Housing Supply and Liquidity in the COVID-19 Era

Justin Contat Malcolm Rogers Federal Housing Finance Agency

The analysis and conclusions are those of the authors alone and should not be represented or interpreted as conveying an official position, policy, analysis, opinion, or endorsement of either the Federal Housing Finance Agency or the U.S. government. Any errors or omissions are the sole responsibility of the authors.

Abstract

This report documents changes in national housing supply and liquidity during the COVID-19 era using a suite of monthly indices, ranging from summary statistics (mean and median time on the market, proportion of homes sold, etc.) to more advanced econometric indices that can address censoring and unobserved heterogeneity. The results indicate a sharp structural break in most of the indices near the start of COVID-19 in March 2020, though each index's most likely break date varies by a few months. The findings suggest that the start of the pandemic saw a supply decrease, followed by an immediate and sustained price increase. Listings became more likely to be withdrawn, but those that sold did so faster relative to pre-COVID-19 levels, indicating a change in the distribution of housing market liquidity. Finally, the results suggest that there were different types of structural breaks, specifically changes in the level, slope, and seasonality of the indices.

Introduction

COVID-19 caused major disruptions to the health and the economy of the United States.¹ One large sector of the economy that COVID-19 has impacted is the housing market. For example, the Federal Housing Finance Agency House Price Index (FHFA HPI®) reveals unprecedented price appreciation during the COVID period, with year-over-year (seasonally adjusted) appreciation sustaining double-digit increases since October 2020. Additionally, the media has pointed out

¹ For example, as Mutikani (2021) points out, the Bureau of Economic Analysis reported a decrease of annualized GDP of 19.2 percent from the fourth quarter of 2019 to the second quarter of 2020. Additionally, Kennedy (2022) argues there may be longer term consequences to the U.S. economy.

that COVID-19 has affected home construction (Mutikani, 2020), interest rates and refinancing (Goodman and Klein, 2022), and migration (Taylor, 2020), among other things. While much attention has been paid by the press and academic literature on COVID-19's effects on home prices, less attention has been paid to COVID's effects on housing market supply² and liquidity.³ As far as the authors are aware, there is no systematic study of the effects of COVID-19 on housing supply and liquidity.⁴ This report aims to fill this gap.

To fill this gap, a suite of housing market supply and liquidity indicators are constructed at the national level. Several indices are used, in part because there is no single, agreed-upon index, but also because by considering them jointly affords a more holistic view of the housing market. The indicators are housing market indices that range in sophistication from basic summary statistics to more advanced econometric measures (Carrillo and Williams, 2019). The results suggest three stylized facts. First, there is evidence of structural breaks at the start of COVID-19 in March 2020 for all but one of the market indicators, though the most likely break for an index occurred a few months before or after March 2020, depending upon the index. Second, the advanced econometric indices, which are constructed to address unobserved heterogeneity and censoring, appear to break later than the simpler indices, which do not control for these factors. Thus, the results provide evidence for the importance of addressing these two fundamental issues when measuring housing market supply and liquidity. Finally, there is evidence of different types of structural changes that vary from index to index. These structural breaks include changes in the level, changes in slope, and also changes in the seasonality of each index.

Unobserved heterogeneity across properties, and changes in the composition of homes during the pandemic are subjects of concern. For example, it may be the case that homes that transacted prior to COVID have different characteristics compared to those that transacted after the start of the pandemic.⁵ Additionally, COVID-19 may have changed market conditions directly of its own accord. Hence, an analysis of housing market liquidity would be incomplete without considering how the number of homes available for sale, particularly those that didn't sell, changed during the COVID-era. To remedy this, some indices are investigated that use information from all listings, including those that did not sell.

 $^{^{2}}$ Note that this report does not consider new construction, so that the analysis of supply is restricted to the supply of pre-existing homes.

³ D'Lima, Lopez, and Pradhan (2022) find a 1.5 percent price decrease in densely populated areas and a 1.4 percent price increase in relatively sparsely populated areas in response to shutdown orders. Wang (2021) and Zhang, Leonard, and Bitzan (2022) both find evidence of price increases in several different areas of the United States. Zhao (2022) finds evidence of price increases early in the pandemic. Finally, Duca, Hoesli, and Montezuma (2021) and Yiu (2021) consider international housing market responses and argue that interest rates were important in driving home prices.

⁴ This work is most closely related to Yoruk (2022), who finds decreases in home sales and the number of new listings since the start of the pandemic in March 2020.

⁵ For example, D'Lima, Lopez, and Pradhan (2022) show different price trends in rural versus urban areas, suggesting demand and preference changes. If homes are systematically different in rural versus urban areas, which seems plausible, then changing composition will be a factor in estimating either price appreciation or liquidity.

The indices on supply and liquidity used in this report complement the more typical indices for homes prices.⁶ For example, after learning that prices have increased, knowing whether or not liquidity or supply was constrained can lead to different policy conclusions. Additionally, several papers in the literature have documented that there may exist a lead-lag relationship between price and time on the market during the Great Recession, so that changes in the latter can be used to predict changes in the former.⁷ This report finds similar results. Specifically, there is evidence of a negative relationship between price and time on the market (TOM) in the COVID era, with price increases and TOM generally decreasing as the pandemic progressed.⁸ This report builds off of several recent papers in the literature that have constructed new methods of estimating housing market liquidity, most notably Carrillo and Williams (2019).⁹

The plan of the report is as follows. First, a brief timeline of the major events during the COVID-era that are germane to our analysis is provided. After that, the data and methodology are introduced, distinguishing between the simpler "traditional" indices and the more complex "advanced" indices. Then structural breaks are defined, with details on how to detect them econometrically. After that, the results are presented graphically, and various structural break tests are performed for each of the indices. Finally, implications of the results are discussed, followed by a conclusion.

COVID-19 Background

The swift policy responses to the economic impacts of COVID-19 began in March 2020, the first of which was a reduction in the target Federal Funds Rate on March 5, 2020, with a corresponding decrease on March 15, 2020. In addition, the U.S. Congress passed the Coronavirus Aid, Relief, and Economic Security (CARES) act on March 27, 2020, providing a number of relief benefits to American households, namely a pause on student loan payments and direct \$1,200 payments to households.¹⁰ These measures coincided with the declaration of a nationwide emergency and the designation of the COVID-19 disease as a pandemic on March 11 and 13, respectively, underlining the significance of March 2020 as the de facto start of the pandemic, or at least the start of its many policy responses.¹¹ This report focuses on the start of

⁶ Admittedly, this report abstracts from interest rates in our analysis, which were at all-time lows in the period, presumably driving some demand, consequently affecting liquidity. Kuttner (2012) argues that "the impact of interest rates on house prices appears to be quite modest," with a vector autoregression (VAR) model predicting a 10 basis point reduction in the long term interest rate leading to a home price increase of 0.3 percent to 0.8 percent, depending upon the level of the current interest rate. Future work could investigate the specific interest rate effect during the COVID era.

⁷ For example, see Carrillo, de Wit, and Larson (2015) and Keys and Mulder (2020). The latter source notes that during the last financial crisis "the pattern of volume and prices during the housing market boom and bust demonstrates that prices are not a sufficient statistic for market demand, and that declines in volume may well occur before falling prices." They then argue a similar pattern emerges due to a climate risk shock.

⁸ See exhibit 15b.

⁹ For other examples, van Dijk (2019) use a stochastic time trend (as opposed to a time fixed effect) to estimate TOM indexes in thin markets. Additionally, Genesove and Han (2012) develop a matching model to explain both buyer and seller TOM.

¹⁰ Early in the pandemic, Cherry et al. (2021) found that the government and private relief induced more individuals into forbearance, about 25 percent, which suggests "large aggregate consequences for house prices and economic activity."

¹¹ See the Center for Disease Control's COVID-19 Timeline for a more detailed discussion of major events with regard to COVID-19.

COVID-19 as the initial shock. Exhibit 1 presents the events in the COVID-19 timeline that are germane for the analysis using information from the Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO).

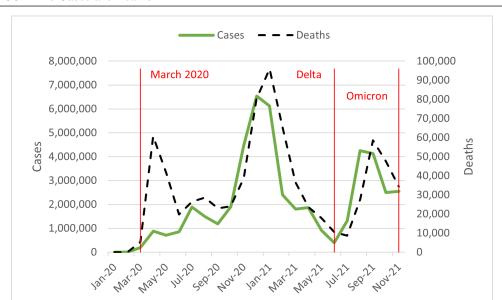
Exhibit 1	
-----------	--

Key COVID-19 Moments	
Date	Event
December 12, 2019	Patients in Wuhan, China experience symptoms
January 20, 2020	First confirmed case of COVID-19 in the United States
March 11, 2020	WHO declares COVID-19 a pandemic
March 13, 2020	President Trump declares a nationwide emergency
March 15, 2020	U.S. states begin to shut down to prevent the spread of COVID-19
June 1, 2021	Delta variant becomes the dominant variant in the U.S.
November 26, 2021	WHO classifies Omicron variant

Source: CDC (https://www.cdc.gov/museum/timeline/covid19.html)

Exhibit 2 shows actual case numbers and deaths from COVID-19 and its variants for the United States. Apart from an initial surge in deaths at the start of the pandemic in March 2020, the number of cases typically leads the number of deaths. After the pandemic was underway, the figure indicates an increase in the number of cases and deaths in the winter of 2021 and at the start of the Delta variant. One might expect the housing market responses to COVID-19 to be particularly strong during this period.

Exhibit 2



COVID-19 Cases and Deaths

Note: Data represent number of cases and deaths for each month reported at the national level. Source: COVID-19 Data Repository by the Center for Systems Science and Engineering

Data

The data come from CoreLogic, Inc. which provides listings data by combining data from 156 individual multiple listing services across the United States. A multiple listing service (MLS) is a regional database of property characteristics entered by the realtor including list date, contract date, list price, beds, baths, square footage, address, etc. According to the Real Estate Standards Organization (RESO), as of October 2020, around 80 percent of all homes sold are in an MLS system.¹²

The data span January 1980 through December 2021, though some regions have data from earlier periods. In the analysis, the focus is on the time period from January 2015 to December 2021. Data are sparse for counties in the west-north-central and south-west-central census divisions relative to the entire United States, whereas the middle-Atlantic and Pacific divisions comprise a large proportion of the listings in the data. Exhibit 3 shows coverage across the United States after culling for outliers.

Exhibit 3

Counties with Listings Between 2000–2021

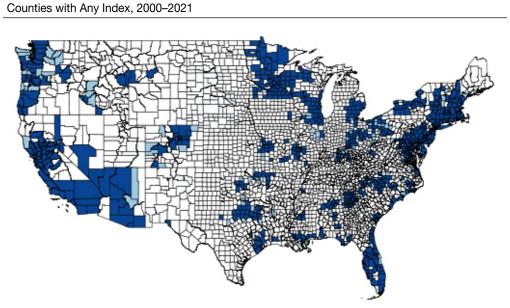
Note: Data is presented after culling for outliers. Source: Multiple Listings Service data provided by CoreLogic, Inc.

Outliers are removed if there are obvious data errors or other similarly impossible situations. Specifically, observations are dropped with negative or zero list or sale prices, missing addresses or state/county Federal Information Processing Standard (FIPS) codes, and missing close, contract, or off-market dates. Also, the bottom and top percentile of list prices for each year are dropped. Attention is restricted to single family residential homes, so that nonresidential properties, such as commercial real estate, farms, timeshares, etc., are also dropped. Additionally, nested listings, defined as listings with both a list date and contract or off-market date that falls within the same dates of

 $^{^{\}scriptscriptstyle 12}$ See RESO (2020) for more information.

another listing for the same property, are removed.¹³ Exhibit 4 illustrates the counties for which indices could be constructed for at least some time periods after removing outliers. Finally, since data were collected in December 2021, indices are omitted for that month for right-censoring reasons.¹⁴

Exhibit 4



Note: Filled in counties are those for which any index could be calculated, and darker counties are those for which an advanced index could be calculated. Source: Multiple Listings Service data provided by CoreLogic, Inc.

Some care is needed in defining a listing, particularly when a home is relisted on the market shortly after being removed from the market. Following Carrillo and Williams (2019), two listings for a home are combined where the first listing did not end in a sale and the home was relisted within 60 days. This helps to address any potential strategic concerns of sellers who might withdraw properties and relist them to make the property appear to be a new listing or gain salience. The listing duration is then the sum of the individual listing durations. Note that this only applies to an unsold listing; the sale of a property always concludes a listing, regardless of when the property is listed next.

Housing Supply and Liquidity Indices

There is no single agreed-upon measure of either housing market supply or housing market liquidity. Different measures address different questions and have different purposes. In line with this logic, a suite of different indices is used, each of which has its own advantages and disadvantages. The measures of supply and liquidity are grouped into traditional measures

¹³ For example, a home listed on June 1, 2020, and contracted on July 3, 2020, would qualify as a nested listing if that same property was also listed any time before June 1, 2020, with a contract or off-market date after July 3, 2020.

¹⁴ Including the last month would likely mechanically estimate slower sale times because properties listed at the start of December may have simply not been on the market long enough to have had a chance to sell.

(typically summary statistics) and more advanced measures that are derived from econometric models. Each of the indices is a monthly index at the national level. Exhibit 5 lists all of the housing supply and liquidity indices that are calculated in this report, where the repeat proportional hazard index (RPHI) and the repeat median time on the market index (RMTI) are the advanced indices. Additionally, analysis is performed on home prices using the FHFA's HPI and its associated year-over-year (YoY) change.

Exhibit 5

List of Indices	
Traditional Index	Description
Count of New Listings (logged)	Sum of listings listed in a particular month
YoY New Listings	Percent change in the count of new listings
Percent Sold 90 days	Proportion of total listings that sold within 90 days
Percent Sold 14 days	Proportion of total listings that sold with 14 days
Percent Withdrawn	Proportion of total listings that did not go on to sell
Percent of Price Drops	Proportion of total listings with sale price < list price
Mean TOM for sold listings (logged)	Average days between list and sale date for sold homes
Mean TOM for all listings (logged)	Average days between list and sale date or off-market date for all homes
Median TOM for sold listings (logged)	Median days between list and sale date for sold homes
Median TOM for all listings (logged)	Median days between list and sale date or off-market date for all homes
Advanced Index	Description
RPHI	Estimated using methodology of Carrillo and Williams (2019)
RMTI	Estimated using methodology of Carrillo and Williams (2019)

RPHI = repeat proportional hazard index. RMTI = repeat median TOM index. TOM = time on the market. YoY = year-over-year. Notes: If a listing ended in a sale, it is considered sold. Otherwise, it is considered withdrawn. Withdrawn and unsold are used interchangeably.

The advanced measures are two indices developed by Carrillo and Williams (2019) that employ repeat sales techniques: the repeat proportional hazard index (RPHI) and the repeat median TOM index (RMTI). Coverage of the indices is expanded from a quarterly basis at the CBSA level for six different areas (Carrillo and Williams, 2019) to a monthly basis at the national level using 3,092 U.S. counties out of the 3,242 total U.S. counties and county equivalents.

Traditional Descriptive Indices

The mean and median TOM are common statistics used to measure the speed of sale of a typical home in a given housing market.¹⁵ These measures are often interpreted as an indication of the level of housing market liquidity in a given time period. Generally speaking, lower values of TOM mean hotter markets (that is, relatively more buyers than sellers) because sellers can sell their properties relatively easily in a short amount of time. Some care is needed with terminology because TOM is typically defined only for sold listings, and the dates used may not be consistent across sources.¹⁶ After grouping listings according to the process described previously, we define TOM for both sold

¹⁵ For example, both Redfin and Realtor.com use median days on the market in their regular reports of housing markets.
¹⁶ As Benefield and Hardin (2013) point out, even when considering only sold listings, there are different definitions of time on the market in the literature. For example, some papers use contract date as the termination date while others use closing date.

and unsold listings. For sold listings, TOM of a listing is defined as the number of days between the list date and the date the contract was signed. For unsold listings, TOM is defined as the number of days between the list date and the date the home was removed from the market. By comparing the mean (or median) TOM for sold and all (sold and unsold) listings, it is possible to analyze the consequences of censoring on these measures. Also, differences between mean and median give insights about the tails of the distribution of TOM.

To complement the typical measures of TOM, the fraction of homes sold with respect to three different time periods are considered: within 14 days, within 90 days, and with any number of days. The last measure is simply the percentage of homes that sell within a given list month. It is more convenient to work with its opposite, that is, the percentage of homes that were withdrawn from the market before selling. Analyzing the differences between the three indices can give additional information about how the distribution of TOM is changing.¹⁷ For example, if the proportion of listings selling within 14 days increases, but the proportion of listings selling within 90 days and any number of days decreases, then the shape of the TOM distribution is changing, whereby mass is moved to the left of the distribution and the overall measure of sold homes is reduced. In other words, some homes experienced greater likelihoods of faster sales while the overall likelihood of a sale decreased.

A more direct measure of supply uses the number of new listings on the market.¹⁸ For each list month, the count of new listings and its year-over-year percentage change are calculated. All else equal, the more new listings there are, the larger the supply of homes on the market. This will be the most direct measure of housing market supply.

The final traditional descriptive index is the percentage of homes listed each month that experience a price drop. This measure is defined only for sold listings. For the purposes of this report, a (sold) listing has experienced a price drop if the sale price is lower than the original list price. Notably this measure suffers from censoring in so far as price drops for unsold homes have different effects than price drops for listings that go on to sell. Nevertheless, the proportion of price drops gives insights into seller behavior. All else equal, the more price drops there are, the more likely buyers are to have bargaining power. Conversely, a drop in the number of price drops indicates a market with relatively limited supply.

To facilitate comparison with price trends, the Federal Housing Finance Agency's (FHFA) House Price Index (HPI)[®] and its year-over-year (YoY) appreciation rate are included in the traditional indices. Non-seasonally adjusted (NSA) values are used because the other series have not been seasonally adjusted.

While intuitive, the traditional measures tend to suffer from the well-known statistical problems of censoring and unobserved heterogeneity (across listings). Here the censoring problem manifests itself as homes being pulled off of the market before they have had a chance to sell. Thus, the

¹⁷ For an example of work on the distribution of TOM, see Carrillo and Pope (2012), who extend the decomposition methods of DiNardo, Fortin, and Lemieux (1996) to analyze changes in the entire distribution of TOM in terms of changes in home characteristics versus changes in fundamental market conditions.

¹⁸ Note that this excludes newly constructed homes that do not sell with a listing, as well as excludes home sales that are for sale by owner. This report cannot comment on these selection effects as we lack the sufficient data.

observed times on the market for sold homes are likely to be less than those for the entire population, leading to estimates of time on the market that are too small if only sold listings are used. Also, if sold listings are different from the population of listings in a systematic way, say possessing on average different housing characteristics, then traditional measures may be biased.¹⁹

The problem of unobserved heterogeneity for the traditional measures means not taking into account differences in the composition of homes that transact over time. If sold homes are not representative of the larger population, it is important to take into account these differences when measuring housing market performance.²⁰ For measures of house price appreciation, the hedonic and repeat sales approaches each offer a solution to this problem by attempting to control for the observable characteristics of the home and by differencing out any time-invariant characteristics between consecutive sales, respectively. Unobserved heterogeneity tends to plague hedonic methods (by definition) and repeat sales methods (at least to the extent that unobserved heterogeneity changes over time).

Fortunately, Carrillo and Williams (2019) develop two advanced measures of housing market liquidity that each handle both censoring and unobserved heterogeneity. Both measures exploit repeated sales of the same listing to difference out time-invariant unobserved features of a home that may influence its time on the market. These methods are data-intensive in that they require a home to be sold at least twice in order for it to be used for estimation. Fortunately, the data stretches far enough back in time to have a large number of usable observations.

Advanced Econometric Indices

The methodology behind the two advanced measures is now briefly introduced, where the reader can refer to Carrillo and Williams (2019) for further details. This report adopts their notation for expositional ease. The first advanced measure is a proportional hazard model called the RPHI.²¹ The core assumption of this approach is that hazard rates are multiplicatively separable into a common term (usually called the baseline hazard) that varies over time, but is the same for all homes, and into an idiosyncratic term that varies by home but not over time.²² Carrillo and Williams (2019) then marry this idea with a repeat sales methodology to "difference out" the idiosyncrasies for each home.

More formally, the hazard rate $\lambda_{it}(y)$ for home *i* at calendar date *t* that has already been on the market for *y* days is:

$$\lambda_{it}(y) = \exp(\beta_{t}) \times \exp(\alpha_{t}) \times \lambda_{0}(y)$$
(1)

¹⁹ In a related vein for house price measurement, Gatzlaff and Haurin (1997), Gatzlaff and Haurin (1998), and Malone and Redfearn (2020) show that measures of house price appreciation from sold homes are likely to be biased using repeat sales, hedonic, and aggregation methodologies, respectively.

²⁰ For recent work in addressing changing composition with respect to home prices and home appreciation, see Contat and Larson (2022), who demonstrate the importance of changing geographic composition in index construction.

²¹ See Cox (1972) for the seminal reference and Wooldridge (2002) for a more recent textbook treatment on proportional hazard models.

²² In other words, the proportional hazard assumption maintains that if property A is twice as likely to sell as property B in the current time period, then A will always be twice as likely to sell as B in all future time periods, provided of course that both properties haven't yet sold at that time.

The $\lambda_0(y)$ term accounts for changes in the hazard rate due to how long the property has already been on the market and is common for all homes. The exp (α_i) term accounts for unobserved heterogeneity of home *i*, that is, the property-specific characteristics that do not change over time.²³ Finally, the exp (β_i) term accounts for changes in the hazard rate due to changing market conditions faced by all homes, akin to time-fixed effects in a linear regression. By differencing across consecutive listings, integrating, taking logs, and conditioning on a subset of the sample, one can estimate the original hazard formulation using the following logistic specification, where the coefficients β on the right-hand side below are the same as those given in (1):

$$\Pr(V_i^2 \ge V_i^1 | W_i = 1) = \frac{\exp(\beta_{t_i^1})}{\exp(\beta_{t_i^1}) + \exp(\beta_{t_i^2})}$$
(2)

Here $V_i^s = \min\{Y_i^s, C_i^s\}$ is the minimum of the time on the market Y_i^s (observed only for sold homes) and the censoring time C_i^s (observed if home did not sell and was pulled off market) for property i for its sth-listing. Note that V_i^s is always observed.²⁴ The superscripts s = 1, 2 indicate the sequential number of the listing, so that, for example, $\beta_{t_i^s}$) represents the coefficient for the time at which home i was listed for the second time in a pair of repeat listings. The conditioning variable W_i is equal to 1 if either (a) both the first and second listings sold, or (b) if one of the listings sold and its time on the market is shorter than the censored time for the other (unsold) listing. In this way one can estimate the RPHI $\mu_t = \exp(\beta_t)$ for time t using a logistic regression on a particular subsample of data, where the explanatory variables indicate the times of sales.

The second advanced measure is the RMTI. The strategy with this index is that if the median time on the market is stationary (conditional on any differences due to listing period), then one can start with:

$$\log(Y_i^t) = \beta_t + \alpha_i + \epsilon_{it} \tag{3}$$

and then take medians and differences to get:

$$Med(\log(Y_i^2) | X_i) - Med(\log(Y_i^1) | X_i) = \beta X_i$$
⁽⁴⁾

As before, the unobserved heterogeneity α_i term has been successfully differenced out, a step that requires repeated sales of the same home. The idea is that roughly the difference step takes care of the unobserved heterogeneity, whereas the median step takes care of the censoring. The right-hand side β coefficients of (4) are the same as those of (3), allowing estimation of the RMTI.

Unlike the RPHI, higher values of the RMTI imply that a home is likely to spend a longer time on the market, all else equal. As such, this report follows Carrillo and Williams (2019) and uses the inverse of the RMTI for easy comparison with the RPHI. In this way both the RPHI and inverse RMTI are positive measures of home liquidity, so that higher values of these indices mean that homes are likely to sell faster.

²³ Accounting for unobserved heterogeneity that changes over time is well beyond the scope of this article.

²⁴ If the listing sold then $V_i^s = Y_i^s$, while if the listing did not sell $V_i^s = C_i^s$.

Structural Breaks

To complement visual inspection of the graphs and to provide more rigorous analysis, for each index a test for structural breaks in two different models is run. Each model allows for different types of structural change that could have taken place due to the COVID-19 pandemic. One addresses possible nonstationarity using a deterministic time trend, whereas the other uses a stochastic time trend in the form of an auto-regressive (AR) process. Specifically, the first model uses a linear time trend and seasonal effects to test for breaks in the intercept, slope, and seasonality in each index. To use more standard methodology, a second model is introduced, which is the preferred model. The second model uses an auto-regressive process of order two (that is, AR(2) process) with seasonal effects to test whether COVID-19 had transient effects or were permanent, as well as tests for breaks in seasonality.

Before estimating an index, a Dickey-Fuller test is performed to detect the presence of a unit root. Results for these tests are located in the last column of exhibit 6. If the tests suggest the series has a unit root, the series is differenced and adjust our specification accordingly before performing estimation. Additionally, for count variables, mean TOM, and median TOM, index is converted into log terms to deal with possible heteroskedasticity.

Exhibit 6

Single Structural Breaks for Time S		Line ou Medal				
-	Linear Model			AF		
Traditional Index	Break at March 2020?	Suggested Break	Type of Break(s) ♠	Break at March 2020?	Type of Break(s) ♠	Unit Root
Count of New Listings (logged) §	\checkmark	Sept 2020	L,M	×	-	×
YoY New Listings♦	×	May 2020*	-	\checkmark	-	\checkmark
Percent Sold 90 days	\checkmark	April 2020	L,M	×	-	×
Percent Sold 14 days	\checkmark	May 2020	L,M,S	\checkmark	М	\checkmark
Percent Withdrawn	\checkmark	July 2020	L,M,S	×	S	\checkmark
Percent of Price Drops	\checkmark	June 2020	L,M,S	\checkmark	L,M,S	\checkmark
Mean TOM for sold listings (logged)	\checkmark	Dec 2019	L,M,S	×	-	\checkmark
Mean TOM for all listings (logged)	\checkmark	Nov 2019	L,M,S	\checkmark	М	\checkmark
Median TOM for sold listings (logged)	\checkmark	May 2020	L,M,S	\checkmark	S	\checkmark
Median TOM for all listings (logged)	\checkmark	Nov 2019	L,M,S	\checkmark	М	\checkmark
Advanced Index						
Repeat Proportional Hazard	\checkmark	Dec 2019	L,M,S	\checkmark	L,M,S	\checkmark
Inverse Repeat Median TOM	\checkmark	Sept 2020	L,M,S	\checkmark	M,S	\checkmark
House Prices						
FHFA Purchase HPI (NSA)	\checkmark	June 2020	L,M,S	\checkmark	M,S	\checkmark
YoY FHFA Purchase HPI (NSA)	\checkmark	Sept 2020	L,M,S	×	S	\checkmark

Single Structural Breaks for Time Series

AR = auto-regressive. FHFA = Federal Housing Finance Agency. HPI = House Price Index. TOM = time on the market. YoY = year-over-year. L = shift in intercept. M = shift in slope. S = shift in seasonal effects. *Suggested break is not statistically insignificant. \blacklozenge The difference in logs was used instead of the usual percent change formula. § Depending upon the specific F-test, the series breaks at March 2020 with marginal statistical significance slightly below or above the 95% level. \blacklozenge The types of breaks were determined using the estimation at the suggested break date listed in this table.

Notes: Types of breaks always refer to the series estimated, and not necessarily of the base level series. Logs of series were used where indicated in parentheses. Source: Multiple Listings Service data provided by CoreLogic

Linear Time Trend with Seasonal Effects

Let y_t be the index in question. A simple model relates y_t linearly to time t and includes seasonal effects m_t .²⁵ If y_t has a unit root, then the difference $\Delta y_t = y_t - y_{t-1}$ should be used in its place. To test for a structural break at time t_0 one could use the following model:

$$z_{t} = \beta_{0} + \beta_{1}t + \beta_{2}\mathbf{1}_{t>t_{0}} + \beta_{3}(\mathbf{1}_{t>t_{0}} \times t) + m_{t} + n_{t}\mathbf{1}_{t>t_{0}} + \epsilon_{t}$$
(5)

where $z_t = y_t$ if y_t does not have a unit root and $z_t = \Delta y_t$ if y_t has a unit root. Here $1_{t>t_0}$ is an indicator variable equal to one if $t>t_0$ and zero otherwise. In this setting, t_0 corresponds to the start of COVID-19 (March 2020). Without a unit root, the coefficients β_2 and β_3 represent changes in the intercept and slope of the index, respectively, holding seasonal effects constant. With a unit root, β_2 and β_3 represent changes in the intercept and slope of the index, respectively, holding seasonal effects constant. With a unit root, β_2 and β_3 represent changes in the intercept and slope of the difference of the index, which one could interpret as change in the slope and rate of increase in the slope of the original level series y_t . Seasonal fixed effects are also allowed to change at the break date t_0 , where m_t and $m_t + n_t$ are the seasonal fixed effects before and after t_0 , respectively.²⁶ One can interpret changes in the seasonal effects, represented by n_t , as changes in seasonality induced by COVID-19.

Running a statistical test on the joint hypothesis H_0 : $\beta_2 = \beta_3 = 0$ would then help provide evidence for whether or not a different time trend occurred after the start of COVID-19, holding fixed the seasonal effects. To test this hypothesis, a Likelihood Ratio (LR) test is performed.²⁷ To test for changes in seasonality, a joint F-test on the vector of changes in seasonal fixed effects is used: $H_0 : n_t = 0$. Of course, one can test for any change in coefficients using H_0 : $\beta_2 = \beta_3 = n_t = 0$.

In addition to testing for a structural break at a specific time (March 2020), the most likely time for a structural break for each series is estimated using the supremum of all the test statistics at each month. In other words, the time where the test statistic is the largest is used to determine where the break is most likely to occur. In order to minimize false positives, this approach adjusts the critical value to account for the fact that the break date is not known in advance.²⁸ Fortunately, as Andrews (1993) points out, this supremum test is valid even if the underlying series is nonstationary under a null hypothesis of parameter stability.

After determining the most likely break date econometrically, referred to as the suggested break date in exhibit 6, breaks which are present at the suggested break date are identified. For the linear time trend model, a change in the level value of the index occurs if the intercept (that is, constant) has changed, which in the model is a statistically significant β_2 . Similarly, there was a change in the growth or slope of the index if β_3 is statistically significant. Finally, there was a structural break in seasonality if n_t is statistically significant.

²⁵ More advanced methodologies might employ multiple structural breaks, multiple covariates, and allow partial breaks (that is, a change in the coefficients of some but not all variables). See Bai and Perron (2003) for a review of such methodology, and Knoll, Schularick, and Steger (2017) for a recent application with home prices.

²⁶ Spring is defined as March–May, summer as June–August, fall as September–November, and winter as December–February.

²⁷ While it is well known that the Likelihood Ratio (LR), Wald, and Lagrange (that is, "slope") tests are all asymptotically equivalent, in smaller samples they may lead to different conclusions (Wooldridge, 2002). Given the time series framework, this may be particularly germane, so the LR test is used.

²⁸ See Davies (1987) for a seminal reference, Hansen (2001) for a quick introduction, and Perron (2007) for more recent surveys on the econometrics of structural breaks.

AR(2) Process with Seasonal Effects

The second model is a more traditional time series model. Each index follows an auto-regressive process of order 2, that is, AR(2). Some care is needed in interpreting the coefficients in the model because some indices were differenced before estimation to account for unit roots. Thus, for series without unit roots level index y_t is used as the dependent variable, whereas for series with unit roots the difference is used as the dependent variable. More formally, the second model is:

$$z_{t} = \beta_{0} + \beta_{1} z_{t-1} + \beta_{2} z_{t-2} + m_{t} + n_{t} \mathbf{1}_{t>t_{0}} + \alpha_{1} \mathbf{1}_{t=t_{0}} + \alpha_{2} \mathbf{1}_{t>t_{0}} + \boldsymbol{\varepsilon}_{t}$$
(6)

where again $z_t = y_t$ if y_t does not have a unit root and $z_t = \Delta y_t$ if y_t has a unit root.

For series without unit roots, the interpretation of coefficients is straightforward. The α_1 term captures a temporary shock in the level of the index, whereas the α_2 term captures a persistent shock in the level of the index. A temporary shock would decay in the usual fashion as a consequence of the auto-regressive process. In contrast, a persistent and permanent shock effectively shifts the constant in the regression. If y_t is stationary, then it is easy to show that shifts in the constant are associated with shifts in the expected value $E[y_t]$, so that α_1 and α_2 capture changes to the expected value of the index. Finally, as before the n_t parameters represent changes to the seasonal fixed effects.

For series with unit roots that have been differenced, the interpretation of the coefficients is slightly changed. Now α_1 represents a one-time increase in the difference of y_t , which is equivalent to a permanent increase in the level of y_t . Also, α_2 represents a permanent increase in the difference of y_t , which is equivalent to a permanent increase in the slope of y_t . Finally, n_t represents a permanent change to seasonal effects for the difference of y_t , which is equivalent to a change above the expected change in seasonal coefficients.

One can test for structural breaks with H_0 : $\alpha_1 = \alpha_2 = 0$ using an F-test. Additionally, as before, nonzero values of n_t provide further evidence of structural changes. A test for such structural changes uses H_0 : $n_t = 0$. Exhibit 6 indicates if there is evidence of either break at March 2020. Then, using the suggested break date from the linear trend model, a test for the specific types of breaks using the previously suggested F-tests at that suggested break date for each index is performed.

Results and Discussion

In the data, we say that a listing is sold if it has a close price and either a close date or contract date. Otherwise, we say that the listing is unsold. As mentioned previously, this classification poses problems only at the end of the sample, where a property might have been listed too closely to the data collection time for either the listing to have been removed or to have been sold. To address this concern, index values for the last month in our sample are not reported. Exhibit 6 summarizes the results for structural breaks for each of our two models. Exhibit 7 lists all the specific parameter estimates at the suggested break dates for each of the two models.

Model Estimates

	Lii	near Time Ti	AR(2) Model			
Traditional Index	Intercept	Slope	Intercept Break*	Slope Break*	Transitory	Permanent Shock
Count of New Listings (logged)	12.39***	-0.00	22.35**	-0.03**	0.10	0.02
	(0.60)	(0.00)	(8.15)	(0.01)	(0.13)	(0.09)
YoY New Listings	0.30	-0.00	7.94	-0.01	0.44	-0.02
	(0.79)	(0.00)	(5.90)	(0.01)	(0.31)	(0.06)
Percent Sold 90 days	0.08	0.00***	13.60***	-0.02***	0.04*	0.05
	(0.12)	(0.00)	(0.79)	(0.00)	(0.02)	(0.04)
Percent Sold 14 days	-0.17	0.00**	5.47***	-0.01***	0.04	-0.03**
	(0.12)	(0.00)	(0.91)	(0.00)	(0.11)	(0.01)
Percent Withdrawn	0.34***	-0.00*	-20.30***	0.03***	-0.01	0.02
	(0.07)	(0.00)	(0.64)	(0.00)	(0.01)	(0.01)
Percent of Price Drops	1.20***	-0.00***	11.24***	-0.02***	-0.04***	-0.03***
	(0.07)	(0.00)	(0.55)	(0.00)	(0.01)	(0.00)
Mean TOM for sold listings (logged)	5.23***	-0.00	47.28***	-0.7***	-0.01	-0.11
	(0.49)	(0.00)	(2.46)	(0.00)	(0.12)	(0.09)
Mean TOM for all listings (logged)	5.11***	-0.00	46.13***	-0.06***	0.02	-0.04*
	(0.33)	(0.00)	(1.54)	(0.00)	(0.37)	(0.02)
Median TOM for sold listings (logged)	5.85	-0.00**	30.53***	-0.04***	-0.27	0.09
	(0.65)	(0.00)	(4.94)	(0.01)	(0.56)	(0.05)
Median TOM for all listings (logged)	5.11***	-0.00	46.13***	-0.06***	0.02	-0.04*
	(0.33)	(0.00)	(1.54)	(0.00)	(0.37)	(0.02)
Advanced Index						
Repeat Proportional Hazard	3.31***	-0.00**	-70.83***	0.10***	-0.26***	0.22***
	(0.64)	(0.00)	(3.20)	(0.00)	(0.06)	(0.03)
Inverse Repeat Median TOM	5.75***	-0.01***	-119.92	0.17***	-0.09	0.23***
	(0.45)	(0.00)	(6.10)	(0.01)	(0.09)	(0.04)
House Prices						
FHFA Purchase HPI (NSA)	-580.57***	1.19***	-2,473.2***	3.41***	2.03	2.22***
	(6.21)	(0.01)	(52.08)	(0.07)	(3.02)	(0.33)
YoY FHFA Purchase HPI (NSA)	-3.33	0.01**	-410.17***	0.57***	0.33	0.23
	(3.28)	(0.00)	(44.24)	(0.06)	(0.71)	(1.02)

AR = auto-regressive. FHFA = Federal Housing Finance Agency. HPI = House Price Index. TOM = time on the market. YoY = year-over-year. *p < 0.05. **p < 0.01. **p < 0.001.

Notes: Estimation performed at estimated break dates listed in exhibit 6. Standard errors given in parentheses. Source: Multiple Listings Service data provided by CoreLogic

Traditional Index Analysis

Exhibit 8 illustrates the trend of new listings over time. As evident from the graph, there are strong seasonal patterns for new listings. Additionally, there is evidence of a general reduction in the number of new listings starting March 2020. Due to strong seasonal effects and the linear time

specification, t is no surprise that no evidence of a structural break is found in exhibit 6. To better identify changes in trend for new listings, year-over-year changes can be used, where in principle seasonal effects should cancel themselves out.

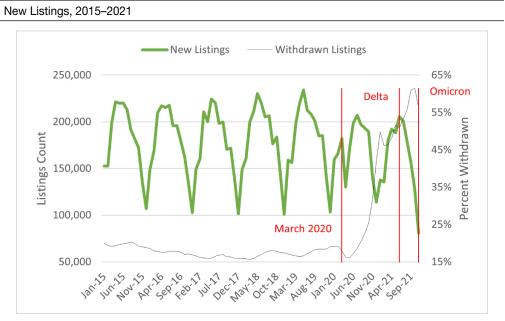


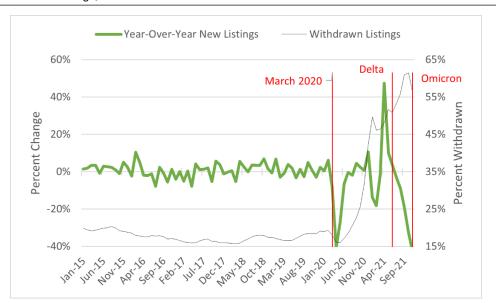
Exhibit 8

Note: Data are estimated at the national level. Source: Multiple Listings Service data provided by CoreLogic

Exhibit 9 illustrates the year-over-year percent change in new listings which shows changes in the trend for the start of the pandemic, the Delta variant, and the Omicron variant. A clear decrease at the start of COVID-19 in March 2020 and also for the Delta variant around April 2021 are evident. There also appears to be a drop corresponding to the Omicron variant around November 2021, though this appears too close to the end of the sample to make any definitive statements.

There is no strong evidence of a structural break for either the count of new listings or the yearover-year new listings in either of our two specifications. For the latter, this is likely due to the sharp partial recovery afterwards, which is not modeled. Nonetheless, the graphs suggest that the supply of homes on the market available for sale was disrupted by COVID-19. To further investigate, the number of listings before and after March 2020 for 12- and 21-month windows is calculated. For the 12-month window there is, on average, a 15,000 decrease in the number of new listings, whereas for the 21-month window there is a 22,000 decrease in new listings. Alternatively, the peak of new listings decreased by roughly 28,000, or about 12 percent, from the pre-COVID-19 average to the post-COVID-19 average. Future work could use more sophisticated time series approaches to formally model the shocks and recoveries that mechanically show up in the seasonal year-over-year series. Exhibits 8 and 9 also illustrate the percent of withdrawn listings. Prior to COVID-19, the percentage of withdrawn listings was relatively stable around 16 percent. However, graphically there is evidence that around April 2020 there was a sharp increase in the percentage of homes that did not sell. As the reference lines indicate, there was a dramatic and sustained increase from around April 2020 to January 2021. During this time period the percentage increased (approximately) from 15 percent to over 45 percent, so that the proportion more than tripled. Structural Break tests indicate that the most likely break occurred several months later in July 2020. There is mixed evidence of breaks in the two models. The linear model suggests intercept, slope, and seasonal breaks, whereas the AR(2) finds only small evidence of seasonal shocks. Though some of the increase in the percentage of withdrawn listings at the end of our sample is likely due to data collection censoring as previously mentioned (even after discarding the last month's observations), there is still a large increase in the percentage of withdrawn listings, except in the last month. Indeed, in November 2021 there was actually a decrease in the percentage of withdrawn listings. This provides some evidence of an increase in the probability of a home selling at the end of the data sample because this more than compensates for the mechanical increase in withdrawn percentage due to censoring.

Exhibit 9



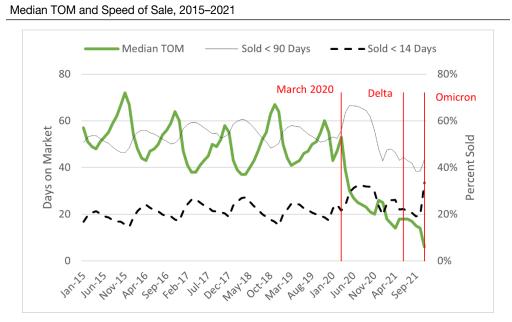
Withdrawn Listings, 2015-2021

Note: Data are estimated at the national level. Source: Multiple Listings Service data provided by CoreLogic

Exhibit 10 illustrates the proportion of listings sold within 14 and 90 days in the 2015–21 time period. Note that the proportion of very fast sales, that is, within 14 days, increased at the start of COVID and did not return to similar values seen before COVID until well into the pandemic around the end of the sample in December 2021. In contrast, the percent sold within 90 days experienced a brief increase (likely due to an increase in homes that sold very fast), but then

experienced lower levels relative to prepandemic values. Coupled with the fact that the percentage of withdrawn listings (that is, sold within any number of days in the sample) increased in the sample indicates a change in the distribution of TOM. Indeed, as exhibit 11 indicates, the pre-COVID and post-COVID periods saw a first-order stochastic shift in time on the market, where homes across the distribution are likely to sell faster in the post-COVID period. Though it is not shown in this report, using a 21-month window instead of a 12-month window leads to a very similar graph.

Exhibit 10



TOM = time on the market. Note: Data are estimated at the national level. Source: Multiple Listings Service data provided by CoreLogic

Exhibit 11

Notes: Data are estimated at the national level. Pre- and Post-COVID denotes the designated number of months before or after March 2020. For the 12-month window, the pre-COVID-19 period consists of February 2019 through February 2020 and the Post-COVID period consists of March 2020 through March 2021. Picture was very similar using a 21-month window, with even more of a pronounced difference. Source: Multiple Listings Service data provided by CoreLogic

Exhibit 12 illustrates both the mean and median TOM during the sample period. Note that the mean tends to be greater than the median for both sold and all listings, indicating that the distribution of TOM is relatively right skewed. In other words, the homes that stay on the market the longest do so for disproportionately long times. Additionally, in agreement with Carrillo and Williams (2019), there is evidence of the consequences of censoring in that sold and unsold metrics lead to different index values, where TOM for sold homes is smaller (on average) than the TOM for all homes listed on the market. The changes in trends across both mean and median, as well as sold and unsold, appear very similar, so that a decrease (increase) in one index is followed by a proportional decrease (increase) in the other.

Time-on-Market, 2015-2021

Exhibit 12 also indicates a downturn in mean and median TOM starting around March 2020 that has yet to recover, at least as of the last month in the sample (November 2022). For both sold and all listings' median TOM, graphically there is evidence of a structural break at March 2020, though the structural breaks test give different results. This is likely because the difference of logged mean/ median TOM was used, rather than the raw series. Nonetheless, except for logged median TOM, which has a later suggested break point, all of the evidence points to a break in TOM indices around November and December of 2019, where, to be clear, the date corresponds to the month in which the property was listed. In other words, the effects of COVID on shorter selling times were first felt by properties listed at the very end of 2019. For a ballpark comparison, for the period January 2015 to December 2019, the mean and median TOM for sold listings were 119 and 63 days, respectively. For properties listed in November 2019, this would correspond to a sale date around March and January of 2022, respectively.

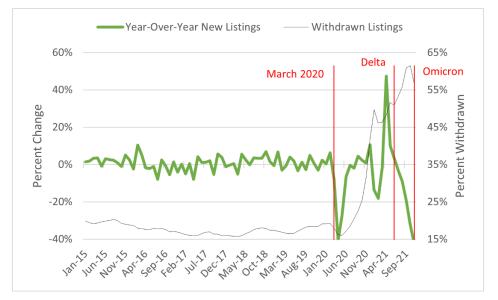
Exhibit 13 illustrates the percentage of price drops in the 2015–21 period. As with median TOM, there is evidence of a sharp decrease in this index around March 2020. Structural break tests suggest that the break occurred later in June 2020. There is strong evidence of all types of structural breaks, indicating a clear break in selling behavior regarding changing price. In short, sellers were unambiguously less likely to reduce prices after the start of the pandemic.

Note: Data are estimated at the national level. Source: Multiple Listings Service data provided by CoreLogic

Finally, to complement the supply and liquidity indices two price-related indices were also analyzed. The first is FHFA's monthly national (purchase-only) HPI, non-seasonally adjusted.²⁹ Exhibits 14 through 17 graph changes in price levels and appreciation against other traditional indices. There is evidence of a sharp increase in price appreciation at the start of the COVID-19 pandemic in March 2020, though the structural break test indicates that the structural break likely first occurred later in June 2020. Surprisingly the results show that the percentage of withdrawn listings and year-over-year HPI appear to be highly correlated, as evident from exhibit 15. Exhibit 13 shows that the number of homes with price drops, that is, where the property sold for a price lower than the list price, decreased sharply at the start of COVID-19, in tandem with the increase in withdrawn listings. Graphically, the trend in YoY price appears to be negatively related to both mean and median TOM. Apart from the YoY AR(2) model, which finds limited evidence of a seasonal structural break, the results suggest there may have been a break in trend and also in seasonal effect in home prices, both in levels and appreciation.

Note: Data are estimated at the national level. Source: Multiple Listings Service data provided by CoreLogic

²⁹ The non-seasonally adjusted version of the index is used for ease of comparison with the other indices, which are also not seasonally adjusted.



Change in New Listings and YoY HPI, 2015-2021

Note: Data are estimated at the national level.

Sources: Multiple Listings Service data provided by CoreLogic, Inc. and FHFA HPI® (purchase-only, not seasonally adjusted)

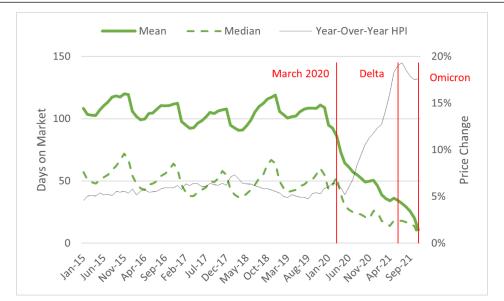
Exhibit 15



Withdrawn Listings and HPI, 2015–2021

Note: Data are estimated at the national level.

Sources: Multiple Listings Service data provided by CoreLogic, Inc. and FHFA HPI® (purchase-only, not seasonally adjusted)



TOM Liquidity, and House Prices, 2015-2021

Exhibit 17

Advanced Liquidity Measures and House Prices, 2015-2021

HPI = House Price Index. RMTI = repeat median TOM index.

Sources: Multiple Listings Service data provided by CoreLogic and FHFA HPI® (purchase-only, not seasonally adjusted)

Note: Data are estimated at the national level. Sources: Multiple Listings Service data provided by CoreLogic and FHFA HPI® (purchase-only, not seasonally adjusted)

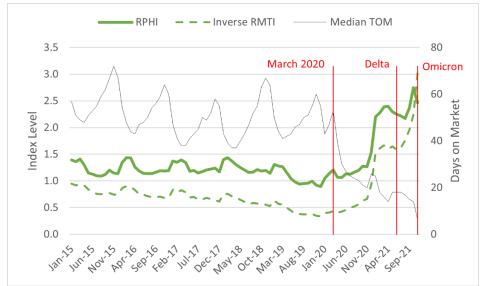
Note: Data are estimated at the national level.

In summary, the traditional indices paint a relatively straightforward picture. At the start of the pandemic, new listings decreased and price appreciation started to climb quite quickly. Both mean and median time on the market started falling because homes were being sold in shorter times. However, this needs to be qualified with the fact that the proportion of listings that did not sell increased from around 15 percent to around 60 percent at its peak. While seemingly counterintuitive, one possible reason could be a shortage of supply. Home sellers often are home buyers as well. A homeowner may choose to delay a transaction until he or she has secured a future home in which to live. This could be reflected in the data as a seller whose listing is on the market but does not exit the market. The fact that the proportion of listings sold within a very quick timeframe (14 days) saw a large increase before resuming to previous levels could be due either to waiting on a home purchase or sellers seeing rapid price appreciation and deciding to hold out for very high prices. Future research could determine the exact mechanism.

Advanced Index Analysis

Exhibit 18 illustrates the differences between the inverse RMTI and the median TOM. One would expect them to be inverses to some extent, on the one hand, since the RMTI is at its core a measure of the median TOM. However, the indices are not perfectly inversely related, suggesting that the RMTI's correction for censoring and unobserved heterogeneity is not without warrant. Exhibit 18 shows that the break in the (inverse) RMTI did not occur until much later, around December 2020, when there was a sharp increase. Moreover, the sharp increase was sustained for a few months before the RMTI flattened, only to experience another sharp increase shortly after the introduction of the Delta variant in June 2021.

Exhibit 18 also shows the RPHI and RMTI during the sample period. Both experienced similarly sized shocks at similar times. Both were relatively flat until December 2020, when there then was a sharp sustained increased. This increase was followed by another relatively flat period until July 2021 for the RMTI and August 2021 for the RPHI, when the index started increasing again. Hence, although the RPHI and RMTI have different methodologies, they may be close substitutes in practice. The one difference is that exhibit 18 suggests that the RPHI is flatter over time, but the RMTI seems to vary more over time. Structural break tests suggest a later break date of September 2020 for the inverse RMTI and an earlier break date of December 2019 for the RPHI. These differing results could point out a need to incorporate a more advanced time series analysis that can handle multiple structural breaks. This is discussed more in the conclusion. Nonetheless, there is strong evidence of all types of structural breaks for the advanced indices.



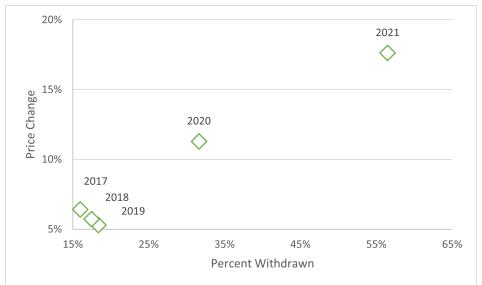
Advanced Measures of Time-on-Market, 2015–2021

RMTI = repeat median TOM index. RPHI = repeat proportional hazard index. TOM = time on the market. Notes: The inverse RMTI is used here to more closely compare with results of the RPHI. Both are measured at the national level. Here, median time-on-market is estimated for only sold homes.

Source: Multiple Listings Service data provided by CoreLogic

Discussion

The breaks in the indices paint a clear picture of the housing market in the COVID-19 era. At the start of the pandemic (March 2020), there was a decrease in new listings, thus decreasing the supply on the market. Eventually, in the summer of 2020, listings started to increase, though not to their pre-COVID levels. This decrease in supply coincided with a sharp increase in price appreciation. Thus, there is evidence that the surge in prices due to COVID-19 was at least partially driven by a lack of supply; for example, see exhibit 20, which shows a clear negative relationship between price and median TOM over time.



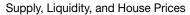
Supply, Liquidity, and House Prices

Note: Boxes represent the index and year-over-year price changes for the entire U.S. for only the month of November for the designated year. Sources: Multiple Listings Service data provided by CoreLogic and the FHFA HPI® (purchase-only, not seasonally adjusted)

Exhibit 20

TOM and House Price Relationship Over Time

Note: Boxes represent the index and year-over-year price changes for the entire U.S. for only the month of November for the designated year. Sources: Multiple Listings Service data provided by CoreLogic and the FHFA HPI® (purchase-only, not seasonally adjusted)



RPHI = repeat proportional hazard index.

Note: Boxes represent the index and year-over-year price changes for the entire U.S. for only the month of November for the designated year. Sources: Multiple Listings Service data provided by CoreLogic and the FHFA HPI® (purchase-only, not seasonally adjusted)

For the few homes that were listed on the market, there were dramatic changes in their performance. Shortly after the pandemic there was a dramatic increase in the percent of homes that were withdrawn from the market, suggesting a reduction in the probability of sale. If a home did sell, however, its expected (median) time on the market also saw a reduction. One possible explanation is that due to the lack of supply, sellers were either holding out for higher prices or could not find a replacement property in which to move. Apart from the general uncertainty of the period, rapidly appreciating home prices and low interest rates during this period may have provided incentives for homeowners to stay put. Homeowners saw the values of their assets significantly grow and also may have been reluctant to give up a low interest rate on a recently refinanced mortgage, despite the cost of financing a home purchase being relatively low.

The more advanced measures tend to break later, though a precise break date cannot be identified due to the likely presence of multiple break dates. Graphically, after the initial jump, the advanced indices remained relatively flat until summer of 2022. Compared to pre-COVID levels, this jump corresponded to approximately double their previous trends. Both indices had a slight negative time trend prior to COVID-19, but now have positively sloped time trends. Qualitatively, the flattening of the indices in the summer of 2022 is not seen in the traditional measures. This, coupled with the delayed onset of changes to the RPHI and RMTI, suggests that censoring and unobserved heterogeneity are important to consider when measuring supply and liquidity of housing markets.

Using the traditional indices, evidence was provided that unobserved heterogeneity was the main driver of differences. For example, between March 2020 and December 2020, median TOM for sold and unsold both experienced decreases, although median TOM for sold properties was intuitively slightly smaller than that when including unsold homes. However, this effect of censoring is relatively small. Hence, one possible explanation for the divergence of traditional and advanced index levels is that between March 2020 and December 2020 there was a lot of unobserved heterogeneity that traditional indices ascribed to liquidity changes.

Conclusion

Housing supply and liquidity were greatly impacted by COVID-19, with the largest disruptions occurring at the start of the pandemic in March 2020. There were considerable differences between indices that controlled for censoring and unobserved heterogeneity, suggesting that traditional indices, which do not account for these issues, may confound changes in supply and liquidity with changes in sample composition and changes in the probability of sale. Importantly, the RPHI, RMTI, and percent withdrawn measures track changes in price appreciation very well.

This article has documented and described the changes in supply and housing market liquidity in the COVID-19 era. One issue worth exploring would be to examine any heterogeneity with respect to the increase in the proportion of withdrawn listings. For example, is there evidence of an increase in withdrawn listings across different geographies, or across different price tiers within a given geography? Future work could examine these effects and pin down a causal mechanism.

Future work could also focus on the determinants of these changes. One possibility would be to incorporate the possibility of multiple structural breaks to test for whether the different variants of COVID (Delta, Omicron) had effects on the market. Another avenue might be analyzing sample selection using hedonic characteristics, specifically looking at how the probability of sale and TOM vary across different types of homes. Additionally, more careful analysis of the distribution of TOM, for example decomposition techniques similar to that of Carrillo and Pope (2012), seems helpful for understanding what is driving the changes in liquidity. Finally, determining how changes in supply and liquidity vary across locations, such as distance to central business district (CBD), seems particularly useful if buyers are finding suburban homes relatively more desirable than urban homes.

Acknowledgments

We thank William Doerner, William Larson, and Wenzhen Lin for helpful feedback on this article.

Authors

Justin Contat is a Senior Economist at the Federal Housing Finance Agency. Malcolm Rogers is an Economist at the Federal Housing Finance Agency.

References

Andrews, Donald W.K. 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," *Econometrica*, 61 (4): 821–856.

Bai, Jushan, and Pierre Perron. 2003. "Computation and Analysis of Structural Change Models," *Journal of Applied Econometrics*, 18: 1–22.

Benefield, Justin, and William Hardin. 2013. "Does Time-on-Market Measurement Matter?" *Journal of Real Estate Finance and Economics*, 50: 52–73.

Carrillo, Paul, and Benjamin Williams. 2019. "The Repeat Time-on-the-Market Index," *Journal of Urban Economics*, 112: 33–49.

Carrillo, Paul E., and Jaren C. Pope. 2012. "Are Homes Hot or Cold Potatoes? The Distribution of Marketing Time in the Housing Market," *Regional Science and Urban Economics*, 42: 189–197.

Carrillo, Paul, Eric R. de Wit, and William Larson. 2015. "Can Tightness in the Housing Market Help Predict Subsequent Home Price Appreciation? Evidence from the United States and the Netherlands," *Real Estate Economics*, 43 (3): 609–651.

Cherry, Susan F., Erica Xuewei Jiang, Gregor Matvos, Tomasz Piskorski, and Amit Seru. 2021. "Government and Private Household Debt Relief during COVID-19," *NBER Working Paper 28357*.

Contat, Justin, and William Larson. 2022. "Transaction Composition and House Price Index Measurement: Evidence from a Repeat-Sales Aggregation Index," *FHFA Working Paper WP 2101*.

Cox, D.R. 1972. "Regression Models and Life-Tables (with Discussion)," *Journal of the Royal Statistical Society*, Series B, 30: 187–220.

Davies, R.B. 1987. "Hypothesis Testing When a Nuisance Parameter is Present Only Under the Alternative," *Biometrika*, 74: 33–43.

DiNardo, John, Nicole M. Fortin, and Thomas Lemieux. 1996. "Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametic Approach," *Econometrics*, 64 (5): 1001–1044.

D'Lima, Walter, Luis A. Lopez, and Archana Pradhan. 2022. "COVID-19 and Housing Market Effects: Evidence from U.S. Shutdown Orders," *Real Estate Economics*, 50: 303–339.

Duca, John V., Martin Hoesli, and Joaquim Montezuma. 2021. "The Resilience and Realignment of House Prices in the Era of COVID-19," *Journal of European Real Estate Research*, 14 (3): 421–431.

Gatzlaff, Dean H, and Donald R. Haurin. 1998. "Sample Selection and Biases in Local House Value Indices." *Journal of Urban Economics*, 43 (2): 199–222.

Gatzlaff, Dean H, and Donald R. Haurin. 1997. "Sample Selection Bias and Repeat-Sales Index Estimates," *The Journal of Real Estate Finance and Economics*, 14 (1-2): 33–50.

Genesove, David, and Lu Han. 2012. "Search and Matching in the Housing Market," *Journal of Urban Economics*, 72 (1): 31–45.

Goodman, Laurie, and Aaron Klein. 2022, "The Impact of the Coronavirus on Mortgage Refinancings." The Brookings Institution. https://www.brookings.edu/research/the-impact-of-the-coronavirus-on-mortgage-refinancings/.

Hansen, Bruce E. 2001. "The New Econometrics of Structural Change: Dating Breaks in U.S. Labor Productivity," *Journal of Econometric Perspectives*, 15 (4): 117–128.

Kennedy, Simon. 2022. "The Pandemic Changed the U.S. Economy Forever," *Bloomberg News*. https://www.bloomberg.com/news/newsletters/2022-05-02/what-s-happening-in-the-world-economy-how-u-s-economy-was-changed-by-covid.

Keys, Benjamin J., and Philip Mulder. 2020. "Neglected No More: Housing Markets, Mortgage Lending, and Sea Level Rise," *NBER Working Paper* Series.

Knoll, Katharina, Moritz Schularick, and Thomas Steger. 2017. "No Price Like Home: Global House Prices, 1870-2012," *American Economic Review*, 107 (2): 331–353.

Kuttner, Kenneth N. 2012. "Low Interest Rates and Housing Bubbles," *The Role of Central Banks in Financial Stability: How it Has Changed*, 27.

Malone, Thom, and Christian L Redfearn. 2020. "To Measure Globally, Aggregate Locally: Urban Land, Submarkets, and Biased Estimates of the Housing Stock," *Real Estate Economics*.

Mutikani, Lucia. 2021. "U.S. Economy Contracted 19.2% During COVID-19 Pandemic Recession," Reuters. https://www.reuters.com/business/us-economy-contracted-192-during-covid-19-pandemic-recession-2021-07-29/.

Mutikani, Lucia. 2020. "U.S. Housing Starts Blow Past Expectations; COVID-19 Poses Risk," Reuters. https://www.reuters.com/article/us-usa-economy-housingstarts-idUSKBN27Y1U2.

Perron, P. 2007. "Dealing with Structural Breaks," In *Palgrave Handbook of Econometrics: Econometric Theory*, Vol. I., ed. T.C. Mills and K. Patterson, 278–352. Basingstoke, UK: Palgrave MacMillan.

Real Estate Standards Organization (RESO). 2020. "What is an MLS and How Many MLSs Are There? (Multiple Listing Service)," RESO. https://www.reso.org/blog/mls-faq/.

Taylor, Peter Lane. 2020. "COVID-19 Has Changed The Housing Market Forever. Here's Where Americans Are Moving (And Why)," *Forbes*. https://www.forbes.com/sites/petertaylor/2020/10/11/ covid-19-has-changed-the-housing-market-forever-heres-where-americans-are-moving-and-why.

van Dijk, Dorinth W. 2019. "Local Constant-Quality Housing Market Liquidity Indices," *De Nederlandsche Bank Working Paper No.* 637.

Wang, Bingbing. 2021. "How Does COVID-19 Affect House Prices? A Cross-City Analysis," Journal of Risk and Financial Management, 14 (2).

Wooldridge, Jeffrey M. 2002. Econometric Analysis of Cross Section and Panel Data. The MIT Press.

Yiu, Chung Yim. 2021. "Why House Prices Increase in the COVID-19 Recession: A Five-Country Empirical Study on the Real Interest Rate Hypothesis," *Urban Science*, 77 (5): 1–14.

Yoruk, Baris. 2022. "Early Effects of the COVID-19 Pandemic on Housing Market in the United States," *Working Paper*, SUNY at Albany.

Zhang, Lei, Tammy Leonard, and John Bitzan. 2022. "Impacts of the COVID-19 Pandemic on House Prices: Heterogeneous Impacts over Time and across the House Price Distribution," *Journal of Real Estate Research*, 0 (0): 1–22.

Zhao, Yunhui. 2022. "US Housing Market During COVID-19: Aggregate and Distributional Evidence," *Working Paper, IMF*.