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Geographic Information Systems (GIS) organize and clarify the patterns of human activities 
on the Earth’s surface and their interaction with each other. GIS data, in the form of maps, can 
quickly and powerfully convey relationships to policymakers and the public. This department 
of Cityscape includes maps that convey important housing or community development policy 
issues or solutions. If you have made such a map and are willing to share it in a future issue of 
Cityscape, please contact alexander.m.din@hud.gov.
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Abstract

As the novel coronavirus disease (COVID-19) continues to infect, harm, and kill thousands of 
Americans, many jurisdictions and institutions are publishing data at the ZIP Code-level, including 
counts of tests performed, people infected, hospitalizations, and deaths. These data are leading to quickly 
produced publications with strong conjectures about the forming of geographic patterns. We present an 
alternative to ZIP Codes when working with local COVID-19 data.
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The large, ambiguous shapes and skewed underlying data of ZIP Codes adversely affect statistical 
analyses, which can lead to incorrect conclusions, particularly in the health sciences (Beyer, 
Schultz, and Rushton, 2007; Cudnick et al., 2012; Grubesic and Matisziw 2006; Krieger et. al., 
2002; Oregon Health Authority, 2020; Sadler, 2019; Wilson, 2015). In particular, a recent study by 
Harris (2020) from the National Bureau of Economic Research (NBER) simply overlaid New York 
City (NYC) subway ridership patterns with ZIP Code data to suggest the subway is responsible for 
COVID-19 concentration patterns across the city.

Using COVID-19 data from the NYC Department of Public Health1 and subway exit turnstile data 
from the NYC Metropolitan Transit Authority (MTA),2 we examine if any spatial relationships exists 
between the two, with a more statistically robust analysis than other authors. The COVID-19 data 
are cumulative to April 30, 2020. The turnstile data are between November 1, 2019, and March 
15, 2020; Staten Island data were unavailable for this analysis.3

Using the HUD 2020 quarter 1 ZIP-to-census-tract crosswalk file,4 we created positive COVID-19 
case density estimates for a more local-level analysis at the census tract-level, thus escaping the 
adverse effects of ZIP Codes. Our disaggregated estimates from these larger geographic units are 
robust because of numerous empirical results that exemplify Gibrat’s law, which states that a growth 
rate is proportional to the size of the distribution with which it is in contact (Santarelli, Klomp, and 
Thurik, 2006; Yigit, 2020). With respect to the growth of COVID-19 in specific neighborhoods, it is 
expected that the virus growth is clustered in census tracts with a higher population.

The bivariate cluster map in exhibit 1 shows the statistical relationship between census tract 
distance to the subway station and positive COVID-19 estimate densities (per square kilometer). 
The Short Distance-High Density (dark orange) are the clusters of interest, which represent census 
tracts near subway stops that are surrounded by census tracts with high positive COVID-19 
estimate densities.

The Bronx and upper Manhattan are the only two boroughs that show a systemic relationship 
between proximity to the subway stations and high COVID-19 density estimates. However, the 
subway exit averages, shown as red circles, in these positive density hot spots vary from low to high, 
with many non-hot-spot subway stops having consistently high exit averages. This is inconsistent 
with the idea that COVID-19 hot spots would be near high-use subway stops and lines.

1 https://github.com/nychealth/coronavirus-data
2 http://web.mta.info/developers/developer-data-terms.html
3 The New York City Subway does not connect to Staten Island. While Staten Island does have passenger rail service 
via the Staten Island Railway, it does not connect to any of the other four boroughs.
4 https://www.huduser.gov/portal/datasets/usps_crosswalk.html

https://github.com/nychealth/coronavirus-data
http://web.mta.info/developers/developer-data-terms.html
https://www.huduser.gov/portal/datasets/usps_crosswalk.html


Using HUD Crosswalk Files to Improve COVID-19 Analysis at the ZIP Code and Local Level

367Cityscape

Exhibit 1

COVID-19 Cluster Relationships between Subway Exits Levels and Positive Density Estimates

 
Source: Metropolitan Transit Authority Turnstile Data November 1, 2019 – March 15, 2020 http://web.mta.info/developers/turnstile.html

http://web.mta.info/developers/turnstile.html
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Lower Manhattan does not show hot spots near subways, while Brooklyn and Queens only show 
three hot spots. Further, Brooklyn and Queens either show no relationship between distance to 
the subway and positive densities (light grey) or have Long-Distance Low-Density (dark blue) cold 
spots that are census tracts far from the subway, surrounded by tracts with low positive densities. 
Queens has two large cold spots, one in-between a series of subway stops, indicating no in-fill of 
positive density clusters emanating from being surrounded by the subway.

With some of the above studies suggesting a relationship between high positive densities and 
population density (population per square kilometer), we examine this relationship in conjunction 
with distance to the subway (exhibit 2). The first two correlations are the distance to the subway 
with positive densities and population densities, which primarily indicate that positive and 
population densities are moderately associated with closer proximity to the subway at about the 
same levels. However, the third correlation between positive and population densities shows a 
strong relationship, suggesting that COVID-19 densities are more associated with population 
density than proximity to the subway.

Exhibit 2

Correlation of Densities of COVID-19 Cases with Distance to the Subway and  
Population Densities

Geography

Distance & Positive 
Densities

Distance & Population 
Densities

Positive & Population 
Densities

r t p r t p r t p

The Bronx -0.41 -8.13 < 0.001 -0.42 -8.33 < 0.001 0.88 33.52 < 0.001
Brooklyn -0.32 -6.47 < 0.001 -0.37 -10.92 < 0.001 0.72 27.99 < 0.001

Manhattan -0.15 -2.63 0.009 -0.12 -1.93 0.055 0.77 19.97 < 0.001
Queens -0.37 -10.31 < 0.001 -0.49 -14.47 < 0.001 0.82 37.85 < 0.001
Staten Island n/a n/a n/a n/a n/a n/a n/a n/a n/a
New York City -0.32 -15.64 < 0.001 -0.43 -21.35 < 0.001 0.75 51.48 < 0.001

A simple regression of positive COVID-19 density estimates (y) in relation to the distance to the 
subway (x1) and the population density (x2) shows no statistical relationship between the positive 
estimates when controlling for the population density (exhibit 3). This baseline model indicates 
that increased COVID-19 estimates are related more to increased population density than to 
proximity to subway stations. The adjusted R-squared of 0.57 shows that this initial baseline model 
indicates that it has a strong explanatory power of the positive estimates being unrelated to tracts 
near subway stations.
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Exhibit 3

Regression Coefficients Between Distance to Subway, Positive Case Density, and Population Density

Variable Estimate Std. Error t-Value Pr(>|t\)

intercept 0.0524 0.0081 6.429 0.0000 ***
Distance to Subway -1.2E-06 3.2E-06 -0.371 0.7100
Population Density 0.0124 0.0003 46.295 0.0000 ***

Exhibit 4, a 3D scatter plot, exemplifies the regression relationship between near distance to 
subway (x), population density (y), and positive estimates (z). The pattern in the data cloud reveals 
a higher correlation between the positive COVID-19 estimates and population density than with 
distance to the subway. The relationship trend in exhibit 4 shows that the positive estimate density 
rises steeply at very close distances to subway stations but is pulled away and spread widely on the 
population density axis.

Exhibit 4

Correlations between Distance to Subway, Positive Case Density, and Population Density
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This pattern indicates that positive COVID-19 densities increase with population density, and 
population density increases as distance to the subway stations decreases. With the color gradient 
showing changes in positive estimate density, the pattern shows that the highest positive density 
estimates correspond with the highest population densities near the subway stops.

Correspondingly, the pattern revealed in the data cloud in exhibit 4 corresponds with the 
regression results in exhibit 3. That is, the positive COVID-19 estimates are more associated with 
higher population density than being close to subway stations.

Our analysis aligns with other research that suggests COVID-19 clusters may be related to 
something other than public transportation such as places where people spend a more significant 
amount of time (Bromage, 2020; Kay, 2020). With COVID-19 primarily requiring longer periods 
of exposure than typical subway rides, it is not yet proven that public transportation is the culprit 
for spreading the virus. More so, the virus seems to be associated with higher population densities, 
which is in line with the nature of a communicable outbreak (Yigit, 2020).
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