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Abstract 

This note outlines in detail the process of preparing data used in studying patterns of 
urbanization across the United States, using spatial hazard models—a class of durational 
models often employed in analyzing lifecycles. The note provides a brief overview of 
spatial hazard models and their application in the analysis of urbanization patterns and 
continues to describe the collection and processing of settlement point patterns needed for 
the analysis. Analyzed at the census block group level, data come from (1) a nationwide 
count of housing units at the census block level in 2006, which the Census Bureau provided 
to the U.S. Department of Housing and Urban Development; and (2) Census Summary 
File 3 from the 2000 Census of the population. 

Introduction 
The purpose of this note is to detail the process of preparing data needed for studying patterns of 
urbanization across the United States via spatial hazard models (for applications, see Carruthers et al., 
2008, and Lewis et al., 2008). Spatial hazard models are geographic adaptations of proportional 
hazard models—a class of duration, or failure time—models normally used for analyzing lifecycles 
(Cleves, Gould, and Guitierrez, 2004; Kiefer, 1988; Lawless, 2002). Duration or failure analysis 
involves the modeling of time-to-event data. As a simple example, time-to-event modeling could 
be the rate or time a lightbulb lasts. The idea of adapting hazard models to the spatial realm 
originates from Odland and Ellis (1992), who were the first to use the method for point pattern 
analysis, a method of spatial analysis that has long been used to study both natural and social 
phenomena (Boots and Getis, 1988; Diggle, 2003). More recently, Waldorf (2003) elaborated on 
the mathematical logic of using hazard models for this purpose and laid out a detailed conceptual 
framework for bringing the models to bear on spatial point patterns. Since 1988, the approach has 
been applied to an array of spatial phenomena, ranging from the reach of market areas (Esparza 
and Krmenec, 1996) to the adoption of agricultural technology (Pellegrini and Reader, 1996) to 
the spread of disease (Reader, 2000). Although still uncommon, spatial hazard models appear to 
represent a promising—and, in the view of the present authors, an exciting—new way of analyzing 
the kind of spatial processes and outcomes that are commonly of interest in the social sciences and 
public policy fields. The next section, which is a condensed version of the background discussion 
in Carruthers et al. (2008), outlines the nature of the modeling framework and the data needed for it. 

Spatial Hazard Models 
Distance, like time, is a nonnegative random variable that terminates at a given point conditional 
on the probability of having made it to that point in the first place. That is, a particular distance 
between geographically referenced points either extends or terminates based on the nature of the 
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spatial process that gave rise to the distribution of the referenced points in the first place. At the 
core of this conceptualization is a so-called “spatial hazard function” that mathematically describes 
the conditional probability of distance terminating (for details, see Waldorf, 2003). For example, 
intuitively, one might expect the hazard function for the spacing of settlements to exhibit positive 
dependence, or a hazard of terminating that increases with distance, and the hazard function for 
the spread of an illness to exhibit negative dependence, or a hazard of terminating that decreases 
with distance. A proportional hazard model of a particular point-generating process is achieved by 
choosing an appropriate statistical distribution for the baseline hazard, plus a set of independent 
explanatory variables that accelerate and/or decelerate, as the case may be, the rate at which dis­
tances between spatial points, say dij , terminate. The Weibull distribution is the most widely used 
distribution in survival analysis, and it works particularly well because it gives the hazard a flexible 
shape (Lawless, 2002): 

h(dij | X) = h0(dij ) ⋅ exp( X ⋅Φ) . (1) 

In this spatial hazard model, the hazard function consists of two components: (1) a baseline 
hazard, h0(dij ) = λdij 

λ−1
, described by λ, a shape parameter, which gives the rate at which the 

distances between spatial points terminate when X = 0; and (2) an exponential scale parameter, 
Φ , which accelerates or decelerates the baseline hazard, depending on how the independent fac­
tors in the vector X  influence the termination rate. Both the shape and scale parameters must be 
estimated via maximum likelihood. 

In most forms of spatial analysis, the major challenge is to structure the experimental setting in a 
way that lines up not only with theory, but also with the logic of the particular analytical method 
itself. Regarding the analysis presented herein, urban economic theory (Fujita, 1987) clearly 
indicates that the hazard function for distance separating the spatial points that make up urban 
areas, whether structures, small-area population centers, or something else, should exhibit positive 
spatial dependence—but that the hazard decelerates with distance from the interior of the region 
(Carruthers et al., 2008). Based on this theoretical framework, a Weibull-distributed spatial hazard 
model of urbanization takes the following form: 

h(dij | Xik ) = h0(dij ) ⋅ exp(φd + Xik ⋅Φk ) . (2)
c 

⋅ xdic 

Here, h(dij | Xik )  indicates that the baseline hazard for distance between nearest neighbors i and j, 
h0(dij ) , is scaled by Xik , a vector of k independent variables, including xdic

, the distance from 
i to the regional center; and Φk  (including φd ) measures the influence the vector of additional 

c

independent variables has on the conditional probability of distance between nearest neighbors 
terminating. The two hypotheses at the heart of this model, both of which flow directly from urban 
economic theory, are (1) the conditional probability of distance between nearest neighbors termi­
nating increases with distance and (2) the probability of terminating decelerates with distance from 
the interior of the region. The two variables essential for estimating this model are dij  and xdic 

, the 
distance from i to its nearest neighbor and the distance from i to the regional center, respectively. 
The remainder of this note is dedicated to explaining the process of generating those variables. 
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Data Collection 
The modeling framework previously described has been applied in two empirical analyses of urban 
form and settlement patterns in the United States (Carruthers et al., 2008; Lewis et al., 2008). The 
analysis discussed herein by Carruthers et al. (2008) examines the viability of using spatial hazard 
models to study urban form via an analysis of point patterns in the nation’s 25 largest core-based 
statistical areas (CBSAs). Where applicable, CBSA divisions are used in place of the greater CBSA, 
so the model considers a total of 43 distinct areas. The unit of analysis is the 2000 Census Block 
Group and the data come from only two sources: (1) a nationwide count of housing units at the 
census block level in 2006, which the Census Bureau provided to the U.S. Department of Hous­
ing and Urban Development; and (2) Census Summary File (SF) 3 from the 2000 Census of the 
population. 

Spatial Point Patterns 
Spatial point patterns representing the urban fabric of the 43 metro areas being analyzed and 
relevant distance measurements were developed via a six-step process using a variety of software 
tools, including ESRI’s ArcInfo GIS and GeoDa—a program developed for spatial analysis and 
computation (Anselin, 2003; Anselin, Syabri, and Kho, 2006). 

In the first step, the 2006 housing unit count was joined to each of the 8,205,582 blocks in the 
United States (territories were excluded). Hardware—that is, PC computing power—constraints 
required the data to be split into sections to make the data processing possible. The blocks were 
split into 10 separate, subnational regions and a shapefile was created for each one. The geographic 
centroid of each census block was used to generate a mean center for all 208,643 block groups 
in the United States. This so-called mean center is defined as the population-weighted average 
Cartesian {x, y} coordinate of all the block centroids in a given block group. The mean center was 
calculated using the mean center tool in the ArcGIS Spatial Statistics Toolbox. The 2006 housing 
unit count was used as the “weight” field and the block group identification number was used as 
the “case” field, which groups each block into the correct block group and evaluates that block 
group accordingly. The output resulted in 10 new shapefiles, one for each subnational region, 
containing the points that specify what can be thought of as the “center of gravity” of each block 
group in the country. At the completion of this step, the 10 regional shapefiles were then merged 
into a single national shapefile. 

In the second step, the same mean center routine was run to generate housing unit-weighted 
centers for the 939 CBSAs in the country. This step differed from the first in that the CBSAs them­
selves were used as case fields to separate mean center calculations; therefore, the points produced 
indicated the regions’ housing unit-weighted centers of gravity. It is important to note that the 
CBSAs’ mean centers differ from the traditional central business districts and, therefore, may end 
up in locations not consistent with the areas of the highest residential density, which are normally 
just outside the central business district. The CBSA mean centers indicating centers of gravity 
are desirable because the object of spatial hazard analysis is to examine the distribution of spatial 
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point patterns relative to their geographic center, as opposed to a central business district. By way 
of contrast, density gradients—another, more common econometric method of analyzing regional 
land use—emanate from the central business district/s (see McDonald, 1988, for a review). 

In the third step, each block group’s mean center point was assigned to its nearest CBSA mean 
center point via the ArcMap’s near routine. The near routine measures the distance from each point 
in the “input features” file—block group mean centers—to the nearest point in the “near features” 
file—CBSA mean centers. This process yielded the block group’s mean center distance in meters to 
the respective regional center and the relevant regional center’s identity. It is important to note that 
a block group’s nearest CBSA may not be the CBSA that it formally belongs to. 

In the fourth step—which accomplished the same distance measures, but for the nearest neighbor 
block groups—GeoDa had to be used because the ArcGIS Toolbox apparently has no routine that 
will identify a feature’s nearest neighbor and calculate a distance to that feature; that is, the ArcGIS 
Toolbox cannot identify nearest neighbors and measure distance between nearest neighbors within 
the same shapefile. To get around this deficiency, GeoDa’s spatial weights-creating function, which 
locates k nearest neighbors, was used instead. Specifically, the block group point file was imported 
into GeoDa, which was used to generate a spatial weights matrix that assigned each block group 
point a single nearest neighbor. The output file from this operation is a text file with a GWT file 
extension and, for each observation, the file lists (1) its own identification number, (2) the nearest 
neighbor’s identification number, and (3) the distance separating the two points. The GWT was 
imported into a Microsoft Access database, where it was transformed into a database file format 
and then exported and, ultimately, joined with the block group mean center shapefile. To be clear, 
the result of these machinations was an output file identifying nearest neighbors and the distances 
between them. Although admittedly ad hoc, this process proved to be a good workaround for the 
ArcGIS Toolbox’s inability to match nearest neighbors within the same shapefile. 

In the fifth step, rays connecting each block group to its CBSA and nearest neighbor were drawn 
using an ESRI user-written extension, Desire Line—a tool that creates a line between a point of 
origin and a point of destination. These rays also give the distance measures, which were used to 
validate the nearest neighbor routines run in ArcGIS and GeoDa. The results of this step are shown 
in exhibit 1—a map of CBSAs and their spheres of influence, including the 43 regions that are the 
focus of the analysis shown in dark gray—and in exhibit 2— a map of spatial point patterns in the 
Chicago, Dallas, Los Angeles, and New York regions. In the latter exhibit, both the rays connecting 
block groups to their regional center and the rays connecting nearest neighbor block groups are 
visible. The outcome of the preceding steps described was essentially two variables: distance to 
the nearest CBSA mean center and distance to the nearest block group mean center for each of the 
block groups. 

In the sixth and final step, additional variables involved in the analysis, which were added easily 
by linking data sets, consist of median household income, median age of housing, and average 
duration of journey to work. These data were obtained from the Census SF 3 and joined with the 
previously described variables based on the common block group ID. In the proportional hazard 
model, distance to the nearest neighbor is modeled using the distance to the nearest CBSA and 
other census variables as the control variables. 
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Summary and Conclusion 
This note has detailed the process of constructing a spatial data set for studying urban form and 
settlement patterns via spatial hazard models. As noted, a key trick in spatial analysis is to structure 
the experimental setting in a way that lines up not only with theory, but also with the logic of the 
particular analytical method itself. The strategy presented in this note is one example of how such 
a challenge has been overcome. 
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