HUD-0050557

}'_A.J !-*’. o e

ORIGINAL

TCDMS SYSTEM SUMMARY

January 1976

Department of Housing and Urban Development
Office of the Assistant Secretary for
Policy, Development & Research

HUD Contract H-2073-R

INTER-REGIONAL INFORMATION SYSTEM

Regional Information Systems Department
Lane County Courthouse
Eugene, Oregon 97401

and
Data Processing Authority

4747 East Burnside
Portland, Oregon 97215

BIBLIOGRAPHIC 1. Report No. 2. 3. Recipient's Accession No
DATA SHEET USACLCG20003)
4. Title and Subtitle 5. Report Date
TCDMS System Summary - January 30, 1976
. ’ 6.
7. Author(s) 8. Performing Organization Report No. |
9, Performing Organization Name and Address 1 0. ProjectlTask/Wdrk Unit No.
Lane County Government
Lane County Courthouse k 1. Contract/Grant No.
Eugene, Oregon 97401 H-2073-R
12. Sponsoring Organization Name and Address 13. Type of Report & Period Covered
U.S. Dept. of Housing & Urban Development
i Office of Policy, Development & Research Special Technical Report
451 7th St., S.W. 14.
Washington, D.C. 20410

15. Supplementary Notes

16. Abstracts

This manual is from a USAC series produced by the Regional
Information Systems Department of Lane County. It contains
a conceptual introduction to the Telecommunications/Data
Management System (TCDMS). It contains an analysis of the
manner in which TCDMS processes transactions through its
network of terminals, the relationship between the logical
and physical file_ structures of its data base, a brief de-
scription of the system generation process, and a list of
the hardware and software requirements for installation.

17. Key Words and Document Analysis . 17a.
Information System
Local Government
Computer System Programs
Data Retrieval
17b. Identifiers/Open-Ended Terms
Urban Information Systems Inter-Agency Committee
Municipal Information System
P Lane County
Data Management System
17c. COSATI Ficld/Group 5B

Descriptors

.

Released for distribution by Unclassified | 74 -
18. Availability Statement NTIS 19. Sccurity Class {This Report) [21. No. of Pages
Unclassified
il 20. Security Class {This Page) |22. Price

FORM NTtS-35 (REV. 3-72) USCOMM-D.C. 14952972

THE CITATION OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT
DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF
THE USE OF SUCH EQUIPMENT OR SOFTWARE.

ii

0.1 PREFACE

In 1972, the Data Processing Authority (representing the city of Port-
land and Multnomah County, Oregon) and the Regional Information
Systems Department of the Lane County government (representing the
cities of Eugene, Springfield, Albany, Cottage Grove, and Florence;
and Lane, Linn and Benton Counties, Oregon) formed an organization
called the Inter-Regional Information System (IRIS). Its purpose

was manifold:

to solve some of the complex problems of public information
handling through cooperative planning and development of

hardware and software environments;

to minimize the duplication of effort involved in writing

application systems;
to reduce the cost of governmental data processing; and
to increase the quality of service to the taxpayer.

Since its inception, the IRIS organization has grown to represent
over one hundred different city, county, state, and federal agencies
serving over 70% of Oregon's population. Current projects include
the Fleet Management System, the Assessment and Taxation System,

and the Telecommunications Data Management System. Future involve-
ment is anticipated in the areas of criminal justice, management

analysis, human resources, geo-coding, and financial systems.

Much of the inter-regional success enjoyed by the IRIS organization
has been facilitated by a cost-reimbursement contract with the
Urban Information Systems Inter-Agency Committee (USAC). USAC is a

consortium of ten federal agencies formed in 1968 to work together

iii

PREFACE Continued

with local governments across the United States in an effort to
improve urban governance through more effective use of computer-
based processing systems. USAC is sponsoring several research and
development projects which will result in transferable, computerized
information systéms available to local governments throughout the
United States. ’

With the support of USAC, IRIS is developing the system software
foundation for the application programs which control these
computerized systems. This foundation is called TeleCommunications/
Data Management System (TCDMS). This system contains two components
which bring together the state—-of-the-art features in both tele-

communications and data base/data management systems.

The telecommunications component of TCDMS extends the power of

the modern computer to the desk of each user. Its facilities include
such features as terminal independent I/0O functions, user-specified
security, multiprogramming, priority scheduling, message switching,

print-out spooling, on-line debugging, and remote job entry.

The data base/data management component of TCDMS optimizes the
efficiency of data file construction and minimizes data redundancy
by combining all files in the system into an integrated data base.
Its facilities include data access flexibility, file and data
element security, and application program independence from the

physical file structure.

Perhaps the most important feature of TCDMS is the transferability

of application systems it allows. Application programs running under
TCDMS control are isolated from changes in the hardware or software
configuration of the installation. This means that TCDMS-controlled
application systems can be transferred between IRIS installations

without the costly conversion efforts usually necessitated by such

iv

&

]

PREFACE Continued
exchanges.

TCDMS may be implemented on any IBM System 360/370 computer having
252K bytes or more of storage capacity. It will support IBM
System 360/370 BAL, FORTRAN, COROL, and DL/l user languages.

TCDMS will run in real core under the control of IBM 0OS or VS
operating systems. The modular construction of TCDMS makes it

hardware independent; it can operate with any IBM terminal hardware
configuration.

The joint software development and maintenance by means of the
regional and interregional cooperation of IRIS and the integrated
data base/data communications approach of TCDMS are becoming an
increasingly popular solution to the problems of information handling
in the public domain. For further information and for documentation
concerning IRIS, contact the Regional Information Systems Depart-
ment, Lane County Courthouse, Eugene, Oregon 97401.

TADLE OF CONTENTS

0.1 PREFACE. . &+ + « &+ « o o o o o o s o & o« o« o« « « .page 1iii

TABLE OF CONTENTS. . + &« &+ & o o s o o o o s o s vi

0.2 INTRODUCTION . . &+ v o & o o o o o o o o o o o o 1

¢ 1.0 TELEPROCESSING CONCEPTS: + - « + « =+ « « « « « o . 4
2.0 USING TCSe « « o « o o o o o v o o o o o o w0 o & 26

3,0 THE TCDMS ENVIRONMENT: =« « « + « « « « « « o o o . 57

4,0 DATA MANAGEMENT CONCEPTS + + =« « « « o o« o o v o 61

£

0.2 INTRODUCTION

This book is about the Tele-Communications/Data Management System
(TCDMS). It was written to provide TCDMS users with the information

necessary to understand and evaluate the facilities of the system.

The Tele-Communications/Data Management System is a data communica-
tions system which acts as an interface between application programs
and the resident IBM System 360/370 OS or VS operating system. It
consists of two major components; a set of telecommunications modules
which controls the processing of all transactions through the TCDMS
network of terminals, and a set of data management modules which con-
trols the placement, manipulation, and retrieval of information in the
TCDMS integrated data base.

Either of thé two components of TCDMS may be implemented without the
other. The telecommunications component (TCS) will act as a terminal
network controller in non-data base environments, or it will support
the file structure of other available data management systems. The
data management component (DMS) will function in a similarly indepen-
dent fashion. It will interface to other teleprocessing systems or

operate in a standard batch environment.

This basic independence of the two components of TCDMS is further
enhanced by the modularity of their design. The functional units of
both components are isolated into separate modules which are configured
at system generation to provide a system tailored to meet the specific

needs of each installation. Thus, each TCDMS installation operates

" with its own unique version of TCDMS, which can be modified to support

evolutionary changes in the hardware or software environment with

minimal impact on user application systems.

TCDMS is oriented toward the convenience of the application programmers
and terminal operators using the system. The TCDMS application program-
mer utilizes the facilities of the system in a manner consistent with
the programming conventions of the host language. TCDMS functions are
invoked at the CALL or macro level of the host language; Assembler

Language, COBOL, PL/1, or Fortran. Terminal operators may access TCDMS

application programs and utilities by simply entering an asterisk (*),

and then the name of the desired program.

Since this publication is addressed to groups of people with differ-
ing technical backgrounds, it has been divided into several sections

which may be read separately;

SECTION 1 - TELECOMMUNICATIONS CONCEPTS This section examines
the logical structure of the telecommunications component of
TCDMS with regard to how it accomplishes the processing of

transactions through the TCDMS network of terminals

SECTION 2 - DATA MANAGEMENT CONCEPTS This section examines
the structure of the TCDMS data base and the means by which
physical and logical relationships are established between
data elements.

SECTION 3 - USING TCS This section describes the function
and use of each TCS programming function and user utility

program.

SECTION 4 - THE TCDMS ENVIRONMENT This section examines the
relationship between TCDMS and its hardware and software
environment. System hardware and software specifications are
‘provided. Consideration is also given to TCDMS system genera-

tion and its impact on the user installation.

All TCDMS users are assisted by a complete set of readable documentation,

which includes the following publications:

TCDMS APPLICATION PROGRAMMER'S MANUAL - A guide to the efficient
use of the TCDMS functions. Published separately for BAL, COBOIL,

PL/1l, and Fortran programmers.

TCDMS USER UTILITIES MANUAL - A guide to the use of the TCDMS

user utility programs.

TCDMS SYSTEM UTILITIES MANUAL - A guide to the use of the

TCDMS privileged utility programs for system maintenance.

TCDMS SYSTEM PROGRAMMER'S MANUAL - A reference manual to assist

system programmers in generation and maintenance of TCDMS.

TCDMS OPERATIONS MANUAL - A reference guide to assist TCDMS

computer operators in maintaining a smooth system throughput.

TCDMS MESSAGES AND CODES MANUAL - An explanation of each TCDMS

system message and return code.

TCDMS CONTROL BLOCKS MANUAL - A reference guide describing the
TCDMS control blocks and their linkages.

TCDMS PROGRAM LOGIC MANUAL - A description of each module in the
TCDMS system. ‘

B
]

1,0 TELEPROCESSING COMCEPTS

Teleprocessing can be defined as a method of computing in which the
source of data entry is physically distant from the computer. This
lack of proximity with the computer is one fundamental difference
between teleprocessing ‘and batch (punch card) processing, where the
input of data originates in the computer room. There are, of course,
many other differences between teleprocessing and batch processing.
But it is the ability of teleprocessing systems to make the computer
avallable when and where the need for information arises that makes

teleprocessing so important for the modern data processing installation.

This section explains some of the basis conceptual differences between
teleprocessing and batch processing and gives a conceptual overview of
the manner in which TCDMS provides teleprocessing services for its

users.

BATCH PROCESSING
Batch processing is the form of computing usually associated with
the ubiguitous "computer punch card". The hardware environment of a
typical batch processing computer consists of:

THE CPU AND ITS STORAGE DEVICES

THE PUNCH CARD READER

THE PRINTER

THE COMPUTER OPERATOR'S CONSOLE
These components are almost always located together in the same room.
With the addition of two more elements; the computer operator and the
application programmer, we can depict the relationship of these compo-

nents graphically as follows:

COMDUTER
OPERATOR
OPERATOR'S
CONSOLE
_ Control
PUNCH CPU and
CARD PO ©L ORAGE 7 PRINTER
READE R INPUT! prvices ~ PUTFU
‘\j \3@/
NpO 2
P o®

. |appLICATION,~

PROGRAMMER
4

The user of our batch system (i.e., the application programmer) submits

information to the computer in the form of punched cards. The computer

operator places this input into the card reader and enters commands

on the operator's console. These commands cause the cards to be read

and their input processed by the CPU and its storage devices. The
results of this processing are written on the line printer and returmned
to the application programmer for analysis. The time consumed by this
procedure is called "turnaround time" by computer personnel. It can vary

from several minutes to several hours.

5
.

The software environment of our batch processing model can be illustra-

ted graphically as follows:

OPERATING SYSTEM
. USER USER
- PROGRAM PROGRAM
g%%&RAM USER
USER PROGRAM
PROGRAM USER PGM.

PARTITION PARTITION

User programs are placed in separate partitions of the computer's

memory, where they run under the control of the resident operating sys-
tem. The operating system performs the logical functions which contxol
the resources of the computer; it allocates control of the CPU to the
partitions according to a pre-set priority scheme, and performs the

I/0 operations necessary to read the program's punch card input and

write the program's printed output.
WHY TELEPROCESSING?

It should be noted that, in our model batch system, the word USER is
synonymous with the words APPLICATION PROGRAMMER. Since, in produétion
environments, the application programmer is rarely the person for whom
the computer ultimately provides services, it is apparent that one of
the characteristics of batch processing systems is the separation of
the user from the tool; i.e., the computer. This separation occurs
in several ways;
Batch system require that the person in need of the computer's
services bring the information to the computer to be processed.

This is often not convenient. , .

Batch systems do not enable the user to make un-planned inquiries
of data stored in the computer. A batch user cannot conveniently

"brouse" through data.

Batch systems require the interface of trained data processing
personnel between the computer and its users. This reguirement
raises the cost of data processing and degrades the security,

accuracy, and convenience of the entire process.

Batch systems make relatively inefficient use of the time of

both the computer and its users. Since batch programs are pro-
cessed serially, the CPU often spends some of its time idle while
waiting for non-computational operations to be performed. Batch
system users similarly spend a great deal of time waiting for in-
formation to be processed. This precludes the use of computers

to support over-the counter transactions.

These and other shortcomings of batch systems impose severe limitations
upon the uses to which computers may be put. To overcome these limita-
tions and to enable more people to become beneficiaries of the power

of modern computers, teleprocessing systems were developed.

TELEPROCESSING

Teleprocessing systems differ from batch processing systems in two
important ways; the number and location of the computer's sources of
input, and the number of activities which may occur within the computer

at a given moment.

In a teleprocessing system, the card reader and printer of our batch
model are replaced by individual devices called terminals. A terminal
is a device which is capable of interacting with the computer. Tele-
processing systems have networks of terminals ranging in size from a
few to thousands of devices, each of which is capable of interacting

with the computer on an individual basis.

Because of this increase in the number of sources of input, telepro-
cessing systems are often capable of executing several user programs

asyncronously.

The hardware environment of a typical teleprocessing computer consists

of:

THE CPU AND ITS STORAGE DEVICES
THE TERMINALS

These components are rarely located together in the same room, and are
aften separated form the computer by distances ranging from a few feet
to thousands of miles. Each terminal can function as both an input
device for sending information to the computer, and an output device
for receiving information from the computer. With the addition of one
more element; the user, we can depict the relationship of these compon-

ents as follows:

USER

TERMINAL

HoRZH

BauHaco |

(JINPUT INPUT,
USER TERMINAL [qureuft Surpur| TERMINAL USER

HciHd =2
HOod3ao

AN

TERMINAL

USER

Each user in our model can initiate the flow of information to or from
the computer when the need for such information arises. In a typical
teleprocessing transaction, the user makes an inquiry of the data stored
in the CPU and its storage devices, and the information is displayed at
the user's terminal once the search criteria established by the user

have been fulfilled. The time consumed by this process is called

"response time". It varies from thousandths of a second to several

minutes.

Since the likelihood that more than one user will require access to
the resources of the computer at any given moment is quite high, methods
have been devised to control thée flow of these resources to insure that
all the users of the system obtain the services they need. This is

accomplished by teleprocessing software.

The software environment of our teleprocessing model can be shown like

this:

%

USER PROGRAM

—

g TELEPROCESSING g
E E
R R
OPERATING
P SYSTEM P
R R
0 0
G G
R R
A SYSTEM A
M M_

~

USER PROGRAM

Each user in our teleprocessing model can initiate transactions with
an application program by calling the program from a terminal. The
teleprocessing system intercepts the call and passes control of the CPU
to the appropriate program and teleprocessing or operating system
routines, which perform the services requested by the user. The user
program then causes the results of the computer's operations to be

- written to the user's terminal by invoking the appropriate system

routines.

Our teleprocessing model achieveg several significant advances over

batch processing systems:

Teleprocessing systems extend the facilities of the computer

to the physical location of the user.

Since the reéponse time of teleprocessing systems is considerably
less than the turnaround time of batch systems, the teleprocessing
.user can make several unplanned inquires of stored data in rapid
succession. The computer thus becomes aytool in the decision-—
making process, rather than a repository for information about

past events.

Teleprocessing systems do not require the intervention of trained
personnel to support user transactions. Because of the direct
means of information transfer between the computer and its users,

the integrity of the transaction process is more- easily insured.

Because a teleprocessing computer handles several inquires
asyncronously, the user spends less time waiting for a response,

and the CPU spends less time idle than in batch environments.

The teleprocessing component (TCS) of TCDMS provides its user with

these and other advantages over conventional batch systems.

TELEPROCESSING WITH TCDMS

TCS provides all the facilities necessary for an installation to conduct
its data processing in an on-line environment. It consists of a series
of inter-related modules which can be grouped into the follbwing func-

tional areas:

TERMINAL I/0 - These modules handle the communication between

the CPU and the terminals in the TCS terminal network.

SYSTEM SERVICE ROUTINES - These modules manage the allocation
of the computer's resources to the application programs and

system tasks requiring them.

HIGH LEVEL LANGUAGE INTERFACES - These modules interpret high

level language CALL statements to provide appropriate TCS services.
UTILITIES - These modules perform utility functions for TCS users.

These four groups of modules function together to control on-line and
batch application programs which contain TCS functions, and terminals

which request the services of a TCS utility. They provide the linkages

between the application program and its data files. The following

diagram illustrates this relationship:

TCS ‘.ll."

USER
TERMINAL z.. PROGRAM

TERMINAL I/O

The terminal I/0 modules of TCS control the flow of information
between the CPU and the devices which comprise the TCS terminal
network. They provide terminal control logic which is independent
of any proprietary terminal access method. The‘terminal I/0 modules

may be divided into two groups:

DEVICE-DEPENDENT MODULES - These modules control all hardware -

dependent I/0 functions. They construct the channel programs,
conduct the line protocol, and format data in accordance with
the unique requirements of each device-=type in the TCS terminal
network. They isolate the application programmer from I/O

formatting considerations.

DEVICE-INDEPENDENT MODULES - These are the general terminal I/O
modules which operate independent of the hardware configuration
to control the scheduling of terminal I/0O operation, assign and
manage queues and buffers, conduct error recovery, and transfer
CPU control to the operating system or to the TCS gystem service

routines upon detection of an SVC interrupt.

THE DEVICE-DEPENDENT MODULES

Each terminal-type in the TCS network has unique line control and data
formatting characteristics. 1In order to insulate the application pro-
grammer and the rest of the TCSsystem from these device-dependent
requirements, the designers of TCS isolated those portions of the

system which relate to the idiosyncracies of each individual device into

10

separate units called device modules and data modules.

Device modules build the strings of channel command words called
channel programs which control the transfer of data between the CPU
and each device in the terminal network. For attention interrupt
devices, the device modules also conduct the line protocol necessary
to insure that the terminal and the CPU do not attempt to send data
to each other at the same time. There is one device module for each
type of terminal in the TCS network.

Data modules conduct data handling for terminal I/O operations. They -
prepare and reformat device buffers and either insert or remove con-—
trol characters from the data stream, depending upon the type of tex-
minal I/O operation requested by the user. The terminal-independent
functions enable the programmers to read or write data to a terminal
without consideration to the control characters normally reguired in
the data stream. The data module inserts these control characters
for the program in accordance with the requirements of each terminal
with which the program interacts. The terminal dependent functions
enable the programmer to by-pass these data handling services and in-
sert all terminal-dependent control characters directly into the data
stream. There is one data module for each device-type in the TCS

network.

Since the device-dependent modules are separate from the rest of the
TCS terminal I/O logic, the TCS installation can add or delete terminal
hardware without affecting TCS as a whole. Each time a new component
is added to the terminal network, new device and data modules are link-
edited into TCS. This design feature eliminates expensive conversion
of existing application programs when the terminal configuration of

the installation is modified.

The relationship of the terminal I/O modules is shown in the following
diagram: '

11

(::) TERMI NAL
' DEVICES

—

DEVICE-
DEPENDENT
MODULES

Y 7 T

DEVICE-INDEPENDENT MODULES
! ! !

OPERATING SYSTEM

The terminal I/O portion of TCDMS consists of device
dependent modules which are appended to the TCS terminal I/0 logic

to provide independence from changes in the hardware configuration

of the installation.

THE DEVICE-INDEPENDENT MODULES

The device-independentterminal I/0 modules of TCS perform terminal
I/0 functions which are not affected by changes in the hardware
environment of the installation. These functions include interfac-
ing with the resident operating system, queue management, buffer

management, and error recovery.

OPERATING SYSTEM INTERFACE

TCS serves as an interface between the terminal operator or on-line
program and the resident 0S/VS operating system. It does not alter
or duplicate any operating system functions, but merely allocates the
services of the resident operating system to programs which contain
TCDMS functions.

12

TCMDS controls all programs contain-

OPERATING SYSTEM ing TCDMS functions. The resident operating

4{\\ ! [system (OS or VS) controls TCDMS. The TCS
r operating system interface modules intercept
certain interrupts which are generated by

| ‘ /\ ‘ (us .. ,
er programs containing TCS functions.

These interrupts are examined by TCS to deter-

ON-LINH BATCH

D ARTTTION PARTITION Mine the nature of the services requested, and

control is passed to the appropriate 0S/VS

§ routine or TCS module for further processing
The TCS operating system interface intercepts three types of interrupts:

ATTENTION INTERRUPTS - These interrupts are generated when an
entry is made at a terminal. TCS determines the identity of the
interrupting device. If it is not assigned to TCS, control is
passed to the resident operating system for further processing.
If the interrupting device belongs to the TCS terminal netwbrk,
control is passed to one of the TCDMS terminal I/O modules dis-

cussed above for I/O processing.

SVC INTERRUPTS - Each TCS function generates a unique SVC inter-
rupt which is intercepted by the TCS operating system interface
to determine the nature of the services requested. Control is
then passed to the appropriate TCS module or operating system

routine for further processing.

PROGRAM INTERRUPTS - When an exception occurs during execution

of a TCS program, the TCS operating system interface performs
abnormal-end-of-job processing. This allows the resident operat-
ing system interface modules save certain information for a dump,

so that the reason for the abnormal termination can be determined.

QUEUE MANAGEMENT .
- The gqueue management modules maintain a system of queues into which
tasks awaiting further processing are placed. These, K queues can be
: classified as follows:
INPUT QUEUE - The input queue contains a list of terminal iden-
tification (TID) numbers of terminals which are waiting to send

information to the computer.

13

READY-TO-RUN-QUEUE -~ The ready-to-run gqueue contains TID numbers
which have sent information to be processed by an application pro-

grammer or a TCS utility.

OUTPUT QUEUE - The output queue contains TID numbers of terminals

to which application programs are waiting to send information.

COMPLETION QUEUE - The completion queue contains the TID numbers

of terminals which have successfully completed an I/O operation.

TCS uses these queues to monitor and manage the flow of work through

the system.

BUFFER MANAGEMENT
TCS maintains a system of buffers for temporary storage of information
awaiting further processing. The number and size of these buffers

varies with the number and types of devices inthe TCS terminal network.

STOPPED
WHILE RE-
CEIVING
TERMINAL 1/0

~

CPU

ACTIVE WIT
ANOTHER

TASK
. — =
TERMINAL BUFFER :

CPU

~

TERMINAL BUFFER

Since I/0 operations are relatively slower than the processing speed of
the CPU, TCDMS provides a system of buffers into which data from ter-
minals is stored. The program then retrieves the information from the
buffer at a much higher rate of transfer, thus utilizing the time of /

the CPU more effectively.

These buffers perform two important tasks. First, they compensate for
the vast difference in speed between the rate at which the CPU can pro-
cess information and the rate at which a terminal can send it. When

a terminal I/O operation is performed, the data is placed into a buffer.
Since terminal I/O operations are relatively slow in comparision to the
processing speed of the CPU, the computer is free to perform other

operations while this transfer of information is taking place.

14

Secondly, these I/0 buffers provide a means of storing information

during the period of time between when it is read from a terminal and

processed by the computer or written by a program and actually sent

to a terminal

ERROR RECOVERY

When an I/0 error occurs while TCS is in the process of reading or
writing to a terminal, information about the nature of the:error is
recorded on the TCS system log, and the I/O operation is retired. If
.the I/O operation is unsuccessfully completed after four tries, the
operation is cancelled, the computer operator is notified to delete the
terminal from the network until the error condition can be corrected,
and a dump is produced to aid the system programmer in diagnosis of

the problem.

The manner in which the TCS terminal I/0 modules work together to pro-
vide complete terminal I/O support for TCS users may be demonstrated by

following a transaction through the system:

STEP 1 - When an entry is made at a TCDMS terminal, the resulting
attention interrupt is intercepted by an operating system inter-
face module, which places the TID of the interrupting device into

the input queue.

STEP 2 - Terminal I/0 module scans the input queue, determines the
device-type of the interrupting terminal, and passes control to

the appropriate TCDMS device module.

STEP 3 - The device module obtains a buffer of the required size,
constructs the channel program, and issues the EXCP instruction
which causes the residing operating system to read the data into

an input buffer.

STEP 4 - When the read operation is complete, control is passed
to another terminal I/0 module which performs error checks. If
an I/0 error has occured, a counter is incremented and control is
passed back to the device module to re-read the device. If no
errors occured, or if error recovery was unsuccessful after four
retries, the TID of the interrupting terminal is placed in the

completion queue.

15

STEP 5 - When the TID is recovered from the completion queue, the
control characters are removed by a device module, and control is
passed to another module which scans the first few characters of
the entry to determine ité nature. The data is then placed in

the appropriate queue; the message queue, if the data was a message
to another terminal, the page queue if the entry was a paging re-
quest, or the ready-to-run queue, if the entry was an initial pro-

gram call.

SYSTEM SERVICE MODULES
The TCS system service module consist of a loosely inter~related group
of modules which control the allocation of system resources to the
application program and system tasks requiring them. These modules
may be broken down into the following functional groups:
SYSTEM GENERATION AND INITIALIZATION
RESOURCE MANAGEMENT
SYSTEM MONITORING
With the exception of the system generation and initialization routines,
the TCS system serivce modules are invoked by the terminal I/0 and

operating system interface modules previously described.

SYSTEM GENERATION AND INITIALIZATION

By using the TCS system generation and initialization modules, the

unique version of TCS which best fulfills the requirements of the instal-

lation can be defined. This definition process has two stages:
SYSTEM GENERATION - The process by which the TCS hardware and
software environment is defined. The TCS system generation pro-
cess describes the device configuration of the installation, the
size and number of threads, file size, operating system configura-
tion and other environmental attributes. There are over one
hundred thirty parameters which may be specified during the system
generation process. The modules comprising TCS are chosen and

assembled, and them combined in a link-edit procedure.

SYSTEM INITIALIZATION - The initialization process is the means
by which the computer operator can dynamically alter TCS during
a production shift, or cold start TCS after a system failure.

During initialization, the TCS operating system interface is set,

16

files and control blocks are opened, and threads and buffer pools

are restored.

The specific parameters of the TCS system generation macros and the
procedures for system generation and initialization are described in
greater detail in the section of this publication entitles the TCDMS
ENVIRONNENT.

RESOURCE MANAGEMENT
The TCS resource management modules provide control of the resources
0of the computer for other TCS modules. These resources include both

= main storage and the peripheral storage devices attached to the compu-
ter. In addition, the resource management modules provide algorithms
used by other TCDMS modules for the manipulation of data as it is pas-
sed from module to module. The resource management modules may be
broken into functional groups for the purposes of description. These

functional groups are discussed below:

TASK MANAGEMENT
In order to enable several terminals to gain access to the resources

of the computer at the same time, teleprocessing systems utilize a

technique of resource sharing called multiprogramming. Multiprogram-
ming systems allow several programs to execute asyncronously. TCS
employs a technique of asyncronous processing called ROLLIN/ROLLOUT
to allocate the resources of the computer to the programs and tasks

requiring them.

The TCS task management routines divide the teleprocessing partition

of the computer's memory into separate sub-partitions called threads.
Each thread holds one executing task at a time, and each task executes
asyncronously with the others. The number of threads in a TCS instal-
lation, and thus the number of tasks which may execute asyncronously,

is dependent upon the size of the partition allocated to on-line programs

and the size of the installation's programs.

TCDMS Figure 3 - Each thread occupies a separate
’ ‘ area of the computers memory. The remainer
BATCH éNLLiNﬁ of the computer is available to batch programs.
PROCESS4 | RROGRAMS | The programs and tasks occupying TCDMS threads
NG i : ‘ execute independent of one another. One program

may not degrade the area of another program's thread.

17

Since terminal I/0 operations are relatively a great deal slower in
total execution time than other computer operations, the TCS task
management modules make maximum use of the computer's time by re-

moving an executing task from its thread each time it issues a terminal
I/0 instruction, and replacing it with another task which has comple-—
ted its I/0. This process, which is called ROLLIN/ROLLOUT, is the means
by which TCS thread areas are allocated to the various on-line programs
and system tasks awaiting execution. The following example shows this

rollin/rollout process in action:

TASK A is executing in the thread. Both the ready-to-run queue and

the output queue are empty:

RTRO |___THREAD OUTPUT QUEHE

- TASK A -

TASK B is placed into the ready-to-run gueue by the TCDMS terminal I/O
modules. Task A is still executing in the thread. The output queue

is still empty:

RTRO THREAD QUTPUT QUEURE
FROM

TERMINAL | TASK B TASK A -

I/0 MOD-

ULES

TASK C is placed into the ready-to-run queue by the terminal I/O
modules. Task A is still executing in the thread. The output queue

is still empty:

RTRO THREAD OUTPUT __QOURIIE
TASK B
T -—
TASK C ASK A

18

TASK A issues & terminal I/0 command.. The TCS task management modules

place Task A into the output queue and load Task B into the thread

to begin execution. Task C remains in the RTRQ:

RTRQ THREAD OUTPUT QUEUF
ask Cask
task ¢ |2—| Task B |2 Task a
Ie T'o
: ffhregd Disk

TASK A completes its I/0 operation. It is removed from the output

queue and placed into the ready-to-run queue by the TCDMS task manage-
ment modules:

RTROQ THREAD _ OUTPUT QUEUE
TASK C TASK B _
TASK A

k Task A to RTRQ j

TASK B issues a terminal I/0 command and is placed in the output

queue. Task C replaces it in the thread. Task A remains in the
RTRQ:

RTRQ Task THREAD Task [OUTPUT QUEUE
C B
TASK A TASK C TASK B
To TO
Thre§d RO1 1+
ut
Queue

TASK C issues a terminal I/O command and is placed in the output

gueue behind Task B. Task A is rolled back into the thread:

RTRQ ask ‘THREAD Task QUTPUT OUEUR
A C ~ TASK B
- ~% TASK A TASK C
o To
hredd Roll
Out
Queue

19

TASK B completes its I/0 operation and is placed in the RTRQ. Upon
successful completion of its I/O operation, Task C completes its pro-
cessing. The TCDMS task management modules pass task C to the comple-
tion Q, from which resident operation system retrieves it for normal
end-of-job processing. Task A will remain in the thread executing until
it issues another terminal I/0 command, at which time the rollin/rol lout

process will continue.

RTRQ THREAD OUTPUT QUEUR COMPLETION

TASK B TASK A -

[TASK B TO RTRQ ,J

The narrative above illustrates how the TCS task management modules con-

TASK C

!

trol the rollin/rollout process for one thread. To further increase the
number of terminals which can use the computer at a given moment, most
TCS installations use multiple threads. In this instance our rollin/

rollout illustration would look like this:

| THREAD 5 _

TASK C _
THREAD 3 TASK K
TO
[THREAD D

RTRQ THREAD 1 ROLLOUT QO
TASK D TASK A
TASK M _J TASK H
TASK C | TASK K

THREAD 3 TO ROLLOUT QUEUE

20

When multiple threads are run in a TCDMS installation, tasks waiting in
the RTRQ may be placed into any of the threads which are left empty by

the rollout of another task.

Because of the great speed with which modern computer function, rollin/
rollout operations are performed in thousands of a second, and thus
are transparent to the terminal operator. The TCDMS task management
modules give the illusion that each terminal is the only one operating

in the system.

The priority of the threads in the TCS partition may be set at system
generation time, and may be dynamically altered by the computer opera-
tor to improve system thrdughput. In addition, certain application
programs and/or certain files may be "locked" to a particular thread.
This insures the integrity and response time of high priority applica-

tions.

LIBRARY OF APPLICATION PROGRAMS
TCS stores its application programs in special disk areas called
libraries. These libraries are maintained by TCS. Programs are stored

in the TCS libraries in both load module and source formats.

Each entry in the load module libraries consists of a load module pre-'
ceeded by a prefix which contains the program name and descriptive
attributes about the program. These attributes include:

* Program Size

* Thread Number (if the program must

execute in a particular thread)
* Security Attributes
* Priority Status

* Transactional or Conversational Status

In addition, TCS maintains a library directory which contains the name
of each program and its location in the library. Programs stored in
the library may be added, altered, or deleted by on-line utilities pro-
vided by TCS.

When a terminal operator attempts to use a TCS program, the library

management modules find the program in the TCS library, scan the descri-

21

ptive information about the program, and place the load module in the
ready-to-run queue for rollin to a thread by the task management rou-—

tines.

The library management modules also provide the security which protects
TCS programs from unauthorized use or alteration. When an application
programmer catalogs -a program into the TCS library, the attributes
associated with the entry define the persons and/or terminals having
access to the program. These security measures enable the individual
programmer to easily and effectively controi the uses to which programs

may be put.

STORAGE PROTECTION

The TCDMS storage protection module provides each TCDMS application
program with protection from interference by any other programs running
in the system. Fach time a TCDMS program begins execution, its thread
area is assigned a unique storage protection key. This enables the
program to alter the contents of storage in its own thréad, but prevents
it from altering the area of any other thread in the system. Thus, a
TCDMS application program may not degrade the execution of any other
program in the system by inadvertantly changing the contents of another

program's storage.

SYSTEM MONITORING

TCS contains several modules which monitor the flow of work through

the system. They provide protection against program loops, trap statis-
tics about significant events as they occur, and communicate with the

computer operator and/or the user whenever significant conditions arise.

LOOP DETECTION

TCS provides a timing algorithm which terminates application programs
after they have executed for a specific period of time without perform-
ing a terminal I/O operation. This prevents the tie-up of system re-
sources which can occur when an executing program'encounters an instruc-
tion loop. The period of time which must elapse before a looping pro-

gram is terminated may be changed by the computer operator.

STATISTICS AND CAPTURE ROUTINES
The TCS statistics and capture module enable the user installation to

record significant events as they occur. Some of the events which may

22

be recorded on the TCS capture tape include the following:

OP CODE USE

SD FILE USE

PRIVILEGED PROGRAM CALL

PROGRAM CALL

SECONDARY PROGRAM CALL

APPLICATION PROGRAM GIVEN CONTROL

APPLICATION PROGRAM CANCELLED BY OPERATOR

OF CHARACTERS RECEIVED FROM TERMINAL

OF CHARACTERS SENT TO TERMINAL

MESSAGE SENT

MESSAGE RECEIVED

PAGING REQUEST

DATA BASE CALL

ROLLIN COMPLETED
The TCS statistics and capture modules record several levels of statis-
tics. These levels are specified at system generation time to indicate
the extent of detail required for the installation's reporting needs.
In addition, individual statistics may be recorded dynamically by the

computer operator to satisfy short-term diagnostic requirements.

OPERATOR COMMUNICATIONS

TCDMS provides the computer operator with a set of priveliged functions
which may be used form the system console to control the flow of work
through the TCS terminal network. These functions are involved by en-
terning commands in response to the operating system outstanding reply

for TCDMS. These commands are as follows:

ADD Add either a local terminal or a group of remote
terminals to the TCS network

CANCEL Cancel a TCS application program

DELETE Delete either a local terminal or a group of remote

terminals from the TCS network.

DISPLAY Display the status of a TCS thread or task

EOJ Terminate TCS

IGNORE Ignore the input from a terminal or group of terminals
in the TCS network

RESTART Reactivate IGNORED terminals

23

CTL Designate certain terminals as privileged for the

purpose of system maintenance

SWAP Change thread priorities

MESSAGES AND CODES

TCS provides a comprehensive set of error messages and return codes
which are displayed at the users terminal, the operator's console, ox
written to the system log or capture tape when a significant event
occurs. The routing of thse messages may be cﬂanged to facilitate

the installation's error reporting procedures.

- When a message indicating an application program error appears. at
a TCS terminal, it is automatically followed by a dump of the program's
thread area. The dump may be referenced for diagnostic purposes at

the user terminal by using a TCS on-line utility.

HIGH LEVEL LANGUAGE INTERFACES

The TCS high level language interfaces interpret user program calls

for TCS services and invoke the appropriate TCS modules. The inter-
face modules are link-edited to all BAL, COBOL, FORTRAN or PL/1l pro-

grams running under TCS control.

TCS user programs obtain system services by use of the TCS functions.
The TCS functions are involved at the CALL or MACRO level in the user
program in a manner consistant with the coding conventions as the host
language. Fach TCS function is described indetail in the portion of
this publication entitled ON-LINE PROGRAMMING WITH TCS.

UTILITIES
TCS utilities are general purpose routines which perform services for
all TCS users. There are two types of TCS utilities:
USER UTILITIES - These are utilitiy programs for application pro-
grammers and terminal operators. They perform message sending,
librarian services, program debugging and editing, remote job
execution, and other general services. The TCS user utilities
are involved at the terminal by entering:
“* NAME
when NAME is the name of the utility program desired.

SYSTEM UTILITIES - These are utility programs for system pro-

24

grammers and computer operators. They perform tasks such as
file maintenance, library compression, disk formatting, and
other services useful in maintaining system throughput. The
TCS system utilities are invoked either from TCS control ter-
minals (privileged terminals for use by system maintenance

personnel) or by their placement in privileged TCS programs.

25

2.0 USING TCS

For the purpose of analysis, the manner in which most computer pro-—

grams process information can be reduced to the following steps:

1) Input of Information
2) Manipulation of Information

3) Output of Information

Recalling our batch model of the previous section, the INPUT OF
INFORMATION step in this process consists of reading the information
contained on punch cards into the computer's memory by use of a caxrd
reader. The MANIPULATION OF INFORMATION step of the process consists
of operations performed with or upon this information by the computer.
The OUTPUT OF INFORMATION step of the process consists of writing the

results of the computer's manipulation to a printer.

Teleprocessing programs utilize these same three steps. In fact, on
a conceptual level there is no basic difference between the logic of
teleprocessing programs and that of batch programs. Then both receive
information from a source external to the computer, process the inform- -
ation, and send the results of the processing to another'point external

to the computer.

The differences which exist between batch and on-line programs can
be attributed to two things:

. The flexibility resulting from the sophistication of

terminal hardware.
The real-time nature of teleprocessing environments.

Teleprocessing hardware presents a mind-boggling array of possibili-
ties to the programmer. A typical teleprocessing environment might
include both hardcopy (printed paper) and softcopy (CRT tube) termi-
nals, graphics devices capable of producing digitized input: from a
map location, intelligent terminals capable of processing information,

audio response terminals capable of producing output in the form of

26

human speech, or devices capable of recording printed output on

microfilm.

This array of equipment vastly increases the number of ways in which
input and output can be formatted and displayed by the on-line pro-
gram. Thus, while the I/0 portions of batch programs are usually
similar from program to program, the I/0 portions of on-line programs
often vary considerably with the nature of the hardware environment

in which they operate. It should be noted that the device independent
I/0 functions of TCS enable the programmer to minimize this variation
by handling all I/0 formatting tasks.

While on-line programs may utilize the same basic processing steps as
batch programs, the speed and frequency with which they go through
these steps is vastly increased. On-line programs typically process
hundreds or thousands of input-manipulation-output cycles each working
day. These cycles are called transactions. Since these transactions
usually support over-the-counter inquires, the speed with which they
are completed is critical. Hence, on-line programs tend to be small

and efficient in their execution time.

- Despite the device-orientation and smallness of on-line programs, the
programming conventions of the batch and TCS environments are the
same. Batch programs may be converted to run on-line under TCS control

by replacing their I/O portions with TCS terminal I/O functions.

All the TCS functions are invoked at the CALL or MACRO level in the
user program in a manner consistent with the programming conventions
of the host language. TCS supports application programs written in
IBM Basic Assembler Language, COBOL, and FORTRAN. Sample TCS func-

tion usages for each of these languages are shown below.

For Basic Assembler Language

to read a terminal

MCALL READ,AREA=INPUT,LEN=100

For COBOL

to read a terminal

CALL 'READ' USING INAREA,LENGTH

27

For FORTRAN

to read a terminal

CALL READ (Return Code,Area,Length);

The functions shown on the folloﬁing pages comprise all the TCS
functions currently available. They are shown in a generalized’
pattern using the conventional COBOL language CALL statement, with
brief descriptions in place of the actual argument names. The.use
of square brackets indicates that the item enclosed is optional, and
" need not be coded. 1In all cases, a return code is provided to indi-
cate the completion status of the operation. This return code is
tested by the programmer using the normal technique for testing

return codes in the host language.

28

THE ABEND FUNCTION

CALL 'ABEND' USING [USER-SUPPLIED ABEND CODE]

The ABEND function initiates TCS abnormal termination processing for
the user program. A hexadecimal dump of the user program's thread
is produced. The optional abend code is displayed at the terminal

(for on~line programs) or in the printout (for batch programs).

The ABEND function is useful in tracing the execution of a program.
Several ABEND functions, each with a different abend code, may be
imbedded at critical locations in a program to provide a trace of

its execution.

29

THE CAPTUR FUNCTION

CALL 'CAPTUR' USING Location of the data to
be captured, 1length of
the data to be captuxed,
Elser—supplied identifi-
cation numbéﬂ

The CAPTUR function causes data to be written from any area in the

user program to a special capture file on tape or disk.

TCS writes a prefix on each record captured by the user program. This
header includes the following information:

NAME OF PROGRAM
TERMINAL IDENTIFICATION (TID) NUMBER

TYPE OF CAPTURE (i.e., on-line, batch, priveleged)
DATE

TIME OF DAY

The CAPTUR function is useful in monitoring the execution of a program

to provide a record of certain transactions.

30

THE DATA FUNCTION

CALL 'DATE' [9]

The DATE function returns the current date to the user program. If
the J option is used, the Julian date is returned. If no option is

used, the date is returned as a packed, unsigned number.

The DATE function is useful whenever the user program must identify
the current date.

31

THE EOJ FUNCTION

CALL 'EOJ'

The EOJ function initiates TCS end-of-job processing for the user
program. A standard EOJ message is written to the terminal. No

dump is produced.

32

THE FILE I/0O FUNCTIONS

CALL 'TFGET' USING File Name
'TFGETU' Location in User Pro-
gram where records are
placed
[Search Argumeni}]
CALL 'TFPUT' USING File Name
'"TFPUTU" (Logcation in User Pro-
gram where records are
placed
E’(elative Record Numbea
CALL 'TFENQ' USING File Name
'TFDEQ'

The TCS file I/O functions enable the user on-line program to use
data files organized for the BDAM and ISAM access methods. TCS batch
programs can use standard ISAM, BDAM, USAM, or BPAM access method
commands. These file I/0 functions do not access files in the DMS

data base.

TCS provides the following file I/0 functions:

TFGET retrieves one or more records from a file

TFGETU retrieves on record from a file for update

TFPUT adds one or more records to a file

TFPUTU adds one updated record to a file

TFENQ holds a file for exclusive access by one program
TFDEQ releases a file for access by other programs.

The TCS file I/O functions enable the user program to process files
either sequentially or directly. For direct processing, the user may

specify a search argument.

33

THE GETCHR FUNCTION

CALL 'GETCHR' USING Location in user progrxam
where information is placed

Amount of information re-
quested

[Terminal identification
(TID) number about which
terminal is requesteé}

The GETCHR function provides information about the environment in

which the user program is running. This information includes the

following:

- DEVICE-DEPENDENT INFORMATION GENERAL, INFORMATION

TID of specified device Initial program called

Number of characters per line Most recently fetched program
Number of lines per display Most recently loaded program
Buffer size Status of calling program

TCS device module number Cataloged size of calling program
TCS data module number Actual size of calling program
Status of terminal Thread size

Physical address of terminal Load address of calling program
Default TID (for screen to Installation identifier

hardcopy utility)

Relative address of terminal for Thread number

control unit

This information is useful in a wide variety of applications. For
example, use of the GETCHR function enables the user program to
dynamically ascertain the nature of its hardware environment and

tailor its use of the terminal I/0 functions accordingly.

34

MESSAGE SWITCHING

CALL 'MESGSW' USING Message control block for
user program

Location of message text
in user program

Length of message segment

EDestination codes to whick
message will be seﬁg

E@mnber at destination
codes listéa

Identity of terminal to
which a revly will be senfi
The TCS message switching function, MESGSW, enables the user program
to send messages or data to any terminal in the TCS terminal netwoxk.
It should be noted that the MESGSW function controls the handling of
messages which originate from an executing on-line program. Messages
originating from a terminal are handled by the message switching

utility.

Messages are formed in pieces called segments. When the user program
completes the last segment of a message, TCS combines the segments

and sends the message to its specified destination.

The user program may specify the recipient of a message either by
individual terminal identification (TID) number, or by referencing
groups of one or more TIDS defined by a destination code. Security
restriction may be affixed to a message by assigning it one or more
class codes. All messages are treated as text by TCS, using the

maximum line length of the receiving device.

The TCS message switching modules maintain a system of queues for each
terminal in the network. Messages are placed in these queues when
they are sent. If a receiving terminal cannot display a message when
it is sent, the message may be retrieved from its queue at a later

time.

TCS message switching is useful in any circumstance where information

is transferred from one terminal in the network to another.

35

THE OVERLAY FUNCTIONS

CALL LOAD USING Name of overlaying module
LOADT Location in user program
FETCH where module is to be
placed

Length of overlaying module

In addition to supporting 0S or VS planned overlay, TCS provides three

functions which may be used to overlay all or part of the user's thread.

The LOAD function loads a module into the user program's thread. The

user program retains control.

The LOADT function loads a module into the user program's thread, and
transfers control to the new module. The program attributes remain

those of the user program.

The FETCH function loads a module into the user program's thread,
transfers control to the new module, and changes the program attributes

to those of the new module.

36

THE PAGING FUNCTIONS

CALL 'POPEN' USING Page length

Number of pages in file

CALL 'PWRT' USING Location in user prograrmm
" 'DPREAD' where data resides

Record number of record
to be processed

CALL 'PLIMIT' USING Page length

Highest page written
E:urrent page dis’playerﬂ
[fumber of current pagé]

The paging functions enable on-line programs which produce large
amounts of output to arrange the data for convenient viewing by
terminal operators. With the paging functions, the program's out-

put data is arranged in groups called pages in much the same manner

as information is placed in the pages of a book. The terminal operator
may display the information one page at a fime by using the paging
utility.

The POPEN function creates and initializes a page file for later

use by the program. Page files are stored on direct access devices.

The PRWT function writes data one page at a time to individual pages

in the page file created with the POPEN function.

The PREAD function reads data one page at a time from the page file

to an area in the user program.

The PLIMIT function enables the user program to determine the number
of the last page displayed by the terminal operator, and to place an
upper limit on the number of the highest page available for display.

37

THE PRINTOUT SPOOLING FUNCTIONS

CALL 'PSOPEN' USING Printout control block name

Destination code to which
printout will be sent

Number of destination cod.s
specified

CALIL 'PSPUT' USING Printout control block name

Location in user program of
data to be written

CALL 'PSCLOS' USING Printout control block name

The printout spooling functions enable on-line programs to create
printout data sets which are generated one line at a time and spooled
to a disk until the entire data set is complete. Spooled printouts
may be written to any terminal or group of terminals in the TCS net-

work.

The user program may specify the recipient of a spooled printout
either by individual terminal identification (TID) numbers of by

referencing groups of one or more TIDS defined by a destination code.

Security restrictions may be assigned to a printout by assigning it

one or more class codes.

The PSOPEN function creates and initializes a printout data set for
later use by the program. The PSWRT function writes a line of output
to the data set. The PSCLOS function closes the data set and sends

it to the terminal(s) specified in the printout spooling control block.

The printout spooling functions enable several on-line programs to
concurrently generate printouts for the same device without getting

their outputs intermixed.

38

THE SD FILE FUNCTIONS

CALL 'SDOPEN' USING File name

Record length

File size

E\uthorized TID:|
Elighest record writteﬂ

EDas sworéﬂ
CALL 'SDWRT' USING File name
'SDREAD' Location of record in user
program

r_f{ecord number_|
[Z_\uthorized TI]Q
E{ecord lengthj
CALL 'SDCLOS' USING File name
'SDDEL' USING [Ruthorized TID]

The SD file functions enable TCS programs to access and maintain disk

files. 8D files contain fixed length records, the size of which is

specified by the user program. They may be accessed either sequentially
or directly. The maximum SD file size, the number of SD files that
may be open by one program at a given time, and the longevity of a

program's files are TCS sysgen options.

The information stored in SD files can be protected from unauthorized
access by the same security measures protecting the programs which
create them. In addition, programs having several SD files may restrict

their access by any combination of the following criteria:

APPLICATION PROGRAM NAME
TERMINAL IDENTIFICATION (TID) NUMBER
PASS WORD

The SDOPEN function creates and initializes all SD files for the user

program. SD file security is specified in the SDOPEN function.

The SDWRT function writes a record to the file queues with the SDOPEN
function. The SDREAD function reads the specified record from the

file, and places it in the specified area of the user program.

39

The SDCLOS function closes an SD file which had previously been
opened with the SDOPEN function. When it has reached the limit of
maximum files open at a given time; a user program can use the SDCLOS

function to temporarily remove a file to make space for another.

The SDDEL function permanently deletes an SD file from the SD file

disk area.

The SD file functions are useful whenever a program requires disk
space to temporarily or permanently store information. They isolate

the application programmer from disk formatting considerations.

40

t

THE SETEID FUNCTION

CALL 'SETEID' USING Bit mask table

The SETEID function allows the user program to disable functions which
program attention (PA) or program function (PF) keys have been
assigned by the installation. TCS recognizes three PA keys and

twelve PF keys on the terminal devices it supports. When one of

these keys is depressed and the SETEID function has been used, TCS
does not perform the function assigned to the key, and the interrupt

is passed to the user program.

The SETEND function enables the user program to ignore one or all of
these interrupt keys. If the SETEID function is used which the pro-
gram is in conversation with a terminal which neither has nor stimu-

lates these keys, the function is ignored.

41

THE ROLOUT FUNCTION

CALL 'ROLOUT'

The ROLOUT function causes the user program to be rolled out of its
thread.

The ROLOUT function is useful when the user program will be executing
for a prolonged period of time. It increases overall system through-
put by allowing other programs to execute in the thread. The program

‘which issues a ROLOUT function is placed in the READY-TO-RUN queue,

and is rolled back into the next available thread.

42

THE TIME FUNCTION

CALL 'TIME' USING Format of time desired

The TIME function returns the time of day to the user program. The
time is returned either as hours, minutes, and seconds elapsed since
the previous midnight; the number of hundredths of seconds elapsed

since midnight, the number of CPU timer units elapsed since midnight.

43

THE TERMINAL I/0O FUNCTIONS

The TCS terminal I/0 functions enable the user program to communicate
with the terminals in the TCS terminal network. There are two kinds
of terminal I/0 functions provided: terminal-independent functions

and terminal—depehdent functions.

The terminal-independent I/0 functions provide the terminal control
characters required for the user program to read or write to terminal
devices. When the program reads data from a terminal, TCS removes

the control characters inserted in the data stream by the device be-
fore the data is passed to the program. When the program writes data
to a terminal, TCS inserts the necessary control characters before
éctually sending the data. An optional new-line symbol may be imbedded
into the data stream by the user program. If it is not used, the

carriage or cursor is automatically returned where a line is filled.

The use of terminal-independent I/0 function is encouraged in environ-
ments where a program may be called from more than one terminal type.

It isolates the program from these device considerations.

The device-dependent I/0 functions require that the program provide
and manipulate all terminal and line control characters during both
input and output operations. Although they offer the user programmer
more flexibility in display formatting, they limit the applicability

of the program to single-~device environments.

With one exception; both types of I/0 functions can be used in one

program.

44

THE TERMINAL-INDEPENDENT I/O FUNCTIONS

CALL 'WRT c| rusing " Location in user program from
D which data is written
T Length of data
TC Logical line length of terminal
TD
CALL 'READ[BJ 'USING Location in user program where

data is placed
Length of data

Number of bytes available to be
read before READ operation was
initiated

The terminal-independent write functions provide several processing

options.

WRT - Writes data to terminal

WRT [C}] - Writes data to a terminal and waits for response. TCS
places the terminal operation response into a buffer for
later retrieval by the program

WRTEﬂ - Writes data to a terminal, and then cancels the user
program after the write operation is completed

WRT[T] - Writes text to a terminal. The T option prevents the
splitting of words between lines.

In addition, the T option can be used in combination with the
D and C options.
The programmer may specify a line length for the write operation by
use of the logical line length parameter. If this parameter is not
specified, TCS uses the physical line length of the device being

written to.
The terminal-independent read function provides two processing options:

READ - Reads a terminal operator's entry. An optional para-
meter returns the length of the operator's response to the
program. Another optional parameter enables the user pro-
gram to specify one or more delimiters. This parameter
causes TCS to read the terminal operator's entry and stop
when the first delimiter is encountered in the data stream.

45

IHHH)EQ - Reads the terminal operator's entry and returns the
TCS location counter to the point where it was before the
read option was begun. A subsequent read function starts at
the beginning of the data. An optional parameter returns the
number of bytes read to the user program. A return code
indicates the relationship between the length of data read
and the length of the terminal. operator entry.

46

THE TERMINAL-DEPENDENT I/O FUNCTIONS

CALL 'WRTS [c]' usING Location in program from which
D data is rewritten
. Length of data
Location in program where data
EQ .
is placed
FD)
CALL 'READS [R] ' USING Length of data

Number of bytes available to be
read before READS operations
was initiated

List of delimitation

The terminal-dependent write functions provide several processing
options:

WRTS - Writes data to a terminal

WHESﬁﬂ - Erases a CRT screen before writing data to a terminal.

WRTSEﬂ - Writes data to a terminal and waits for a response.
TCS places the terminal operator's response into a buffer
for later retrieval by the program.

WRESEﬂ ~ Writes data to a terminal, and then cancels the pro-
gram after the write operation is completed.

In addition, the E option may be used with the D and C options.
The terminal-dependent read functions provides two processing options:

READ - Reads a terminal operator's entry. An optional para-
meter returns the length of the operator's response to the
program. Another optional parameter enables the user pro-
gram to specify one or more delimiters. This parameter
causes TCS to read the terminal operator's entry and stop
when the first delimiter is encountered in the data ‘stream.

REAI)&d - Reads the terminal operator's entry and returns the
TCS location counter to the point where it was before the
read option was begun. A subsequent read function starts
at the beginning of the data. An optional parameter returns
the number of bytes read to the user program. A return
code indicates the relationship between the length of data
and the length of the ‘terminal operator entry.

47

THE TCS UTILITIES

The TCS utilities are on-line programs which perform general purpose
tasks for TCS programmers and terminal operators. These tasks in-

clude the following:

WRITE SOURCE PROGRAMS - The TCS utility UPDS enables the programmex
to write programs from an on-line terminal in any of the four TCS

user languages.

ASSEMBLE/COMPILE SOURCE PROGRAMS - The TCS utility UPDS also allows
the programmer to submit a completed source program for remote job

execution (RJE) in a batch partition.

TEST SOURCE PROGRAMS -~ The TCS utility UQ enables the programmer to
monitor the execution of a job. For example, the programmer can use
a UQ to examine the SYSOUT data set associated with é job in order
to determine if there were any assembler/compile errors. The UPDS
utility can then be used to correct any errors and the job can be

resubmitted.

CATALOG LOAD MODULES - Once a program is tested and debugged. The
programmer can place an operational version of the program into the
TCS library and protect it with security restrictions using the ULIB
utility.

DEBUG OBJECT PROGRAMS -~ If an error occurs during operational use
of a program, the UDUM utility can be used to examine the dump of
the program's thread and the error can be corrected in the object
code with the ULIB utility and/or in the source code with the DPPDS
utility.

SEND MESSAGES - The message switching utility can be used to send
messages between terminals or display messages sent to terminals

without the intervention of a user program.

DISPLAY PAGED OUTPUT - The user can display pages built by a program

which used the paging function.

The TCS utilities are invoked by using the general command:

48

*UTILITYNAME [command (s]

at a terminal. The following pages describe each of the above

utilities in greater detail.

49

THE LIBRARY UTILITY - ULIB

ULIB is used to maintain programs in the TCS library of application

programs. ULIB is invoked by the general command
*ULIB, command
The following commands and options are available:

*ULIB,CAT, program name,Eescriptive parameter]
The CAT command causes a program to be cataloged to the TCS library.
The descriptive parameters include program size, thread lock number,
and security attributes.

*ULIB, ZAP, program name, location, data
The ZAP command causes data at the location to be either compared
with the data supplied in the command or replaced with data supplied
in the command, at the option of the terminal operator. The ZAP
command is used to correct coding errors detected by the compiler

Oor assembler.

*ULIB, DIS, program name(s)
The DIS command causes certain descriptive information about a

program or group of programs to be displayed. These attributes
are:

Program Name Actual Program Size
Cataloged Program Size Thread Number

Number of address constraints in program

*ULIB, DEL, program name

The DEL command causes a program to be deleted from the TCS library.

50

THE DUMP UTILITY - UDUMP

Whenever a TCS program terminates abnormally, an error message is
sent to the terminal which was using the program when the error
occurred, and a dump of the thread in which the program was executing

is produced. UDUMP is used to reference these dumps from a terminal.

When a dump is produced, certain information is added to the dump as
it is written to a disk. This information includes the program name,
the date and time of failure, the TID of the terminal using the pro-
gram when the error occurred, the number assigned to the dump, the
error message which was displayed at the user terminal when the error
occurred, the contents of general purpose registers g through 15 at
the time of the error, the contents of the floating point registers
at the time of the error, the thread address, the program load
address, and the Program Stauts Word (PSW) of the program. This
information is displayed on the first page of the dump. The subse-

guent pages of the dump are displayed by depressing the enter key.
The general commands for UDUMP are as follows:
*UDUMP ALL - Displays a list of dumps in the file.

*UDUMP PRINT NAME OR NUMBER - Prints the dump for the program name

specified or the dump number specified.

In addition, during the use of UDUMP, the terminal operator may enter

one of the following commands:

R=M - Causes machine addresses to be displayed. This option is in
effect when UDUMP is invoked. |

R=T - Causes the addresses displayed to be relative to the beginning
of the thread.

R=P - Causes the addresses displayed to be relative to the beginning

of the program.

R=* - Causes the subsequent addresses displayed‘to be relative to

the current address displayed.

51

CRn - Causes the display to begin at the address in register n.

Address - Change display to the address specified.

Snnnnnnnn - Search for the first occurrence of the character string

represented by nnnnnnnn.

+ displacement - Move the display forward or backward by the displace-
ment specified.

52

THE MESSAGE SWITCHING UTILITY

The message switching utility enables the terminal operator to send
or receive messages to or from any terminal in the network. The com-

mands for the message switching utility are as follows:

*M. dest code(s). text of message - Causes the message to be sent to

the terminal (s) represented by dest code.

*M.dest code(s).class code(s).text of message - Causes the message
to be sent to the terminal(s) represented by dest code. Also

causes the message to be assigned the class codes specified.

*MDISABLE - Causes the terminal from which the command is entered

to be disabled from receiving all but urgent messages.

*M.ENABLE - Caused the DISABLE status to be removed for the terminal

from which the command is entered.

*M.D. ETI]ﬂ EI‘IMEB - Causes display of the message switching status
either of the terminal from which the command is entered, or (when
a TID number is entered) any non-priveleged terminal in the network.
This status includes the following information:
- Sending and receiving class codes
- Disabled status
- TID of alternate terminal
- Message number, status, and other information
for all messages sent to the terminal which

have not been received.

The time parameter enables the terminal operator to retrieve the

above information for a terminal during a specified time interval.

*M.n[:TIé] - Causes the message with the number n to be displayed.
If the TID parameter is used, messages queued to other terminals

can be displayed.

*M.R - Causes the first page of the message currently being displayed
to be re-written.

*M.DELETE.n - Causes the message with the number n to be displayed.

53

*M.PURGE - Causes the gueue assigned to the terminal from which the

command was entered to be purged of messages.

*M.ALT=tid - Causes the TID specified to be assigned as the alter-
nate for the terminal from which the command was entered. This
means that if the terminal becomes inoperative or disabled, any

messages set to it are re-routed to its assigned alternate.

*M, ALT=REMOVE - Remove a terminal from alternate status.

54

THE TCS PAGING UTILITY

The paging utility enables terminal operators to display the pages

in a paging file.

Fach terminal has one paging file assigned to it.

The pages inthe file are numbered sequentially beginning with 1.

The commands for the paging utility are:

*?2/C - Causes the most recently displayed page to be re-dis-

played

*P/n
*P/N
*p/P
*P/A

*P/D

Causes

Causes

Causes

Causes

the page with the number n to be displayed
the next page to be displayed
the previous page to be displayed

the highest page in the file to be displayed

Deletes the page file assigned to a terminal

55

THE TCS SYSTEM STATUS UTILITY - UQ

The UQ utility enables the terminal operator to monitor and control
the execution of jobs in the batch partition, and to monitor the
performancé of TCS. The functions of UQ are divided into two cat-

agories:
DISPLAY OPERATIONS
*UQ[éisplay operatioé][§ptioé1

Display names and status information for active system tasks, user

tasks, and subtasks in the batch partitions.

Display all queued jobs by class or job name or display the status
of the input, output, and hold queues.

Display the input JCL, system messages, SYSIN and SYSOUT data sets.
Display the sﬁatus of all system tape drives.
CONTROL OPERATIONS

*UQ [}job name](;control operatioé]

Place a job on hold. This operation causes a job to remain in its

queue until it is released.

Release a held job. This operation causes a job to be placed into

the normal job stream.

Cancel a job. This operation permanently removes a job from the

job stream.

56

3,0 THE TCDMS ENVIRONMENT

The TCDMS environment has three elements; the hardware configuration
of the installation, the resident software of the installation, and
the unique version of TCDMS operating at thé installation. This
section describes the hardware and software which may comprise the
TCDMS environment, and the methodology of planning, tailoring, and
installing TCDMS.

THE TCDMS HARDWARE ENVIRONMENT ,

The TCDMS hardware environment consists of the central processing
\unit and its peripheral storage devices (disks and tapes) communica—
tions line and their controlling devices and terminals. The minimum
hardware configuration required to support TCDMS includes the follow-—
ing:

IBM System 370/145 with 252K bytes storage

IBM System 370/145 compatable card reader/punch

IBM System 370/145 compatable printer

IBM System 370/145 campatable Tape Drive and Control Unit
IBM Model 3330 Disk Drive and Control Unit

e i e

Terminal and Control Unit from the list below
Minimum Storage Requirements:

TCS 100K bytes

DMS 40K bytes

TCDMS 140 K bytes

Other hardware devices supported by TCDMS include:

Central Processing Units
IBM System 370/145, 155, 158,165,168
Communications Controllers
IBM 3705
IBM 2914
Terminal Devices
IBM 2740 Models 1 and 2 (Basic and Station Control)
IBM 2260 Remote
IBM 3271 Models 1 and 2

57

IBM 3272 Models 1 and 2

IBM 3275 Models 1 and 2

IBM 3277 Models 1 and 2

IBM 3767

IBM 3284 Models 1, 2, and 3
IBM 3286 Models 1 and 2
TEKTRONICS 4014 Graphics Scope
Ultronics CRT

Ultronics Impact Printer

Ultronics Thermal Printer

THE TCDMS SOFTWARE ENVIRONMENT
The TCDMS software environment consists of the operating system and
other system software which controls TCDMS,Aand the user programs
controlled by TCDMS. The following operating software is required
to operate TCDMS:

IBM System 370 OS/MFT with or without HASP

IBM System 370 0S/VS1 Release 3
The following high level languages and file access methods are supported
by TCDMS:

IBM System 370 BASIC ASSEMBLER LANGUAGE
IBM ANS COBOL

IBM PL/1

IBM FORTRAN IV G

IBM Data Language/l (DL/1)

Multiple Access Directory §yétem (MADS)
Data File support

Basic Direct Access Method (BDAM)
Indexed Sequential Access Method (ISAM)

Generally, the hardware and software elements in the TCDMS environment
are established before the installation of TCDMS. For this reason,
TCDMS may be readily adapted to satisfy a wide‘variety of installation
dependent requirements. This process of adaptation has two parts;

system generation and system initialization.

SYSTEM GENERATION

TCDMS system generatidn is the process by which the individual instal-

58

lations version of TCDMS is defined and created. This process has
three steps; planning, creating the TCDMS source tape, and generating
TCDMS on site.

The planning step consists of analyzing the needs of the installation
to determine the optimum system configuration. Consideration must be
given to the quantity of main storage available to teleprocessing appli-
cations, the number and type of programs and terminals using the system,

the maximum acceptable response time, and a host of other factors.

Once the needs of the installation have been established, the TCDMS
source tape is created. This tape consists of the JCL to assemble and
link-edit the modules of TCDMS, and an assembler language version of

each module to be included in the system.

One of these modules contains the global symbols by which TCDMS is
defined. There are over one hundred of these parameters to be specified
in defining the exact nature of the system and its environment. In
general, these parameters describe the hardware and software environmnet
of the installation and the attributes of TCDMS. These attributes

range in significant size from the size and number of threads in the
system to the maximum number of new-line symbols which may be imbed-

ded in the data stream by a user program during a write operation.

When the values for these parameters have been specified and the appro-
priate modules have been placed on the source tapes, TCDMS can be gen-

erated on-site.:

The on-site generation process consists of; 1) executing the JCL to
assemble and link-edit the resident modules.of TCDMS, creating the
TCDMS libraries, assembling and then cataloging the transient modules
and system utilities to these libraries, and executing TCDMS in the

operating system job stream.

TCDMS INITIALIZATION

Once the system generation process is complete and TCDMS has been exe-
cuted, the system initialization process can occur. Initialization

is the process by which space is allocated in main storage for TCDMS
control blocks, resident modules and resident directories. The ini-

tialization process formats the teleprocessing partition of main storage

59

in the manner shown below:

THE TELEPROCESSING PARTITION

RESIDENT TCDMS MODULES

SMALL BUFFERS

BIG BUFFERS

o - - - - - - - -THREAD- - -~ - - - - - -
- - - - - - - -THREAD- - - - - - - — -
- - - = - - - -THREAD- - - - - — - - -

TCDMS FREE AREA

0S/VS DATA AREAS

The initialization process also allocates space on direct access
storage devices for SD and Paging files and their directories,
rollin/rollout directories, TCDMS libraries, the message file, andk
DMS files. When initialization is complete, TCDMS is ready to pro-

cess user requests.

60

4.0 DATA MANAGEMENT CONCEPTS

Data may be defined as the representation of information. All
computer programs handle data. In some programming environments,
the individual programmer is responsible for the design and main-
tenance of his own data files. In other environments these tasks
are handled by complex systems call Data Management Systems. The
basic difference between these two approaches to data handling

is the degree of separation between the application program and
its data. It is measured by the amount of knowledge the appli-
cation programmer must possess about his data in order to handle
it.

The data management component (DMS) at TCDMS provides a complete
system of data management services which isolate the user from con-
cern with the physical attributes of the data stored in its data
base. This section gives a conceptual overview of the manner in

which TCDMS performs these data management services.

THE STRUCTURE OF THE DMS DATA BASE

THE DATA ELEMENT

The unit of data available to the DMS application programmer is
the data element. The data element is also the smallest unit of
data in the DMS data base. Its length may vary according to the
attributes of the element. Data elements are stored within the
data base in compressed format. There are thirteen types of data
compression available. When the data base is established at

each installation, the compression type for each element is set.
DMS converts data to and from these compressed formats as it
transfers data to and from the data base. The user program

normally handles only the external, or uncompressed form.

61

THE DATA SEGMENT

All data elements in the DMS data base are contained in segments.
A segment can contain one or more elements. A segment is the
smallest unit of data handled by DMS. When an application program
requests a data element, DMS retrieves the entire segment which
contains that element, and places it in a special area called the
Segment Work Area. The element requested is then passed to the

program from this segment work area.

element 1 element 2

part no. | description cost

a multi-element segment a single-element segment

DMS data elements are stored in segments, which may be comprised
of one or more elements. Elements are usually combined in seg-
ments to facjilitate rapid retrieval of information which is usally

found in the same user request.

THE FAMILY

Each segment in the DMS data base must exist in relation to some
other segment. When a user program combines one or more segments

in a heirarchical relationship, the result is a family. Thus, a

DMS family is a collection of segments which are logically dependent
on one segment for their meaning. The segment which gives the family
structure its meaning is called the Root Segment. The diagram below

illustrates this concept.

Truck A|.

This data structure is a family of data segments related to the root
segment, TRUCK A. All the elements in the family are given
meaning by the fact that they describe TRUCK A.

THE FILE

There are two kinds of DMS files; physical files and logical files.
A physical file is a group of segments which is stored in one
contiguous block of space on a direct access storage device. A
logical file is a group of segments which are logically related

by a user program. Using our previous example, this concept

may be illustrated as follows:

Truck A

The family structure of the first example may actually be composed
of data which resides in three different physical files; the truck
file, the components file, and the service file. When they are
logically related to one another by a user program, they become
that program's logical file.

Data segments are stored together in physical files on direct access
storage devices in a manner which is defined when the data base is
initialized. This physical grouping is irrelevant to the user
program which is only concerned with the logical relationships

between elements.

Each DMS logical file may contain up to 256 heirarchical levels of

63

data. The DMS data base may contain one or more files, which may
be separately indexed, loaded, or reorganized. Data in one DMS
file can be a pointer to data in another file, this providing ex-

tensive interrelationships between files.

A pointer is an element or segment in one file which defines the
location of segments in another file. Rather than actually con-
taining data, a pointer segment contains information which describes
where the data is stored in another file. Any segment which is
pointed to from another file contains back pointers that identify
the segments which point to it. Pointers in one file always

identify the root segments of families in another file.

There are two types of data in DMS files; multiple chain files

and root chain files. Multiple chain files contain data that is
used by several programs. Individual programs access this data with
pointer segments within their own files. Root chain files contain
data that is pertinent to an individual program. These files

may contain actual data, or they may consist of pointers to

multiple chain files. These two types of files provide the net-

working capabilities within the DMS data base.

The data elements available to a program, and the logical relation-
ships between these elements are defined in a special control block
called a Data Base Control Block (DBCB). Once this definition

has occurred, the user program may access its data files by
specifying which elements it wishes to process. DMS provides a

series of functions to accomplish this.
There are four major functional areas in DMS; the access method,

segment processor, request manager, and the file and family

protection system.

64

THE DMS ACCESS METHOD

The DMS access method consists of a group of modules which map the
complex logical structures in the data base to and from their phys-
ical representation on direct access storage devices. The access
method supports the extreme flexibility in data manipulation afforded
to the user program, while at the same time equalling or exceeding
the performance of more conventional data accessing techniques. Da-
ta integrity is protected by internal access method routines. The
access method also logs the information necessary to recover from

unexpected system failures.

The access method structures segments into families. Each family
is normally stored in one physical block on a direct access device.
Both families and individual segments may, however, occupy several
physical blocks if necessary. The modules which structure segments
into families and reﬁrieve segments from the data base are known as

data block management modules.

The access method identifies a family for the purpose of physical
access by its relative block number within the file, and its rela-
tive family number within the block. These are converted to physical
addresses by the access method which then requests I/0 operations
from the resident operating system. Because these addresses are
relative, pointers between families and files need never be updated
in any kind of file maintenance procedures between file reorgani-

zations.
The access method is designed so that the physical structuring of

segments into families is independent of the technique used to ac-

cess families. This means a family may be accessed in several

65

different ways. Direct access by root segment is possible via
the access method index hgndling routines. These routines also
provide access sequentially by root segment beginning anywhere in
a file and proceeding forwards or backwards from there. A family

s may be accessed directly via a pointer from a family in another
file: this allows a multiple indexing capability. Physical se-

- quential access without regard to root segment sequence is available
for rapid retrieval in situations where order is unimportant. Files
may also be organized randomly, and accessed using a randomizing
routine.

THE DMS REQUEST MANAGER
The request manager modules process user program requests for data

management services. It converts these requests into the appro-

priate format for the access method. The request manager locates

and maintains the user program's position within the data base, and

converts to and from its compressed format.

There are two main tasks performed by the request manager; scan
processing and element processing. The scan processor modules

establish the hierarchical path through the data base that con-
tains the data elements.

Requested by the user program, the element processor modules
establish the unique set of segments, which satify the user program's
request.

Both the scan processor and element processor modules convert user
. requests for data elements into internal requests for the segments
which contain them. These internal requests are then passed to

another set of modules - the segment processor.

66

THE SEGMENT PROCESSOR

The segment processor modules handle internal requests for segment
level manipulation. They manage the segment work area (SWA) where
P segments are constructed from data elements for insertion into
| the data base, and where retrieval segments are stored so requested

- elements can be extracted from them.

The segment processor modules handle segment-level requests from
the request manager routines. They manage the segment work area
(SWA) where segments are constructed from data elements for inser-
tion and where retrieved segments are stored so'requested data
elements can be retrieved from them. The segment processor keeps
all the segments in the SWA linked together by segment type
(retrieval, insert/update, or delete). These SWA "chains"'are

linked to the appropriate entries in the segment descriptor table.

Each segment in the SWA has a header which describes where the
segment belongs in a family. The segment processor creates and
maintains this header. When the segment work area fills with
segments, the segment processor attempts to clear it by releasing

all non-insert/update segments.

When the segment processor receives a retrieval request for a seg-
ment from the request manager, it first checks the segments in the
SWA to determine if the segment has already been read. If the
’request can be satisfied by a segment already in the SWA, the seg-
ment processor returns control to the request manager. Otherwise

it builds the required control blocks and calls the access method

to retrieve the segment. When the segment processor receives
segments from the request manager for insert/update, it stores them
in the SWA until the update is completed. The segment processor then
arranges the segments in the correct physical file sequence and

passes them to the access method, one segment at a time, for insertion

67

inot the data base.

The segment processor routines also handle pointer segments. For
retrievals, this means making two requests to the access method;

one for the pointer and one for the segment pointed to.

DMS DATA PROTECTION

The file and family protection modules of DMS provide several levels
of data base protection. Data integrity is assured during access

by a system of validation routines. In the event of an abnormal
termination by the user program, the DMS protection modules

release control of the files held by the terminating program to

insure the integrity of the affected files.

The data protection modules provide the basis for data base re-
covery in the event of a system failure. They write a record of
each data base update transaction (inserts, deletes, and changes)

to the system capture file. The remainder of the modules in the
file and family protection system are the file recovery modules.
These provide the capability to restore the data base in the

event it becomes damaged during a system failure. The backout
module removes the transactions which were only partially completed.
Other modules apply transactions from the capture file to a backup
copy of the data base.

DATA BASE DEFINITION AND DBCB GENERATION

After a data base has been designed for an installation, and loaded

68

using the data base load utility programs it must be made ready

for use. There are two steps in this procedure.

(1) The data base definition process creates two system files
which contain descriptive information about each data element
and segment in the data base. Each entry in the data dictionary
contains a data element name, accessibility specifications, com-
pression type, the external and stored lengths, the location of
the data element in the segment, and some data validation infor-
mation. The segment dictionary entries identify each segment and
its hierarchical position within the file. These dictionaries
contain the information used by the data management system to
locate data elements requested by an application program. (2)
The DBCB generation process creates a data base control block
(DBCB). DBCBs specify which data elements are accessible to an
application program. Each program which accesses the data base
has a DBCB associated with it.

69

