP
i
 is the expected price of the ith property, and SP

i
 is the sales price of the ith property. The 

price-related differential is a score measuring vertical equity, represented by equation 8.

According to the IAAO Standard on Automated Valuation Models, PRD values of less than 0.98 
suggest evidence of progressivity, while PRD values of more than 1.03 suggest evidence of regres-
sivity (IAAO, 2003).

The Data and Variables
The data comprise 2,450 arms-length single-family home sales in Norfolk, Virginia, from 2010 to 
2012 and their respective characteristics at the time of sale. City assessment staff review all transfers  
of real estate within the city of Norfolk and an unbiased third party confirms them. An arms-length 
transaction requires that neither party be under duress to buy or sell, the property is listed openly, 
and no previous relationship or affiliation exists between the buyer and the seller. Because assess-
ment offices are required by law to value properties at fair market value—and non-arms-length 
transactions, such as foreclosures and short sales, do not necessarily reflect the true market—only 
arms-length transactions are included in the analysis. To promote the accuracy of results, outliers 
are identified and omitted using an IQRx3 approach (removing about 2 percent of observations). 
Furthermore, to reduce the likelihood of skewed results, observations are inspected to ensure no 
egregious errors, such as buildings with zero total living area, are present.

, (7)
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Exhibit 3 shows a list of the independent variables and their respective descriptions. TLA is the 
total area (in square feet) of livable space (excluding, for example, unfinished attics). TGA is total 
garage area (in square feet) of attached and detached garages. Age is the age of the building (in 
years). Regarding improvements built around the same time, the effective age (EffAge) represents 
the state of cured depreciation (Gloudemans, 1999). Each of these four variables is transformed 
to natural log form to allow for nonlinear relationships, such as diminishing marginal returns to 
price. A dummy variable bldgcond is included for the condition of the improvement, with a default 
of average. Using the reverse month of sale (RM1 through RM36), 11 time-indicator 3-year linear 
spline variables are created, with RM1 denoting the most recent month of sale and RM36 denoting 
the oldest month of sale). Linear spline variables offer significantly more explanatory power than 
monthly, quarterly, or seasonally based variables (Borst, 2013). RM12 and RM21 improved model 
performance significantly and are included in the exhibit.

Ln.ImpSalePrice is the dependent variable, which is calculated by first subtracting the respective 
assessed land value from each sale price and then transforming this value to its natural logarithm. 
This method attempts to isolate the effects of the independent variables on the improvement alone 
(Moore and Myers, 2010).

ln.TLA Total living area in square feet (natural log)
ln.EffAge Effective age in years (natural log)
ln.Age Age in years (natural log)
ln.TGA Total garage area in square feet, detached + attached (natural log)
bldgcond Condition of building (average is default)
RM12 12th reverse month spline variable
RM21 21st reverse month spline variable

Variable Description

Exhibit 3

Independent Variables

Results
GWR achieves the most uniform results with the lowest COD of 9.12 (exhibit 4). The SLM fol- 
lows with a COD of 10.86. Both models outperform the global model (12.51) with respect to 
uniformity. None of the models exceeds the IAAO maximum threshold of 15.00. PRD, although 
the highest with global (1.03) and the lowest with GWR (1.01), does not change very much across 
the three models. No model suggests evidence of regressivity or progressivity, although the global 
model is at the highest acceptable limit set by IAAO standards (1.03) before evidence of regressiv-
ity becomes present.

Across these models, rank of AIC is the same as rank of COD and PRD (exhibit 5).
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Global 324.52 12.51 1.03
SLM – 207.84 10.86 1.02
GWR – 784.79 9.12 1.01

  Method AIC COD PRD

Exhibit 4

Exhibit 5

Model Performance Results

Local R2 Maps by Spatial Weighting Function

AIC = Akaike Information Criterion. COD = coefficient of dispersion. GWR = geographically weighted regression.  
PRD = price-related differential. SLM = spatial lag model.

Exhibit 6 (three maps—6a, 6b, and 6c) shows the COD for each Norfolk neighborhood. These 
neighborhoods are identified by city authorities and are delineated by neighborhood shapefiles 
provided by the city. Because neighborhoods are on average composed of more similar homes 
(age, architecture, size, condition, proximity to various parts of the city, and so on), they serve as 
submarkets for further analysis and evaluation of model performance. Understanding how various 
models perform across neighborhoods of varying compositions enables modelers to calibrate 
modeling techniques that optimize individual submarkets. Because the geographic location of a 
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Exhibit 6

COD Disaggregated by Neighborhood (1 of 2)
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neighborhood can be correlated with socioeconomic and demographic conditions, such disag-
gregation enables assessors to further ensure all markets are treated without discrimination—yet 
another step toward promoting equitable valuations.

Darker shaded areas indicate higher COD values (decreased uniformity in value predictions) and 
lighter shaded areas represent lower COD values (increased uniformity in value predictions). The 
global model produces, overall, many dark gray- to black-shaded neighborhoods of low uniformity 
(exhibit 6a). The SLM model (exhibit 6b), although it alleviates only a few neighborhoods of high 
COD values, actually makes many neighborhoods worse.

The global model is more uniform than SLM (for example, at about [36.89, -76.25]), but the 
SLM outperforms the global model and GWR (exhibit 6c) directly to the east of Old Dominion 
University.

Exhibit 6c reveals the GWR model overall achieves a much smoother distribution of lower COD 
values, as evidenced by the lighter gray colors and less severe contrast of shades.

Although GWR achieves the lowest citywide COD, the global model outperforms GWR at about 
(36.95, -76.16). The global model and SLM outperform GWR at about (36.85, -76.255). Similar 
to findings of Bidanset and Lombard (forthcoming), this variation in COD suggests that, although 

Exhibit 6

COD Disaggregated by Neighborhood (2 of 2)
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(c) GWR Results

COD = coefficient of dispersion. GWR = geographically weighted regression. lat = latitude. lon = longitude. SLM = spatial lag 
model.
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a model achieves optimal aggregate results, it may still be outperformed within subaggregate 
geographic regions. Several areas, such as the northeastern peninsula labeled “Willoughby Spit,” 
are drastically improved with GWR, and the COD is reduced to an IAAO-acceptable level (less than 
15.00). Waterfront homes in neighborhoods are grouped into a separate neighborhood shapefile. 
In each map of exhibit 6, the waterfront homes in Willoughby Spit are significantly less uniform 
than the nonwaterfront homes.

Conclusions
Using arms-length residential sales from 2010 to 2012 in Norfolk, Virginia, this article compares 
the performance of GWR and SLM, specifically regarding IAAO levels of uniformity and equity at 
aggregate and subaggregate geographic levels. Findings suggest that GWR achieves more uniform 
results (lower COD) overall than SLM, and both achieve more uniform results than the spatially 
unaware global model. Although a model may produce optimal overall results, disaggregation 
into submarkets (for example, neighborhoods) reveals that it can still be outperformed within 
subgeographic areas by other models that produce inferior overall results. Compared with the 
global model, the SLM model actually increases the COD for a number of neighborhoods, despite 
having a lower overall citywide COD. This variation of models across geographic space supports 
findings of Bidanset and Lombard (2013) and suggests that modelers should explore various models’ 
performance in various locations to optimize equity and uniformity in assessment jurisdictions 
overall.

Furthermore, waterfront estimations of value are included in land values, which, as previous lit- 
erature suggests, are subtracted from total value in an attempt to isolate the explanatory variables’ 
effects on the price of the building only. The differences between waterfront and nonwaterfront 
properties’ uniformity suggest that this method does not fully account for such effects and, therefore, 
should be included in the model, perhaps in the form of a dummy variable.

Further GWR- and SLM-performance research is needed. Variations in SLM weights matrix style, 
such as binary, global standardized, and variance stabilization, and their effect on COD and PRD 
could be examined. In addition, more research that uses different variable selections and different 
markets of varying size and characteristics could be explored. Temporal variations and weighting 
schemes should also be evaluated to measure potential effects on the behavior of spatial models.

Acknowledgments

The authors thank Bill Marchand (Chief Deputy Assessor) and Deborah Bunn (Assessor) of the City 
of Norfolk, Virginia, Office of the Real Estate Assessor, for the opportunity to conduct this research.

Authors

Paul E. Bidanset is a Ph.D. student at the University of Ulster, School of the Built Environment, 
Newtownabbey, United Kingdom, and a real estate CAMA modeler analyst for the City of Norfolk, 
Virginia, Office of the Real Estate Assessor. 



180 SpAM

Bidanset and Lombard

John R. Lombard teaches graduate courses in research methods, urban and regional development, 
and urban resource allocation in the Department of Urban Studies and Public Administration at 
Old Dominion University (ODU) and serves as the Director of the ODU Center for Real Estate and 
Economic Development. 

References 

Anselin, Luc. 1988. Spatial Econometrics: Methods and Models. Dordrecht, The Netherlands: 
Springer.

Anselin, Luc, and Daniel A. Griffith. 1988. “Do Spatial Effects Really Matter in Regression Analy-
sis?” Papers in Regional Science 65 (1): 11–34.

Ball, M.J. 1973. “Recent Empirical Work on the Determinants of Relative House Prices,” Urban 
Studies 10 (2): 213–233.

Berry, Brian J., and Robert S. Bednarz. 1975. “A Hedonic Model of Prices and Assessments for 
Single-Family Homes: Does the Assessor Follow the Market or the Market Follow the Assessor?” 
Land Economics 51 (1): 21–40.

Bidanset, Paul E., and John R. Lombard. Forthcoming. “The Effect of Kernel and Bandwidth 
Specification in Geographically Weighted Regression Models on the Accuracy and Uniformity of 
Mass Real Estate Appraisal,”  Journal of Property Tax Assessment and Administration. 

———. 2013. “Optimal Spatial Weighting Functions of Geographically Weighted Regression 
Models Used in Mass Appraisal of Residential Real Estate.” Paper presented at the International 
Geographic Union Conference 2013: Applied GIS and Spatial Modelling. Leeds, United Kingdom, 
May 30.

Borst, Richard A. 2013 (April). Optimal Market Segmentation and Temporal Methods: Spatio-Temporal 
Methods for Mass Appraisal. Fairfax, VA: International Property Tax Institute. 

Borst, Richard A., and William J. McCluskey. 2008. “Using Geographically Weighted Regression To 
Detect Housing Submarkets: Modeling Large-Scale Spatial Variations in Value,” Journal of Property 
Tax Assessment and Administration 5 (1): 21–51.

———. 2007. “Comparative Evaluation of the Comparable Sales Method With Geostatistical 
Valuation Models,” Pacific Rim Property Research Journal 13 (1): 106–129.

Can, Ayse. 1992. “Specification and Estimation of Hedonic Housing Price Models,” Regional Science 
and Urban Economics 22 (3): 453–474.

Conway, Delores, Christina Q. Li, Jennifer Wolch, Christopher Kahle, and Michael Jerrett. 2010. 
“A Spatial Autocorrelation Approach for Examining the Effects of Urban Greenspace on Residential 
Property Values,” The Journal of Real Estate Finance and Economics 41 (2): 150–169.

Downie, Mary Lou, and Gill Robson. 2007. Automated Valuation Models: An International Perspective. 
London, United Kingdom: The Council of Mortgage Lenders. 



181Cityscape

Evaluating Spatial Model Accuracy in Mass Real Estate Appraisal:  
A Comparison of Geographically Weighted Regression and the Spatial Lag Model

Farber, Steven, and Maurice Yeates. 2006. “A Comparison of Localized Regression Models in a 
Hedonic House Price Context,” Canadian Journal of Regional Science 29 (3): 405–420.

Fotheringham, A. Stewart, Chris Brunsdon, and Martin Charlton. 2002. Geographically Weighted 
Regression: The Analysis of Spatially Varying Relationships. Chichester, United Kingdom: John Wiley 
& Sons.

Gloudemans, Robert J. 1999. Mass Appraisal of Real Property. Chicago: International Association of 
Assessing Officers.

Huang, Bo, Bo Wu, and Michael Barry. 2010. “Geographically and Temporally Weighted Regression 
for Modeling Spatio-Temporal Variation in House Prices,” International Journal of Geographical 
Information Science 24 (3): 383–401.

International Association of Assessing Officers (IAAO). 2013. Standard on Ratio Studies. Kansas City, 
MO: International Association of Assessing Officers.

———. 2003. Standard on Automated Valuation Models (AVMs). Chicago: International Association 
of Assessing Officers.

LeSage, James P. 2004. “A Family of Geographically Weighted Regression Models.” In Advances in 
Spatial Econometrics, edited by Luc Anselin, Raymond Florax, and Sergio Rey. Berlin, Germany: 
Springer-Verlag: 241–264.

Lockwood, Tony, and Peter Rossini. 2011. “Efficacy in Modelling Location Within the Mass 
Appraisal Process,” Pacific Rim Property Research Journal 17 (3): 418–442.

McCluskey, W.J., M. McCord, P.T. Davis, M. Haran, and D. McIlhatton. 2013. “Prediction Accuracy 
in Mass Appraisal: A Comparison of Modern Approaches,” Journal of Property Research 30 (4): 
239–265.

McMillen, Daniel P., and Christian L. Redfearn. 2010. “Estimation and Hypothesis Testing for 
Nonparametric Hedonic House Price Functions,” Journal of Regional Science 50 (3): 712–733.

Moore, J. Wayne. 2009. “A History of Appraisal Theory and Practice Looking Back From IAAO’s 
75th Year,” Journal of Property Tax Assessment & Administration 6 (3): 23–50.

Moore, J. Wayne, and Josh Myers. 2010. “Using Geographic-Attribute Weighted Regression for 
CAMA Modeling,” Journal of Property Tax Assessment & Administration 7 (3): 5–28.

Quintos, Carmela. 2013. “Spatial Weight Matrices and Their Use As Baseline Values and Location-
Adjustment Factors in Property Assessment Models,” Cityscape 15 (3): 295–306.

Wilhelmsson, Mats. 2002. “Spatial Models in Real Estate Economics,” Housing, Theory and Society 
19 (2): 92–101.



182 SpAM

Bidanset and Lombard

Additional Reading

Dubin, Robin, R. Kelley Pace, and Thomas G. Thibodeau. 1999. “Spatial Autoregression Tech-
niques for Real Estate Data,” Journal of Real Estate Literature 7 (1): 79–96.

Fotheringham, A. Stewart, Martin E. Charlton, and Chris Brunsdon. 1998. “Geographically 
Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis,” 
Environment and Planning A 30: 1905–1927.

———. 1996. “Geographically Weighted Regression: A Method for Exploring Spatial Nonstation-
arity,” Geographical Analysis 28 (4): 281–298.




