Chapter 16
Proficient PFGMH Users - Example #2

Introduction

This Chapter will take advantage of what the User has learned over the last 15 Chapters. It will work Example #2 taking advantage of any shortcuts that are available in the Program, and it will not elaborate on how to use commands. It will show the User how Concepts can be quickly selected and easily tested to verify compliance with the Permanent Foundation Criteria found in the “Handbook”.

Example #2

- **Given:** John Smith desires a Permanent Foundation for a Single-Section Unit, nominal 14 foot wide manufactured home to be sited in Tampa, FL. The data on the Owner’s Site acceptability Worksheet remains the same as Example #1, with the exception of item #1. The grade elevation is 28 feet. The Manufacturer’s Worksheet remains the same with the following Exceptions:

1. Single - Section (Nominal 14’ wide unit)
2. Type C
7. Roof Slope = 4 in 12 (not slippery)
8. Unit weight ≈ 16,500 lbs.
10. Type C1
11a. Pier Spacing = 7 ft.
11b. N.A.
11c. N.A.
11d. 7 Tie-down straps at 8’-8” spacing
 Note: Tie-downs are required to be 2’-0” in from each end of the unit. (section 601-2.B.)
14. Design Wind = 120 MPH
16b. Uplift capacity = 3,150 lbs./diag. set
16c. Sliding capacity = 4,800 lbs./diag. set
16d. Sliding capacity = 4,800 lbs./diag. set
16e. Vertical X-bracing tension capacity = 5600 lbs./strap
Owner’s Site Acceptability Worksheet

- The User should select the Owner’s Site Acceptability Worksheet from the Worksheets pull-down menu. Use the following client information:
 - Name: John Smith
 - Address: 35 Brandywine
 - City, State: Tampa, FL
 - Remainder of information matches that of Example #1, except for grade elevation being = 28’-0”.
- The User can now select Print for a hard copy of the Form. See Appendix B For the completed Owner’s Site Acceptability Worksheet.

Manufacturer’s Worksheet

- The User should select the Manufacturer’s Worksheet from the Worksheets pull-down menu. Use the following Manufacturer information:
 - Name: New Homes
 - Address: 39 Peachtree Lane
 - City, State: Atlanta, GA
- Question #1: Select “Single-Section” with the mouse pointer and it will highlight with a black border. Select the button at the far end of the question to bring up the Superstructure Dimensions dialog window, fill in all the blanks with data as given and it will look as below:

Note: Do not select the Superstructure Dimensions Icon from the Main Tool Bar, if it is desired to have the dimensional data entered on the Manufacturer’s Worksheet. The User must choose the button at the end of question #1 for data to be entered in the boxes on the Form.
Note: User should always verify that units are typed with the dimensions. For example, if chassis width were typed in as 82, without the inch mark (""") the computer will assume it is 82 feet. Thus, the User should always check the **down-arrow button** **Drop-down list box** first, which always supplies the units.

- **Question #2:** Select the button at the far right of the question. The **Foundation Design Concept** dialog window will appear. Select Type C1.
- Question #8: Select the button at the far right of the question. The **Dead Loads** dialog window will appear. Complete the **Floor**, **Roof** and **Exterior Wall** Tabs to look as follows:

![Dead Loads Table]

Floor:
- **Decking**: 1/2" Oriented Strand Board - 1.7
- **Joists**: Wood 2 x 6 @ 16' o.c. - 1.7
- **Ceiling**: 5 1/2" Batt - 1.1
- **Moments**: Mechanical - 0.6
- **Partitions**: Miscellaneous Partitions - 2.2

Total: 9.0

Roof:
- **Roofing**: Standing Seam Aluminum - 0.3
- **Decking**: 1/2" Oriented Strand Board - 1.7
- **Joists/Framing**: Wood 2 x 6 @ 16' o.c. - 1.7
- **Ceiling**: 5 1/2" Batt - 1.1
- **Cling**: 5/16" Gypsum Board - 1.4

Total: 5.9

Exterior Walls:
- **Exterior Finish**: 1/4" Aluminum Siding - 0.2
- **Siding**: Wood 2 x 4 @ 16' o.c. - 1.5
- **Insulation**: 3 1/2" Batt - 0.7
- **Siding Finish**: 5/16" Gypsum Board - 1.4

Total: 5.8
Select **OK** at the completion of these 3 Tabs and return to the Form, where the **Self weight** of the total unit will be entered as (W) = 16,452 lbs.

- Question #10: Foundation Concept Type **C1** will automatically be entered, based on your choice from question #2. Select the green typed and underlined Appendix A from the On-Line "Handbook" and review the **Foundation Selection Table** for suitability of the foundation type **C1** subjected to wind, seismic, and engineering design as shown below:

A-100.5. Selection Table

A-100.5. SELECTION TABLE. The table immediately following can be used to select appropriate foundation types for sites with special requirements.

FOUNDATION SELECTION CHART

<table>
<thead>
<tr>
<th>Foundation Type</th>
<th>High Wind Zone</th>
<th>Engineering Design Required</th>
<th>Seismic Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Some</td>
<td>None</td>
</tr>
<tr>
<td>C1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Reinforced masonry piers w/ wire tie-downs & diagonal tie)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Engineering design will likely be required for the Hurricane potential of Tampa, FL, while seismic is likely not an issue. Select the green typed and underlined **C1** to bring up typical plan, section and details for this type of Foundation selection. A portion of the information is as follows:

![Diagram of Foundation Structure]

NOTE: TYPICAL STEEL TIE-DOWN STRAP: 1/32" X 1-1/4" MINIMUM BREAKING TENSION STRENGTH = 4750 LB (ULMA LOAD) ASTM D2953-93 OR FEDERAL QQ-S-781G

<table>
<thead>
<tr>
<th>FOUNDATION TYPE</th>
<th>SYSTEM NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforced masonry piers w/ wire tie downs and diagonal tie</td>
<td>C1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUPERSTRUCTURE TYPE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis supported single-wide</td>
<td></td>
</tr>
</tbody>
</table>
• Questions #11a and 11d: Select the button at the far right of the question to bring up the **Recommended Pier Spacing** dialog window. Select the given 7'-0" pier spacing under the chassis beams. Type in the 8'-8" spacing and the number of tie downs is calculated as 7, which automatically appears in the box below. Select **OK** and return to the Form, where this information will automatically be entered.

![Recommended Pier Spacing](image)

• Questions #12 through #16f: The User can type in each answer according to the **Given** information that started Example #2.

• This completes the **Manufacturer’s Worksheet.** Select **Print** for a hard copy. A sample output is found in Appendix B.

• The User can become acquainted with the Foundation Concept **C1** with the Manufacturer’s recommended superstructure geometry and foundation spacings by selecting **Graphics Window** from **View** on the pull-down menu bar as shown below, and using the **View Toolbar** to enlarge the perspective:
Design Worksheet

- The User should select the **Design Worksheet - Header Information** from the **Worksheets** pull-down menu. Use the following information:
 - Builder’s Name: Grappo Industries.

Part 1 - Site Conditions

- The User should select the **Design Worksheet - Part 1 - Site Conditions** from the **Worksheets** pull-down menu. It is shown below completed. Many of the questions are of the “yes/no” type. Only the existing grade elevation = 28’ has been automatically inserted.

- Question #9: The **Frost Protection Depth** is reviewed from selection of the green typed and underlined map H-4 as shown below. Note the contour shows “zero” for Tampa. Return to the Form and Type (0”) in the blank box and answer “yes/no” to questions #10a, #10b, #11 to #13.
• Question #14: Select the green typed and underlined H-10 Termite Infestation map. The entire state of Florida is solid "black" which implies "Very heavy" infestation. Return to the Form and select "yes" and type in "very heavy". Also, answer question #15, "yes/no".
Part 2 - Site Preparation

- The User should select the Design Worksheet - Part 2 - Site Preparation from the Worksheets pull-down menu.

Answer the “yes/no” questions. The completed portion of the Form is shown below.

PART 2 - SITE PREPARATION

(Accountant: Chapter 3)

16. Acceptable surface drainage plan provided? *(Yes/No)*

17. Grading plan provided? *(Yes/No)*

18. Fill specifications conforming to that stated in D&D Plan and Part.
(If not, see Part D&D, Table 157 for new fill.
If fill is not below the project elevation, temporary flow through storm drain system must be added to provide proper detention)

19. Existing grade of front yard *(ft)*

28'-0"
Part 3 - Design Loads

- The User should select the Design Worksheet -Part 3 - Design Loads from the Worksheets pull-down menu. The first portion is shown below automatically filled in with previously entered data from the Manufacturer's Worksheet.

- Questions #25, #26, #27: Can be ignored since they really relate to use of the “Handbook” to proceed.

Snow Load/Minimum Roof Live Load

- Question #28a: Select the Roof LL Icon to bring up the dialog window. Select the Map button to bring up the Ground Snow Load Map. The “zero” appears across the state. Select “Unobstructed Slippery Roof”. Select OK and the Form will be automatically filled in. Note that snow does not control; the minimum roof live load controls.
The User can view the **Live Loads** on the superstructure by selecting the **Graphics Window** from **View** on the Pull-Down Menu Bar and then selecting the **Live Load Icon** on
the View Toolbar as shown below. The roof live load and the floor live load are both shown.

Wind Load

- Question #31a: Select the Wind Load Icon to bring up the dialog window. Select the Map button to bring up the Basic Wind Speed Map and locate Tampa. Enter the value at the Tampa contour, as shown below, as 100 MPH and select “Coastal”. Select OK and the Form will automatically be filled in with these values.
- The User can view the wind loads on the superstructure either in the transverse or longitudinal direction, just as done for the Live Loads, including ± internal pressure values as shown below:

```
Wind Load GCpi -0.25 (psf)
```
Seismic Load

- Question #38a: Select the Seismic Load Icon to bring up the dialog window. Select the Map button to bring up the Seismic Coefficient Map and locate the grayed Hillsborough County where Tampa resides. Read the contour as 0.05, as shown below. Repeat for Av and find 0.05 again. Enter these values in the dialog window. Select OK and the Form will automatically be filled in with these values.
Contour Map for Seismic Coefficient Aa

- Question #41: Answer "yes".
- The User can view the Seismic Inertia Forces on the superstructure either in the transverse or longitudinal direction. The transverse direction is shown below:
Part 4 - Final Design Procedure

- Question #42 and #43 will be already filled in.
- Question #44: For the Foundation Concept C1, piers will only be located under the "chassis beams". Make that choice and it will highlight with a black border.

- From the graphic above it is apparent that the Support is under the chassis beams and the Anchorage comes from tie-down straps that either wrap around the roof of the unit or attach to the side wall of the unit, and then attach to concrete deadmen below grade for ballast.
- Question #45 and #46: Answer “yes” to both, based on the graphic of a Type C1 shown above.
- The completed Part 4 is shown below.
Required Footing Size - Appendix A

- Question #47 and #48 are already filled in with the preliminary recommendations made by the Manufacturer. Select the **Foundation Dimensions Icon** to bring up the dialog window to visually see the arrangement of pier footings and dead-men anchor footings. Various options are available here to re-arrange the spacings within the dialog window. Select **OK** and return to the Form, which will be filled in automatically.

Note: The Transverse Lateral Resistance system has already been set up for Vertical X-Bracing Planes, since this is the most likely transverse sliding resistance option. Also, the minimum number of such bracing planes is shown as two, which starts the User on the trial-and-error process for required (Ah).
Required Footing Size - Appendix B

- Question #49: Select the **Gravity Load Footing Size Icon** to bring up the dialog window. The Preliminary spacing of 7'-0" produces a square footing 2'-3" on a side based on a net allowable soil bearing pressure of 1000 psf. If this is satisfactory select **OK** and return to the Form, where the information will automatically be entered in the boxes.

- Questions #50, #51a & #51b do not apply to a Type **C1** foundation option.
Vertical Anchorage Requirements in the Transverse Direction - Av - Overturning & Uplift

- Question #52a: Select the Overturning Icon to bring up the dialog window. Using tie-down straps at 8'-8" on center, will produce a vertical anchorage force $Av = 2,570$ lbs. Select the button next to the spacing to bring up the Foundation Dimensions dialog window to revise the spacing as required. Review the loads summary. Select OK, if satisfied, and return to the Form where choices made will automatically be filled in.
Note: The Required (Av) is less than the manufacturer’s rated connection capacity for uplift and overturning. If the Required (Av) was greater than the manufacturer’s rated connection capacity, a closer spacing of deadman tie-downs would have been required, meaning more than 7 anchor locations.

Horizontal Anchorage Requirements in the Transverse Direction - Ah - Sliding

- Question #55a & #56: Select the Transverse Sliding Icon to bring up the dialog window. Start with two vertical X-bracing planes and find the horizontal anchorage force/foot as (Ah) = 858 lbs/ft. Select the button next to the “number of transverse lateral resistance locations” to bring up the Foundation Dimensions dialog window to revise and view in plan the layout of the foundation if the number of Vertical X-bracing Planes is changed to 4.
Note: PFGMH always maintains symmetry in lateral load resistance planes and re-spaces pier footings under the chassis beams likewise in a symmetrical arrangement. This results in more piers and pier footings. Thus, always use the least number of lateral resistance planes for economy. Note that the exterior and interior planes carry less horizontal force per foot than if two vertical X-Bracing Planes are used. This would be the process if the Manufacturer’s rated connection capacity for sliding was less than (Ah).
• Return to the choice of two vertical X-bracing planes, since the Required (Ah) is less than the 4800 lbs/ft. supplied by the Manufacturer. Select OK, and return to the Form where final choices made will automatically be filled in.

• Question #59: The vertical X-Bracing straps or rods must be checked for sufficient tensile capacity. Even though the superstructure can withstand horizontal connection forces per foot of 4800 lbs/ft, the straps that the manufacturer or supplier suggests have a rated allowable tensile capacity of 5600 lbs. (not lbs/ft). The equations the program uses to convert the horizontal force per foot into a diagonal force to each strap are developed in the On-Line “Handbook”. This is accessible through the green typed and underlined sections. The User should type in an estimated (h) for question #59d, say 4'-0", and the Form will supply the (T_i).

Figure 6-10
Question #61a: The answer is "no" and the iteration process begins. Return to question #59 and try more Vertical X-Bracing Planes, say 6.
Six Vertical X-Bracing Planes, as shown above in the Foundation Dimensions dialog window will produce a strap tensile force less than the allowable of 5600 lbs. The answer to question #61a is now “yes”. This is shown below upon return to the Form.

Horizonal Anchorage Requirements in the Longitudinal Direction - Ah - Sliding

- Question #62a: Select the Longitudinal Sliding Icon to bring up the dialog window. Using Vertical X-Bracing Planes under the chassis beam lines requires manipulation of the calculated horizontal anchorage force \(Ah = 46 \text{ lbs/ft} \) to a value in pounds (B). Seismic inertia force can be ignored, but it is interesting that 4 lbs/ft would be produced. Select OK, if satisfied, and return to the Form where the (Ah) value has already been inserted in the box.
Question #62b.1: Since this is a Single-Section Unit, only two chassis beam lines are available for vertical X-Bracing Planes. The (2) is automatically placed in the box. Also, it is typical to begin with the least number of Vertical X-Bracing planes under each chassis beam, thus (2) should be typed in the box.

Question #62b.2: Once the (2) is typed in the box above, the Required Horizontal Anchorage Force (B) is automatically calculated based on the formula found in the On-Line “Handbook”. Section 602-6.4 is green typed and underlined and therefore can be selected. The green typed and underlined Figure 6-11 helps visualize the process and shows the variables as shown below:
Question #62b.3: The (h-b) dimension is selected based on h = 4' and the chassis beam depth (b) being about one foot. Thus, (h-b) = 3'-0" and once this is typed in the box the required tension force \((T_L)\) is automatically calculated according the formula in Section 602-6.F(3).

Question #63: The manufacturer’s supplied value for horizontal anchorage to the superstructure is automatically inserted in the box as **4800 lbs/diag. set.** The User continues to scroll down the Form as shown below:

- Question #64b.: The box already contains the answer “yes”, since the computer makes the comparison, and finds that (B) is smaller than the manufacturer’s supplied value of **4800 lbs.**

- Question #65 and #66: The required tension in a strap was calculated to be \((T_L) = 1471 \text{ lbs.}\), which is far less than the Manufacturer’s supplier value of 5600 lbs. The Form automatically shows the answer “yes” and this completes the Required Longitudinal Anchorage Force discussion.
Withdrawal Resistance Verification - Appendix C

- Select **Part 4 - Withdrawal Resistance** from the Worksheets pull-down menu and skip question #67(a) of the Form that deals with Exterior long foundation walls. Scroll down to question #67(b) - **Withdrawal Resistance for Piers**. This section also deals with Foundation Type C1 Concrete “Deadman” withdrawal resistance, as shown below. Note that frost depth of “zero” is in the box. The program has automatically selected a depth \(h_p = 32 \) inches and a square deadman of side \(W_p = 36 \) inches. Select the green typed and underlined Table C-2. to access the On-Line “Handbook” and verify the program’s choice, knowing that the Required \((Av) = 2570 \) lbs. Also, “Reinforced Concrete Deadman” has been highlighted automatically for the Type C1 foundation system on the Form.

Note: The User does not select a value from the table and highlight it to make a selection. The program does this automatically. The highlight is merely to make the value easier to find.
Vertical Anchorage and Reinforcement for Longitudinal Foundation Walls and Piers

- This portion of the Design Worksheet is not needed for a Type C1 Foundation Concept. Vertical anchorage for
overturning and uplift is provided by the straps and "concrete deadman" anchors.

Horizontal Anchorage and Reinforcement for Transverse Foundation Walls

- Parts #69a and #69b of the **Design Worksheet** are not needed for a Type C1 Foundation Concept. Horizontal anchorage for sliding is provided by the Vertical X-Bracing Planes, thus Part #69c is required, as shown below:

```
<table>
<thead>
<tr>
<th>4,637</th>
<th>1800</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5,373</td>
</tr>
<tr>
<td>5,600</td>
<td></td>
</tr>
</tbody>
</table>
```

- A36 galv. steel plate: 1/4" x 1"

- Question #69c.(1) to (5): Item (1) is the horizontal force (C) brought forward from question #59c. Item (2) is the 1800 lbs, which is the shear capacity of one 1/2" anchor bolt from Table C-5A in Appendix C of the "Handbook". Item (3) is the number of bolts required to resist the horizontal shear: \(C \div 1800 \), rounded to the next highest whole number. Thus, 3 bolts are required. Item (4) is the required tension force \(T_d \) in a diagonal strap, which was brought forward from question #59e. Item (5) is the manufacturer's supplier's allowable tension capacity, which is larger than required so it is OK. Item(6) is typed in by the User, based on the size provided by the supplier's catalog.

Note: This must be galvanized steel for the corrosive nature of steel adjacent to ground.
Horizontal Anchorage for Longitudinal Foundation Walls

- Question #70a.1 and 2: This portion of the Design Worksheet is not needed for a Type C1 Foundation Concept. Horizontal anchorage for sliding in the longitudinal direction is provided by Vertical X-Bracing Planes under the chassis beams. Scroll down to that topic.
- Question #70b.(1) to (6): Item (1) is the required horizontal force (B) brought forward from question #62b.2. Item (2) and item (3) were discussed above. Item (4) is the required diagonal tension force (T_D) calculated in question #62b.4. The remaining two items were also discussed above.

```
1,293
1800
1
1,471
5,600
```

36 Galv. Steel Plate: 1/4" x 1"

Summary Sheet

- The Summary Sheet is selected from the Worksheets pull-down menu. It is filled in with the results and decisions made and entered in the boxes of the Form for the Type C1 Foundation Concept located in Tampa, FL.
- Select the Print Icon while in any of the parts of the Design Worksheet and create a hardcopy output. See Appendix B for a sample output.
- Select Graphics Window from the View pull-down menu to see the final views of the Foundation Type C1 selected.
- Use the View Toolbar to manipulate the perspective view.
Appendix A

Example #1 - Foundation Concept Type E1

Multi-Section Unit
APPENDIX E
OWNER'S SITE ACCEPTABILITY WORKSHEET

Owner's Name: John Doe

Address: 1600 S. First Street
Champaign, IL

Telephone: 217/345-4856

Site Location: Champaign, IL

Legal Description:

Have you provided a copy of a map pinpointing the site? yes no

Have you submitted a foundation plan? yes no
(See #10 of Manufacturer's Worksheet)

Preliminary Site Information

Before approval of the site can begin, the applicant must provide preliminary site information to the field office. Refer to Chapter 2, “Site Acceptability Criteria” for clarification.

1. Provide survey results showing existing grade elevation. (201-1) N.A. ft.

2. Is the building in a flood-prone area? (201-2)
 If the answer to 2 is Yes, answer 3, 4, & 5.
 If the answer to 2 is No, answer 6, below.
 yes no
3. What is the Base Flood Elevation?

 ________ ft.

What is the Flood Protection Elevation?

 ________ ft.

4. Has approval for drainage, grading and berming been approved for flood-prone sites?

 yes no

5. Have permits been provided?
 (Permits must be obtained for any alteration of the building site in a flood protection area.)

 yes no

6. Provide geotechnical report in areas of known high water table. (201-4)

 yes no

7. Provide geotechnical report if adverse site conditions are found or suspected. (203)

 yes no

8. Provide site-drainage plan complying with CABO R301.3 or local requirements. (301)

 yes no

9. Provide fill specifications if site is to be prepared with earth fill. (303-2)

 yes no

10. If a geotechnical report is required, what is the net allowable soil bearing pressure? (202)

 ________ psf.

11. If no adverse soil conditions are known or suspected, and if the home is individually sited, assume a soil bearing pressure of 1,000 psf. and use this value when a determination of soil bearing pressure is called for.

 1,000 psf.
APPENDIX E
MANUFACTURER'S WORKSHEET

Manufacturer's Company Name: Howard Smith Co, Inc.

Address: 1904 W. 75th Street
 New York, N.Y.

Telephone: 314/329-xxxx

Determination of Building Structure and Size

The manufacturer shall provide the following information:

1. Type of unit

2. Method, location and types of support: Refer to Figures 6-7 and 6-8 and Section 601-4. Is the home a C, E, or I?

3. Length of unit L

4. Actual width of unit Wt

5. Height of exterior wall **

6. Height of roof peak **

7. Roof slope **

8. Self weight of total unit (W) including mechanical equipment **

9. Distance between chassis members

10. One foundation design concept (See Appendix A) (C1-C4; E1-E8; or I)

<table>
<thead>
<tr>
<th>Single-Section</th>
<th>Multi-Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>56'-0"</td>
<td>ft.</td>
</tr>
<tr>
<td>13'-8"</td>
<td>ft.</td>
</tr>
<tr>
<td>7'-6"</td>
<td>ft.</td>
</tr>
<tr>
<td>2.28'</td>
<td>ft.</td>
</tr>
<tr>
<td>2 in 12</td>
<td></td>
</tr>
<tr>
<td>38,766 lbs.</td>
<td></td>
</tr>
<tr>
<td>82.0"</td>
<td>ft.</td>
</tr>
<tr>
<td>E1</td>
<td></td>
</tr>
</tbody>
</table>
11. Recommended pier spacing **
 a. Exterior
 \[5'-0"\] ft.
 b. Interior
 \[5'-0"\] ft.
 c. Continuous Marriage Wall
 Length of largest isolated marriage wall opening or average of
 largest two adjacent openings
 \[8'-0"\] ft.
 \[14'-0"\] ft.
 d. Tie-down Strap (C1 concept only)
 \[(Number)\] ft.
 \[(Spacing)\] ft.

12. One installation method recommendations (include documentation
 showing connection details pertinent to geographic area for
 seismic or wind). **

13. Interior shear wall locations (include documentation showing loc-
 ations). **

14. Design wind speed used in designing connection details for hori-
 zontal anchorage (Ah) and vertical anchorage (Av) in the trans-
 verse direction. **

15. Seismic acceleration values used in designing connection details
 for horizontal anchorage (Ah) in the transverse and longitudinal
 directions. **
 \[\Delta v\] 0.05
 \[\Delta a\] 0.05

16. Shear wall connection details with rated capacity for wind and
 seismic are provided. ** †
 a. Connection locations at foundation end and interior walls
 shown? **
 b. Rated connection capacity for uplift and overturning **
 \[200\] lbs./ft. (or lbs./tie-down)
 c. Rated connection capacity for sliding in transverse direction **
 \[400\] lbs./ft. (or lbs./diag. strap)
 d. Rated connection capacity for sliding in longitudinal direction **
 \[400\] lbs./ft.
 e. Vertical X-bracing tension strap capacity **
 N.A.
 lbs./diag. strap
f. Engineering calculation by licensed structural engineer? **

** Optional values: **It is optional for the manufacturer to provide these values. If the manufacturer does not provide the values, it is the responsibility of the owner to supply values, based on engineering analysis by a licensed structural engineer.

† Item 16 is provided in California.
APPENDIX F
DESIGN WORKSHEET

Owner's Name: John Doe
Address: 1600 S. First Street, Champaign, IL
Builder's Name: ACME LTD.
Site Location: Champaign, IL

PART 1: SITE CONDITIONS
(Accompanies Chapter 2)

1. Has the Manufacturer's Worksheet been provided? yes no

Existing Grade Elevation (201-1)

2. Does the site require a survey?
 (Answer yes if: 1) elev. to be altered by grade or fill; 2) site near flood zone; 3) subdivision. Answer no if individually-sited with no alteration of building site.)
 yes no

3. If yes to above, what is the surveyed existing elevation?
 N.A. ft.

Flood Protection Elevation (201-2)

4. Is the building site in a flood zone?
 (If yes to 4, then answer 5, 6, & 7. If no, skip to 9.)
 yes no

5. What is the Base Flood Elevation or the Flood Protection Elevation (use highest value)?
 __________________ ft.

6. Is the site to be graded, filled, or bermed?
 (If no, skip to 9.)
 yes no

7. If yes to 6, have all permits been provided?
 yes no

8. If no to 6, then are the buildings to be built on elevated foundations?
 (If yes, this handbook cannot be used. Refer to FEMA Manual.)
 yes no
Frost Penetration Depth (201-3)

9. What is the maximum frost penetration depth? (see Appendix H, page H-4) 30 in.

10a. Does foundation plan show base of footing extending below frost penetration depth? (If yes proceed; if no, applicant should revise plans.) yes no

10b. Does foundation plan show base of footing extending below topsoil layer (min. 12") to undisturbed soil? yes no

Ground Water Table Elevation (201-4)

11. For subdivisions, does a Geotechnical Engineer recommend drainage of subsurface water? (If no, skip to 13.) yes no

12. Has groundwater drainage plan been provided? yes no

Soil Conditions (202, 203)

13. If any of the following adverse site conditions are discovered, specific recommendations by a Geotechnical Engineer will be required (applies to subdivisions and individually-sited homes.)

Organic soil (8" topsoil layer) yes no

Expansive (shrink-swell) soil yes no

Sloping site yes no

Subsidence yes no

(Applicant may be referred to Geotechnical Engineer if any of the above are yes. If no, to all of above, move to next step.)

14. Is area in a known termite infestation area? yes no

Region classification? (See Appendix H, Termite Infestation Map, page H-10) (If no, skip to 16.) Moderate to heavy

15. Has applicant complied with CABO R-308 or local ordinance for construction procedures and treatment? (If yes, continue; if no, refer applicant to CABO requirements.) yes no
PART 2: SITE PREPARATION
(Accompanies Chapter 3)

16. Acceptable surface drainage plan provided? (301)
 (If no, one must be provided for subdivision) yes no

17. Grading plan provided? (302)
 yes no

18. Fill specifications conforming to those cited in HUD Land Planning Data Sheet (79g)? (303)
 (If fill is used, below the home's foundation, a report by Geotech. Eng. should be submitted to provide fill specifications.) yes no

19. Finish grade elevation? (304)
 (Check answers to Part 1: #4 & #5. The finish grade elevation must be higher than #5 if in flood zone.) *

PART 3: DESIGN LOADS
(Accompanies Chapter 4)

Information from Manufacturer's Worksheet

20. Has all the information been provided on the Manufacturer's Worksheet? (Appendix E) yes no

21. What is the building self weight (W)?
 (Mfg. Wksht. #8) 38,525 lbs.

22. What is the building length (L)?
 (Mfg. Wksht. #3) 56'-0" ft.

23. What is the distributed weight per foot of unit length? (w=W/L)
 (402-B, C) 688 lbs./ft.

24. What is the building type?
 (Mfg. WkSht. #2) Single-Section Multi-Section

 Foundation design concept?
 (C1, C2, C3, C4, E1, E3, E4, E5, E6, E7, E8, I) C E, or I E1 *
Dead Load (402-1)

25. What is the light dead load value from Table 4-1?
 (402-1.A.1)
 \[560 \text{ (lbs./ft.)} \]

26. What is the heavy dead load value from Table 4-1?
 (402-1.A.2)
 \[805 \text{ (lbs./ft.)} \]

27. Does the answer from Question #23 fall within the values in #25 and #26? (402-1.D)
 (If the answer is yes, continue. If no, the foundation is not within the limits of this document and must be redesigned by a structural engineer.)
 [yes] [no]

Snow Load (402-2) / Minimum Roof Live Load (402-2.C)

28a. What is average annual ground snowfall (Pg)?
 (See Ground Snow Load map, pages H-11, H-12 and H-13.)
 \[20 \text{ (lbs./sq.ft.)} \]

28b. What is 0.7 multiplied by Pg?
 \[14.0 \text{ psf.} \]

29a. What is the roof slope? (Mfg. Wksht. #7)
 \[2 \text{ in 12} \]

29b. What is the minimum roof live load for the roof slope?
 (D-200.2.B)
 \[20.0 \text{ psf.} \]

30. Record the larger magnitude of item 28b or item 29b. Use this magnitude for roof load where required.
 \[20.0 \text{ psf.} \]

Wind Load (402-3)

31a. What is the basic wind speed (V)?
 (See Wind Speed map, page H-14.)
 \[70 \text{ mph} \]

31b. If V is less than 80 mph, record MPS min. 80 mph for wind design. (402-3.A)
 \[80 \text{ mph} \]

32. Is the site inland or coastal? (402-3.B)
 (If inland, skip to question #38.)
 [Inland] [Coastal]

33. If a coastal area, has the manufacturer provided connection details? (402-3.D) (Mfg. Wksht. #12)
 [yes] [no]
34. If yes to #33, what design wind speed has the manufacturer used in designing connection details? (Mfg. Wksht. #14)

 100 mph.

35. Are the connection locations shown? (Mfg. Wksht. #16a)

 Yes No

36. Are connection details provided for foundation shear walls?
(For an answer of yes, all questions under Mfg. Wksht #16 must be answered satisfactorily.)

 Yes No

37. Is the value for Question 34 equal to or greater than the number given in Question 31?
(If yes, proceed. If no, return design to manufacturer for clarification.)

 Yes No

Seismic Load

38a. What are the seismic acceleration values?
(See Seismic maps, pages H-15 and H-16)

 Δa 0.05 *
 Δv 0.05 *

38b. Is Δv < 0.15?
(If no, proceed. If yes, seismic need not be considered, skip questions 39 to 41.)

 Yes No

(See H-300 for Special Requirements of Foundation Design.)

 B

40. What is the applicant's proposed design concept?
(Design Wksht. #24)

 E1 *

41. Do the Foundation Design Concept Tables approve the foundation system for use in seismic areas of Question #38 above?
(See Appendix A)
(If yes, proceed. If no, return to applicant for foundation design choice more suited to high seismic areas.)

 Yes No

PART 4: FINAL DESIGN PROCEDURE
(Accompanies Chapter 6)

42. What is the actual building width?
(Mfg. Wksht. #4)

 13'-8" ft.
43. The nominal building width to be used in the Foundation Design Tables, (Aftg, Av & Ah) is Wt:
(600-2.A and Figure 6-1)

14'-0" ft.

44. Where are the foundation supports located? Check drawings submitted by the owner and Foundation Design Concepts in Appendix A. Circle the support locations shown on the Manufacturer's foundation concept plan.

Chassis Beams
Exterior Walls
Marriage Wall

45. Do these locations match the Foundation Concept shown in Appendix A? Do the locations match Question #24 on the Design Worksheet?
(If yes, proceed. If no, return to Owner for clarification.)

yes no

46. Is Vertical Anchorage present?

yes no

APPENDIX A

47. What is the basic system type?
(From Part 3: #24; Mfg. Wksht. #2)

E1 *

48. What is the spacing between piers?
(Mfg. Wksht. #11)
(602-2)

Exterior: 5'-0"
Interior: 5'-0"
Continuous Marriage Wall: 8'-0"

Largest or Average Marriage Wall Opening: 14'-0" ft.

Tie Down (C1) ft.

APPENDIX B

Required Footing Size

49. The required Exterior Wall Footing, for the foundation type, is found in the Required Effective Footing Area table in App. B, Part 1. (Use maximum value from item #30.)

E1 *

Type C sq.
Type E or I 1.0 ft.
(width)
50. The Required Interior Footing area is:
(Also exterior piers for foundation type E)

2.0 sq.ft.

51a. The Required Continuous Marriage Wall Footing area is:

6.8 sq.ft.

51b. The Required Footing area under posts at the ends of marriage wall opening(s) is:

11.0 sq.ft.

Vertical Anchorage Requirements in the Transverse Direction (602-4)

Exterior Av 65 *
(lbs./pier spacing;
lbs./ft. for E type;
lbs./tie-down spacing)

52b. Number of vertical tie-down locations for multi-section units:

2 or 4 or 6

52c. For units with additional vertical anchorage at the interior piers, determine the Required Vertical Anchorage.

Interior Av *
(lbs./int. pier spacing)

53. What is the manufacturer-supplied value? (#16b, Mfg. WkSht.)

Exterior 200 *

Interior *

54. Is this value (#53) greater than the value given in #52a?
(If yes, continue. If no, return to owner for clarification.)

yes no

Horizontal Anchorage Requirements In The Transverse Direction (602-5)

55a. What number of transverse foundation walls was selected? (602-5.E) (If vertical X-bracing planes are used, complete items #55a, #56 and #57 for 2 transverse walls, and then skip to item #59.)

<table>
<thead>
<tr>
<th>trial 1</th>
<th>trial 2</th>
<th>trial 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

yes no yes no yes no

10" ft.

55b. Are diagonal ties used to complete the top of the transverse short wall for horizontal anchorage? (602-5.G.1)

Estimate height (h) for appropriate illustration in Figure 6-10.
56. Using the tables, find the Required Horizontal Anchorage (Ah). (Appendix B; Part 3)

<table>
<thead>
<tr>
<th>trial 1</th>
<th>trial 2</th>
<th>trial 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Wall Ah</td>
<td>267</td>
<td></td>
</tr>
<tr>
<td>Int Wall Ah</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

57a. What is the manufacturer's-supplied rated capacity for sliding? (#16c, Mfg. WkSht.)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td></td>
<td>lbs./ft.</td>
</tr>
</tbody>
</table>

57b. If answer to item #55b is yes, record manufacturer or product supplier rated strap tension capacity.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N.A.</td>
<td></td>
<td>lbs./str</td>
</tr>
</tbody>
</table>

58a. Is value #57a greater than item #56?
If yes, continue. If no, return to section 602-4.C and to question #55a and select a larger number of transverse foundation walls. If the maximum number selected (6) does not work, return to owner (who may wish to contact the manufacturer for clarification).

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

58b. If answer to #55b is yes, required tension in diagonal (T_d). (Complete procedure in Section 602-5.G.1.)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lbs.</td>
</tr>
</tbody>
</table>

58c. Is value #57b greater than #58b?
If yes, continue to item #62. If no, return to owner for product with greater capacity.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

59. If using vertical X-bracing planes in lieu of transverse short walls (and the formulas in section 602-5.G.2), determine anchorage values and sizes for diagonal members. (If shear walls are selected in item #55, skip to item #62.)

<table>
<thead>
<tr>
<th>trial 1</th>
<th>trial 2</th>
<th>trial 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Vertical X-bracing spacing proposed.</td>
<td></td>
<td>ft. *</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Number of vertical X-bracing locations proposed.</td>
<td>*</td>
</tr>
</tbody>
</table>

(Item #13, Mfg. WkSht. for trial 1.)
c. Required horizontal anchorage (C) value, based on formula. (602-5.G.2.c)

d. Estimated height (h) in Figure 6-10.

e. Tension (T_r) required. (602-5.G.2.d)

60. What is the manufacturer-supplied rated strap tension capacity? (#16, Mfg. WkSht.) (or capacity defined by literature supplied by product supplier)

61a. Is value #57 greater than value #59c?
If yes, continue. If no, return to Section 602-5.G and to question #59 and select a greater number of X-brace locations as a next trial. Repeat until answer is yes, then continue.

61b. Is value #60 greater than value #59e?
If yes, continue. If no, return to section 602-5.G and to question #59 and select a greater number of X-bracing locations. If the maximum number selected does not work, return to owner (who may wish to contact the manufacturer for clarification or product supplier for clarification).

Horizontal Anchorage Requirements In The Longitudinal Direction (602-6)

62a. Using the tables, find the required horizontal anchorage (Ah) in the longitudinal direction. (Appendix B, Part 4) (602-6.E)

62b. If using vertical X-bracing planes (and the formulas in section 602-6.F) determine anchorage value for X-bracing planes. (If using exterior long walls, skip to item #63.)

1. Number of chassis beam lines used for vertical X-bracing planes.
Number of X-bracing planes proposed under each chassis beam along the length of the unit.

2. Horizontal anchorage (B) required force, based on formula.

3. Assumed height (h-b) based on Figure 6-11.

4. Tension (T_L) based on formula.
 \(\text{(602-6.F.(3))} \)

63. What is the manufacturer-supplied value for horizontal anchorage? (#16d, Mfg. WkSht.)

64a. For shear walls: is value #63 greater than #62a? If yes, skip to item #67. If no, contact owner for clarification.

64b. For X-bracing: is value #63 greater than value #62b.2? If yes, return to item #62b.3. If no, increase number of vertical X-bracing planes and repeat items 62b.1 and 62b.2 until answer is yes. For multi-section units consider 4 lines of vertical X-bracing under all chassis beams.

65. What is the manufacturer-supplied rated strap tension? (#16e, Mfg. WkSht. or product supplier)

66. Is value #65 greater than #62b.4? If yes, continue. If no, contact owner to obtain straps with greater capacity, or return to item #62b.1 and increase the number of vertical X-bracing planes until answer is yes.

\[\text{APPENDIX C} \]

Withdrawal Resistance Verification (603-2.2)

67. Using Appendix C, Table C-1 or C-2, verify that the foundation system will resist withdrawal. Answer question #67a for type E. Answer question #67b for types C, I, or type E with interior pier anchorage.

\[\text{Exterior Grade} \quad 12^\circ \]

\[\text{hw} = 24'' \quad \text{(Table C-)} \]

\[\text{6''} \]

\[\text{(Item \#9)} \]

\[\frac{30}{(\text{Frost Depth})} = \text{Frost Depth} \]
a. **Withdrawal Resistance for long foundation wall.** (Type E)
 Circle the type of material that is to be used.

 1) Using Table C-1, which capacity is greater than required Av? (603-2.B.1) (#52a)
 __________ lbs./ft.
 __________ in.

 2) Using Table C-1, what is the height of the wall + footing for required withdrawal resistance? (hw + 6")
 __________ in.

 3) What is the height of the wall + footing for frost protection? (frost depth (#9) + 12")
 __________ in.

 4) What is the greatest height #67a.2 or #67a.3?
 Circle the height which controls.

 5) Record the bottom of footing depth from grade.
 (Item #67a.4 - 12")
 __________ in.

 6) Using Table C-1, what is the required width of the wall footing for withdrawal?
 __________ in.

 7) Is item #67a.6 greater than or equal to item #49?
 If yes, continue. If no, change footing width to item #49.
 __________ in.

 8) Record design exterior wall footing width.

b. **Withdrawal Resistance for Piers.** (Types C, C1
 (concrete dead-man), I or type E with interior pier anchorage - multi-section units.)

 Circle pier type:

 Reinforced Concrete
 Reinforced Masonry - fully grouted
 Reinforced Concrete Dead-man
1) Using Table C-2, which capacity is greater than required Av? (#52a and #52c) (603-2.B.(2))

\[\text{Exterior} \quad \text{Interior} \quad \text{(when used)} \]

\[\quad \quad \quad \quad \quad \text{lbs./p} \]

2) Using Table C-2, what is the height of the pier + footing for required withdrawal resistance? (hp + 8")

\[\quad \quad \text{in.} \ast \]

3) What is the required height of pier + footing for frost protection? (frost depth (#9) + 12")

\[\quad \quad \text{in.} \]

4) What is the greatest height #67b.2 or #67b.3?

\[\quad \quad \text{in.} \]

Circle the height which controls.

5) Record the bottom of footing depth from grade. (Item #67b.4 - 12")

\[\quad \quad \text{in.} \]

6) Using Table C-2, what is the required width of the square footing if withdrawal resistance controls or if frost depth controls?

\[\quad \quad \text{in.} \ast \]

c. *Frost depth for marriage walls.* What is the required depth of footing below grade for frost protection? (frost depth (#9)) (no withdrawal resistance)

\[30 \text{ in.} \]

Vertical Anchorage and Reinforcement for Longitudinal Foundation Walls and Piers (603-2.D)

68. Using Appendix C, Table C-3, C-4A or C-4B, verify that the foundation anchors will resist uplift. Answer question #68a for type E. Answer question #68b for types C, I, or type E with interior pier anchorage.

1) Using Table C-4A (concrete & masonry), which capacity is greater than the required Av? (#52a, Design Wksht.) If treated wood wall, skip to item #68a.3.

\[146 \text{ lbs./linear ft. of wall} \]
Circle correct washer choice for the capacity selected

2) Using Table C-4A (masonry and concrete):
 a) Required anchor bolt diameter
 ___________ in.
 1/2"
 b) Required anchor bolt spacing
 ___________ in.
 6'-0"
 c) Using Table C-3A:
 (1) Rebar size
 ___________ *
 #4
 (2) Lap splice
 ___________ in.
 16"
 (3) Rebar hook length
 ___________ in.
 6"

3) Using Table C-4B (wood), which capacity is greater than
 the required Av? (#52a, Design Wksht.)
 If using concrete or masonry wall, skip to item #68b.

4) Using Table C-4B (wood):
 a) Required nailing
 ___________ *
 b) Minimum plywood thickness
 ___________ in.
 c) Required anchor bolt diameter
 ___________ in.
 d) Required anchor bolt spacing
 ___________ in.

b. Vertical Anchor Capacity for Piers
 (Types C, I, or type E with interior pier anchorage)
 (603-2.D.1)

 Exterior Interior
 (when used for
 anchorage in
 multi-section units)

1) Using Table C-3, which capacity in the table is
 greater than the required Av?
 (From #52a, Design Wksht.)
 ___________ ___________ lbs./pier
2) Using Table C-3:
 a) Number of anchor bolts
 b) Anchor diameter

3) Using Table C-3A:
 a) Rebar size
 b) Lap splice
 c) Rebar hook length

Horizontal Anchorage and Reinforcement for Transverse Foundation Walls (603-3)

69. Using Appendix C, Table C-5A or C-5B, verify that the foundation anchorage will resist sliding at the transverse end foundation walls. Use for types C, E, or I.

a. For continuous foundations.

Using Table C-5A (concrete & masonry) or C-5B (wood), which capacity is greater than the required (Ah) (603-3) (item #56)?

<table>
<thead>
<tr>
<th></th>
<th>End Wall</th>
<th>Interior Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td></td>
<td>lbs./f</td>
</tr>
</tbody>
</table>

1) Using Table C-5A, find:
 a) Required anchor bolt diameter
 b) Required anchor bolt spacing
 c) Using Table C-3A:
 (1) Rebar size
 (2) Lap splice
 (3) Rebar hook length

2) Using Table C-5B, find:
 a) Required nailing
b. *For short foundation walls completed with diagonal braces.*
(603-5)

Using Appendix C, Table C-5A, verify the diagonal anchorage capacity to the short foundation wall.

<table>
<thead>
<tr>
<th></th>
<th>End Wall</th>
<th>Interior Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>b)</td>
<td>Minimum plywood thickness</td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>Required anchor bolt diameter</td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td>Required anchor bolt spacing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>End</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>b)</td>
<td>1) Record the required horizontal force (Ah × Wt) from 602-5.G.1.a and item #56.</td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>2) Table C-5A capacity for one 1/2” diameter bolt at 12” o.c.</td>
<td>1800</td>
</tr>
<tr>
<td>d)</td>
<td>3) Number of bolts (Ah × Wt ÷ 1800; one minimum) at concrete or masonry top of short wall.</td>
<td>*</td>
</tr>
<tr>
<td>e)</td>
<td>4) Size of anchor bolts</td>
<td></td>
</tr>
<tr>
<td>f)</td>
<td>5) Using Table C-3A:</td>
<td></td>
</tr>
<tr>
<td>g)</td>
<td>a) Rebar size</td>
<td>*</td>
</tr>
<tr>
<td>h)</td>
<td>b) Lap splice</td>
<td></td>
</tr>
<tr>
<td>i)</td>
<td>c) Rebar hook length</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>End</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>c)</td>
<td>1) Record the required horizontal force (C) from item #59c.</td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td>2) Table C-5A capacity for one 1/2” diameter bolt at 12” o.c.</td>
<td>1800</td>
</tr>
</tbody>
</table>
3) Number of bolts \((C \div 1800; \text{one minimum})\) at top of a footing.

4) Record the required tension force \((T_i)\) from item #59e.

5) Select tension strap capacity greater than or equal to \(T_i\) from owner's product supplier or manufacturer's supplied capacity (item #60).

6) Record diagonal strap data

Horizontal Anchorage for Longitudinal Foundation Walls (603-4)

70. Using Appendix C, Table C-5A or C-5B, verify that the foundation horizontal anchorage will resist sliding at the long foundation walls. Use for types C, E and I.

a. *For continuous exterior foundation walls.*

Using Table C-5A (concrete and masonry) or Table C-5B (wood), which capacity is greater than the required exterior Ah? (602-6.E) (item #62a)

\[
\begin{array}{c|c}
\hline
& \text{lbs./d} \\
\hline
\text{300 lbs.} & \text{lbs./d} \\
\hline
\end{array}
\]

1) Using Table C-5A, find:

a) Required anchor bolt diameter

\[
\begin{array}{c}
\text{1/2"} \\
\text{in.}
\end{array}
\]

b) Required anchor bolt spacing

\[
\begin{array}{c}
72" \text{ o.c.} \\
\text{in.}
\end{array}
\]

c) Using Table C-3A:

(1) Rebar size

\[
\begin{array}{c}
\#4 \\
\text{*}
\end{array}
\]

(2) Lap splice

\[
\begin{array}{c}
16" \\
\text{in.}
\end{array}
\]

(3) Rebar hook length

\[
\begin{array}{c}
6" \\
\text{in.}
\end{array}
\]

2) Using Table C-5B, find:

a) Required nailing

\[
\begin{array}{c}
\text{*} \\
\text{in.}
\end{array}
\]

b) Minimum plywood thickness

\[
\begin{array}{c}
\text{in.}
\end{array}
\]

c) Required anchor bolt diameter

\[
\begin{array}{c}
\text{in.}
\end{array}
\]

d) Required anchor bolt spacing

\[
\begin{array}{c}
\text{in.}
\end{array}
\]
b. *For vertical X-bracing planes.*
(603-6.A.(2))

Using Appendix C, Table C-5A, verify the diagonal anchorage to the pier footings and the tension capacity of the diagonals.

1) Record the required horizontal force (B) from item #62b.2. _____ lbs.

2) Table C-5A capacity for one 1/2” diameter bolt at 12” o.c. 1800 lbs.

3) Number of bolts (B ÷ 1800; one minimum) *

4) Record the required tension force (T1) from item #62b.4. _____ lbs./diag.

5) Select tension strap capacity greater than or equal to T1 from owner’s product supplier or manufacturer’s supplied capacity (item #60). N.A. lbs./diag.

6) Record diagonal strap data

SUMMARY SHEET
(Accompanies Chapter 7)

71. Compare values from preceding questions. Select the largest value.

a. **Bearing area and vertical anchorage**

1. *Pier footings: types C, E & I.*

<table>
<thead>
<tr>
<th>Piers</th>
<th>Exterior</th>
<th>Interior</th>
<th>Cont.</th>
<th>At Post</th>
<th>sq.ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.0</td>
<td>5.7</td>
<td>9.1</td>
<td></td>
<td>sq.ft.</td>
</tr>
</tbody>
</table>

Required Effective Footing Area from questions #49, #50, & #51.

Required footing area to resist withdrawal due to uplift from Question #57. (for single-section or 2 tie-down system, only the exterior piers resist uplift, for 4 tie-down only the interior piers and exterior walls resist uplift)
Pier Footing Sizes (largest of above)

<table>
<thead>
<tr>
<th>Piers</th>
<th>Marriage Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exterior</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
</tr>
</tbody>
</table>

"Dead-man" footing size.

sq.ft.

Reinforcing for pier footings:
Bring forward answers from previous questions. (#68b)
(Types C, I, or E with interior pier anchorage.)

<table>
<thead>
<tr>
<th></th>
<th>Exterior</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of anchor bolts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchor bolt diameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebar size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lap splice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebar hook length</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Footing depth: grade to bottom of footing

<table>
<thead>
<tr>
<th></th>
<th>Exterior</th>
<th>Interior</th>
<th>Marriage Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Footing depth</td>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

Pier footing and "dead-man" footing reinforcing bars: #4 at 10" o.c.

"Dead-man" footing depth: grade to bottom of footing

in.

2. Long Foundation wall footing: type E or I:

Required Effective Footing Width

Required Footing Width for soil bearing (#49)

1.0 ft.

Required Footing Width to resist uplift withdrawal (#67a.6)

12" ft.

Wall Footing Size (largest of above)

12" ft.

Footing Depth: Grade to bottom of footing (#67a.5)

30" in.
Footing reinforcing bars.

Reinforcing for longitudinal foundation walls: Record answers from item #68a and record sizes and spacings.

From 68a.2: masonry and concrete:

Required anchor bolt diameter

Required washer size

Standard

Oversized

Required anchor bolt spacing

6'-0"

in.

Rebar size

#4

Lap splice

16"

in.

Rebar hook length

6"

in.

From 68a.4: wood: Record answers from item #68a.4 and record sizes and spacings.

Required nailing

Minimum plywood thickness.

in.

Required anchor bolt diameter

Required anchor bolt spacing

in.

b. Horizontal anchorage in the transverse direction - foundation walls

1. Continuous foundation walls (#69a)

Number of transverse foundation walls (#55a)

2

Required Footing Width (minimum)

12

in.

From #69a.1: concrete / masonry:

Anchor bolt diameter

End Wall

1/2"

Interior Wall

in.
<table>
<thead>
<tr>
<th>Anchor bolt spacing</th>
<th>End Wall</th>
<th>Interior Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebar size</td>
<td>#4</td>
<td></td>
</tr>
<tr>
<td>Lap splice</td>
<td>16"</td>
<td>in</td>
</tr>
<tr>
<td>Rebar hook length</td>
<td>6"</td>
<td>in</td>
</tr>
</tbody>
</table>

From #69a.2: wood:
- Required nailing
- Minimum plywood nailer
- Anchor bolt diameter
- Anchor bolt spacing

2. *For transverse short foundation walls completed with diagonal braces (#69b)*

<table>
<thead>
<tr>
<th>Number of pairs of diagonals (1 for single-section units, 2 for multi-section units) times number of short walls (end or interior) (#55a)</th>
<th>End</th>
<th>Interior</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Diagonal spacing (same as number of short walls)</th>
<th>End</th>
<th>Interior</th>
</tr>
</thead>
</table>

From #69b: concrete / masonry:

<table>
<thead>
<tr>
<th>Anchor bolt diameter</th>
<th>End</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of bolts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebar size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lap splice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebar hook length</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. *For vertical X-bracing planes in lieu of short walls. (#69c)*

<table>
<thead>
<tr>
<th>Number of X-brace locations (#59)</th>
<th>End</th>
<th>Interior</th>
</tr>
</thead>
</table>
Spacing of vertical X-brace planes (#59) __________ ft.

Items from #69c.3 and #69c.5

Required anchor bolt diameter __________ in.

Number of bolts at top of footing to connect diagonal __________

Diagonal strap size __________

Connection to top flange of chassis beam (describe) __________

c. **Horizontal anchorage in the longitudinal direction - exterior foundation walls**

1. **Continuous foundation walls**

 Reinforcing for longitudinal foundation walls: record only if larger sizes or closer spacing than recorded for vertical anchorage (#71a.2).

 From #70a.1: concrete / masonry:

<table>
<thead>
<tr>
<th>Anchor bolt diameter</th>
<th>1/2"</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchor bolt spacing</td>
<td>72"</td>
<td>o.c.</td>
</tr>
<tr>
<td>Rebar size</td>
<td>#4</td>
<td></td>
</tr>
<tr>
<td>Lap splice</td>
<td>16"</td>
<td>in.</td>
</tr>
<tr>
<td>Rebar hook length</td>
<td>6"</td>
<td>in.</td>
</tr>
</tbody>
</table>

 From #70a.2: wood: record only if larger sizes or closer spacings than recorded for vertical anchorage (#71a.2)

 Required nailing __________

 Minimum plywood nailer __________

 Anchor bolt diameter __________

 Anchor bolt spacing __________ in.
2. *Vertical X-bracing planes under chassis beam lines* (#70b.)

 Number of X-brace locations along one chassis beam line.
 Spacing of X-brace locations along one chassis beam line.
 Required anchor bolt diameter.
 Number of bolts at top of footing at connection to the diagonal.
 Diagonal strap size.
 Connection to bottom flange of chassis beam (describe).

72. Do foundation dimensions and details comply with Foundation Capacities Table, based on Foundation Design Table Values?

73. If #72 yes, approve. If no, return to applicant.
Appendix B

Example #2 - Foundation Concept Type C1

Single-Section Unit
Foundation Plan

Wind Load GCpi-0.25 (psf)

Transverse Section

Longitudinal Section At Chassis Beam
APPENDIX E
OWNER'S SITE ACCEPTABILITY WORKSHEET

Owner's Name: John Smith
Address: 35 Brandywine
Tampa, FL

Telephone: xxx/234-9879
Site Location: Tampa, FL
Legal Description:

Have you provided a copy of a map pinpointing the site? yes no
Have you submitted a foundation plan? (See #10 of Manufacturer's Worksheet) yes no

Preliminary Site Information

Before approval of the site can begin, the applicant must provide preliminary site information to the field office. Refer to Chapter 2, “Site Acceptability Criteria” for clarification.

1. Provide survey results showing existing grade elevation. (201-1) 28 ft.
2. Is the building in a flood-prone area? (201-2)
 If the answer to 2 is Yes, answer 3, 4, & 5.
 If the answer to 2 is No, answer 6, below.
3. What is the Base Flood Elevation?

 What is the Flood Protection Elevation?

 __________ ft.

 __________ ft.

4. Has approval for drainage, grading and berming been approved for flood-prone sites?

5. Have permits been provided?
 (Permits must be obtained for any alteration of the building site in a flood protection area.)
 yes no
 yes no

6. Provide geotechnical report in areas of known high water table.
 (201-4)
 yes no

7. Provide geotechnical report if adverse site conditions are found or suspected. (203)
 yes no

8. Provide site-drainage plan complying with CABO R301.3 or local requirements. (301)
 yes no

9. Provide fill specifications if site is to be prepared with earth fill. (303-2)
 yes no

10. If a geotechnical report is required, what is the net allowable soil bearing pressure? (202)
 __________ psf

11. If no adverse soil conditions are known or suspected, and if the home is individually sited, assume a soil bearing pressure of 1,000 psf. and use this value when a determination of soil bearing pressure is called for.
 1,000 psf
APPENDIX E
MANUFACTURER'S WORKSHEET

Manufacturer's Company Name: New Homes, Inc.

Address: 39 Peachtree Lane
Atlanta, GA

Telephone: 219/333-1792

Determination of Building Structure and Size

The manufacturer shall provide the following information:

1. Type of unit

2. Method, location and types of support:
 Refer to Figures 6-7 and 6-8 and Section 601-4.
 Is the home a C, E, or I?

3. Length of unit L

4. Actual width of unit Wt

5. Height of exterior wall **

6. Height of roof peak **

7. Roof slope **

8. Self weight of total unit (W) including mechanical equipment **

9. Distance between chassis members

10. One foundation design concept (See Appendix A)
 (C1-C4; E1-E8; or I)
11. Recommended pier spacing **
 a. Exterior
 b. Interior
 c. Continuous Marriage Wall
 Length of largest isolated marriage wall opening or average of largest two adjacent openings
 d. Tie-down Strap (C1 concept only) \(\frac{7}{(\text{Number})} \) ft.
 7'-0" ft.
 7'-0" ft. (Spacing)

12. One installation method recommendations (include documentation showing connection details pertinent to geographic area for seismic or wind). **
 yes no

13. Interior shear wall locations (include documentation showing locations). **
 yes no

14. Design wind speed used in designing connection details for horizontal anchorage (Ah) and vertical anchorage (Av) in the transverse direction. **
 120 mph

15. Seismic acceleration values used in designing connection details for horizontal anchorage (Ah) in the transverse and longitudinal directions. **
 \(\Delta v \) 0.05
 \(\Delta a \) 0.05

16. Shear wall connection details with rated capacity for wind and seismic are provided. ** †
 a. Connection locations at foundation end and interior walls shown? **
 yes no
 b. Rated connection capacity for uplift and overturning **
 c. Rated connection capacity for sliding in transverse direction **
 d. Rated connection capacity for sliding in longitudinal direction **
 e. Vertical X-bracing tension strap capacity **

3,150 lbs./ft (or lbs./tie-down)
4,800 lbs./ft (or lbs./diag. strap)
5,600 lbs./diag. strap
f. Engineering calculation by licensed structural engineer? **

** Optional values: **It is optional for the manufacturer to provide these values. If the manufacturer does not provide the values, it is the responsibility of the owner to supply values, based on engineering analysis by a licensed structural engineer.

† Item 16 is provided in California.
APPENDIX F
DESIGN WORKSHEET

Owner's Name: John Smith
Address: 35 Brandywine, Tampa, FL
Builder's Name:
Site Location: Tampa, FL

PART 1: SITE CONDITIONS
(Accompanies Chapter 2)

1. Has the Manufacturer's Worksheet been provided? yes no

Existing Grade Elevation (201-1)

2. Does the site require a survey?
 (Answer yes if: 1) elev. to be altered by grade or fill; 2) site near flood zone; 3) subdivision. Answer no if individually-sited with no alteration of building site.) yes no

3. If yes to above, what is the surveyed existing elevation? 28 ft.

Flood Protection Elevation (201-2)

4. Is the building site in a flood zone?
 (If yes to 4, then answer 5, 6, & 7. If no, skip to 9.) yes no

5. What is the Base Flood Elevation or the Flood Protection Elevation (use highest value)? __________ ft.

6. Is the site to be graded, filled, or bermed?
 (If no, skip to 9.) yes no

7. If yes to 6, have all permits been provided? yes no

8. If no to 6, then are the buildings to be built on elevated foundations?
 (If yes, this handbook cannot be used. Refer to FEMA Manual.) yes no
Frost Penetration Depth (201-3)

9. What is the maximum frost penetration depth? (see Appendix H, page H-4)
 0 in.

10a. Does foundation plan show base of footing extending below frost penetration depth?
 (If yes proceed; if no, applicant should revise plans.) yes no

10b. Does foundation plan show base of footing extending below top-soil layer (min. 12") to undisturbed soil? yes no

Ground Water Table Elevation (201-4)

11. For subdivisions, does a Geotechnical Engineer recommend drainage of subsurface water? yes no
 (If no, skip to 13.)

12. Has groundwater drainage plan been provided? yes no

Soil Conditions (202, 203)

13. If any of the following adverse site conditions are discovered, specific recommendations by a Geotechnical Engineer will be required (applies to subdivisions and individually-sited homes.)

 Organic soil (8" topsoil layer) yes no
 Expansive (shrink-swell) soil yes no
 Sloping site yes no
 Subsidence yes no

 (Applicant may be referred to Geotechnical Engineer if any of the above are yes. If no, to all of above, move to next step.)

14. Is area in a known termite infestation area? yes no
 Region classification? very heavy
 (See Appendix H, Termite Infestation Map, page H-10) (If no, skip to 16.)

15. Has applicant complied with CABO R-308 or local ordinance for construction procedures and treatment? yes no
 (If yes, continue; if no, refer applicant to CABO requirements.)
PART 2: SITE PREPARATION
(Accompanies Chapter 3)

16. Acceptable surface drainage plan provided? (301)
 (If no, one must be provided for subdivision)
 [Blank]

17. Grading plan provided? (302)
 [Blank]

18. Fill specifications conforming to those cited in HUD Land Planning Data Sheet (79g)? (303)
 (If fill is used, below the home's foundation, a report by Geotech.
 Eng. should be submitted to provide fill specifications.)
 [Yes] [No]
 [Yes] [No]
 [Yes] [No]

19. Finish grade elevation? (304)
 (Check answers to Part 1: #4 & #5. The finish grade elevation
 must be higher than #5 if in flood zone.)
 28'-0"

PART 3: DESIGN LOADS
(Accompanies Chapter 4)

Information from Manufacturer's Worksheet

20. Has all the information been provided on the Manufacturer's
 Worksheet? (Appendix E)
 [Yes] [No]
 [Yes] [No]
 [Yes] [No]

21. What is the building self weight (W)?
 (Mfg. Wksht. #8)
 16,452 lbs.

22. What is the building length (L)?
 (Mfg. Wksht. #3)
 56'-0" ft.

23. What is the distributed weight per foot of unit length? (w=W/L)
 (402-B, C)
 294 lbs./ft.
 Single-Section
 Multi-Section
 [C, E, or I]
 C1

Foundation design concept?
(C1, C2, C3, C4, E1, E3, E4, E5, E6, E7, E8, I)
[C1] *
Dead Load (402-1)

25. What is the light dead load value from Table 4-1?
 (402-1.A.1) * (lbs./ft.)

26. What is the heavy dead load value from Table 4-1?
 (402-1.A.2) * (lbs./ft.)

27. Does the answer from Question #23 fall within the values in #25
 and #26? (402-1.D)
 (If the answer is yes, continue. If no, the foundation is not within
 the limits of this document and must be redesigned by a structural
 engineer.) yes no

Snow Load (402-2) / Minimum Roof Live Load (402-2.C)

28a. What is average annual ground snowfall (Pg)?
 (See Ground Snow Load map, pages H-11, H-12 and H-13.) 0 * (lbs./sq.ft.)

28b. What is 0.7 multiplied by Pg? (Cs=0.74) 0.0 psf.

29a. What is the roof slope? (Mfg. Wksht. #7) 4 in 12

29b. What is the minimum roof live load for the roof slope?
 (D-200.2.B) 15.0 psf.

30. Record the larger magnitude of item 28b or item 29b. Use this
 magnitude for roof load where required. 15.0 psf.

Wind Load (402-3)

31a. What is the basic wind speed (V)?
 (See Wind Speed map, page H-14.) 100 mph.

31b. If V is less than 80 mph, record MPS min. 80 mph for wind de-
 sign. (402-3.A) 100 mph.

32. Is the site inland or coastal? (402-3.B)
 (If inland, skip to question #38.) Inland Coastal

33. If a coastal area, has the manufacturer provided connection de-
 tails? (402-3.D) (Mfg. Wksht. #12) yes no
34. If yes to #33, what design wind speed has the manufacturer used in designing connection details? (Mfg. Wksht. #14)
 __120__ mph.

35. Are the connection locations shown? (Mfg. Wksht. #16a)
 yes no

36. Are connection details provided for foundation shear walls? (For an answer of yes, all questions under Mfg. Wksht #16 must be answered satisfactorily.)
 yes no

37. Is the value for Question 34 equal to or greater than the number given in Question 31? (If yes, proceed. If no, return design to manufacturer for clarification.)
 yes no

Seismic Load

38a. What are the seismic acceleration values? (See Seismic maps, pages H-15 and H-16)
 \(A_a = 0.05 \) *
 \(A_v = 0.05 \) *

38b. Is \(A_v < 0.15? \) (If no, proceed. If yes, seismic need not be considered, skip questions 39 to 41.)
 yes no

39. Seismic performance category. (See H-300 for Special Requirements of Foundation Design.)

40. What is the applicant's proposed design concept? (Design Wksht. #24)

41. Do the Foundation Design Concept Tables approve the foundation system for use in seismic areas of Question #38 above? (See Appendix A) (If yes, proceed. If no, return to applicant for foundation design choice more suited to high seismic areas.)
 yes no

PART 4: FINAL DESIGN PROCEDURE
(Accompanies Chapter 6)

42. What is the actual building width? (Mfg. Wksht. #4)
 13'-8" ft.
43. The nominal building width to be used in the Foundation Design Tables, (Aftg, Av & Ah) is Wt: (600-2.A and Figure 6-1) __________ ft.

44. Where are the foundation supports located? Check drawings submitted by the owner and Foundation Design Concepts in Appendix A. Circle the support locations shown on the Manufacturer's foundation concept plan.

45. Do these locations match the Foundation Concept shown in Appendix A? Do the locations match Question #24 on the Design Worksheet? (If yes, proceed. If no, return to Owner for clarification.)

APPENDIX A

47. What is the basic system type? (From Part 3: #24; Mfg. Wksht. #2) C1 *

48. What is the spacing between piers? (Mfg. Wksht. #11) (602-2)
 Exterior: 5.53'
 Interior: 5.53'

 Continuous Marriage Wall:

 Largest or Average Marriage Wall Opening: _______ ft.

 Tie Down (C1) 8'-8" ft.

APPENDIX B

Required Footing Size

49. The required Exterior Wall Footing, for the foundation type, is found in the Required Effective Footing Area table in App. B, Part 1. (Use maximum value from item #30.)
 C1 *

 Type C 3.6 sq.ft.

 Type E or I ______ ft.
 (width)
50. The Required Interior Footing area is:
(Also exterior piers for foundation type E)

51a. The Required Continuous Marriage Wall Footing area is:

51b. The Required Footing area under posts at the ends of marriage wall opening(s) is:

Vertical Anchorage Requirements in the Transverse Direction (602-4)

Exterior Av

\[
2,565 * \quad \text{lbs./pier spacing; lbs./ft. for E type; lbs./tie-down spacing)}
\]

2 or 4 or 6

52b. Number of vertical tie-down locations for multi-section units:

52c. For units with additional vertical anchorage at the interior piers, determine the Required Vertical Anchorage.

Interior Av

Exterior

\[
3,150 *
\]

Interior

53. What is the manufacturer-supplied value?
(#16b, Mfg. WkSh.)

Exterior

Interior *

54. Is this value (#53) greater than the value given in #52a?
(If yes, continue. If no, return to owner for clarification.)

Horizontal Anchorage Requirements In The Transverse Direction (602-5)

55a. What number of transverse foundation walls was selected? (602-5.E) (If vertical X-bracing planes are used, complete items #55a, #56 and #57 for 2 transverse walls, and then skip to item #59.)

<table>
<thead>
<tr>
<th>trial 1</th>
<th>trial 2</th>
<th>trial 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yes no yes no

55b. Are diagonal ties used to complete the top of the transverse short wall for horizontal anchorage? (602-5.G.1)

Estimate height (h) for appropriate illustration in Figure 6-10.

10'' ft.
56. Using the tables, find the Required Horizontal Anchorage (Ah). (Appendix B; Part 3)

<table>
<thead>
<tr>
<th>trial 1</th>
<th>trial 2</th>
<th>trial 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Wall Ah</td>
<td>858 lbs/ft</td>
<td></td>
</tr>
<tr>
<td>Int Wall Ah</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

57a. What is the manufacturer’s-supplied rated capacity for sliding? (#16c, Mfg. WkSht.)

<table>
<thead>
<tr>
<th></th>
<th>lbs/ft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4,800</td>
</tr>
</tbody>
</table>

57b. If answer to item #55b is yes, record manufacturer or product supplier rated strap tension capacity.

<table>
<thead>
<tr>
<th></th>
<th>lbs/s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5,600</td>
</tr>
</tbody>
</table>

58a. Is value #57a greater than item #56?
If yes, continue. If no, return to section 602-4.C and to question #55a and select a larger number of transverse foundation walls. If the maximum number selected (6) does not work, return to owner (who may wish to contact the manufacturer for clarification).

<table>
<thead>
<tr>
<th>yes</th>
<th>yes</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

58b. If answer to #55b is yes, required tension in diagonal (T). (Complete procedure in Section 602-5.G.1.)

<table>
<thead>
<tr>
<th></th>
<th>lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

58c. Is value #57b greater than #58b?
If yes, continue to item #62. If no, return to owner for product with greater capacity.

59. If using vertical X-bracing planes in lieu of transverse short walls (and the formulas in section 602-5.G.2), determine anchorage values and sizes for diagonal members. (If shear walls are selected in item #55, skip to item #62.)

<table>
<thead>
<tr>
<th>trial 1</th>
<th>trial 2</th>
<th>trial 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical X-bracing spacing proposed.</td>
<td>11.07' ft. *</td>
<td></td>
</tr>
<tr>
<td>Number of vertical X-bracing locations proposed. (Item #13, Mfg. WkSht. for trial 1.)</td>
<td>6</td>
<td>*</td>
</tr>
</tbody>
</table>
c. Required horizontal anchorage (C) value, based on formula. (602-5.G.2.c)

d. Estimated height (h) in Figure 6-10.

e. Tension (T,) required. (602-5.G.2.d)

60. What is the manufacturer-supplied rated strap tension capacity? (#16, Mfg. WkSht.) (or capacity defined by literature supplied by product supplier)

61a. Is value #57 greater than value #59c?
If yes, continue. If no, return to Section 602-5.G and to question #59 and select a greater number of X-brace locations as a next trial. Repeat until answer is yes, then continue.

61b. Is value #60 greater than value #59e?
If yes, continue. If no, return to section 602-5.G and to question #59 and select a greater number of X-bracing locations. If the maximum number selected does not work, return to owner (who may wish to contact the manufacturer for clarification or product supplier for clarification).

Horizontal Anchorage Requirements In The Longitudinal Direction (602-6)

62a. Using the tables, find the required horizontal anchorage (Ah) in the longitudinal direction. (Appendix B, Part 4) (602-6.E)

Exterior Wall Ah 46 lbs./ft.

62b. If using vertical X-bracing planes (and the formulas in section 602-6.F) determine anchorage value for X-bracing planes. (If using exterior long walls, skip to item #63.)

1. Number of chassis beam lines used for vertical X-bracing planes.
Number of X-bracing planes proposed under each chassis beam along the length of the unit.

2. Horizontal anchorage (B) required force, based on formula.

3. Assumed height (h-b) based on Figure 6-11.

4. Tension (T_L) based on formula.
 (602-6.F.(3))

63. What is the manufacturer-supplied value for horizontal anchorage? (#16d, Mfg. WkSht.)

64a. For shear walls: is value #63 greater than #62a?
 If yes, skip to item #67. If no, contact owner for clarification.

64b. For X-bracing: is value #63 greater than value #62b.2?
 If yes, return to item #62b.3. If no, increase number of vertical X-bracing planes and repeat items 62b.1 and 62b.2 until answer is yes. For multi-section units consider 4 lines of vertical X-bracing under all chassis beams.

65. What is the manufacturer-supplied rated strap tension?
 (#16e, Mfg. WkSht. or product supplier)

66. Is value #65 greater than #62b.4?
 If yes, continue. If no, contact owner to obtain straps with greater capacity, or return to item #62b.1 and increase the number of vertical X-bracing planes until answer is yes.

<table>
<thead>
<tr>
<th>trial 1</th>
<th>trial 2</th>
<th>trial 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,293</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,471</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lbs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lbs./ft.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX C

Withdrawal Resistance Verification (603-2.2)

67. Using Appendix C, Table C-1 or C-2, verify that the foundation system will resist withdrawal. Answer question #67a for type E. Answer question #67b for types C, I, or type E with interior pier anchorage.
a. **Withdrawal Resistance for long foundation wall.** (Type E)
 Circle the type of material that is to be used.

1) Using Table C-1, which capacity is greater than required Av? (603-2.B.(1)) (#52a)

2) Using Table C-1, what is the height of the wall + footing for required withdrawal resistance? (hw + 6")

3) What is the height of the wall + footing for frost protection? (frost depth (#9) + 12")

4) What is the greatest height #67a.2 or #67a.3?
 Circle the height which controls.

5) Record the bottom of footing depth from grade.
 (Item #67a.4 - 12")

6) Using Table C-1, what is the required width of the wall footing for withdrawal?

7) Is item #67a.6 greater than or equal to item #49?
 If yes, continue. If no, change footing width to item #49.

8) Record design exterior wall footing width.

b. **Withdrawal Resistance for Piers.** (Types C, C1 (concrete dead-man), I or type E with interior pier anchorage - multi-section units.)

 ![Diagram](image)

 Reinforced Concrete
 Masonry-Fully Grouted
 Masonry-Grouted @ 48" o.c.
 All-Weather Wood/Footing

 _________ lbs./ft.

 _________ in.

 _________ in.

 _________ in.

 Withdrawal Frost Depth

 _________ in.

 _________ in.

 yes no

 _________ in.

Circle pier type:

Reinforced Concrete
Reinforced Masonry - fully grouted
Reinforced Concrete Dead-man
1) Using Table C-2, which capacity is greater than required Av? (#52a and #52c) (603-2.B.(2))
 - Exterior: 2,824 lbs./pi
 - Interior: (when used)

2) Using Table C-2, what is the height of the pier + footing for required withdrawal resistance? (hp + 8”)
 - 40” in. *

3) What is the required height of pier + footing for frost protection? (frost depth (#9) + 12”)
 - in.

4) What is the greatest height #67b.2 or #67b.3?
 - 40” in.
 - Circle the height which controls.

5) Record the bottom of footing depth from grade. (Item #67b.4 - 12”)
 - in.

6) Using Table C-2, what is the required width of the square footing if withdrawal resistance controls or if frost depth controls?
 - 36” in. *

c. **Frost depth for marriage walls.** What is the required depth of footing below grade for frost protection? (frost depth (#9))
 - no withdrawal resistance
 - 0 in.

Vertical Anchorage and Reinforcement for Longitudinal Foundation Walls and Piers (603-2.D)

68. Using Appendix C, Table C-3, C-4A or C-4B, verify that the foundation anchors will resist uplift. Answer question #68a for type E. Answer question #68b for types C, I, or type E with interior pier anchorage.

a. **Vertical Anchor Capacity for longitudinal foundation wall** (type E). (603-2.D.2)

1) Using Table C-4A (concrete & masonry), which capacity is greater than the required Av? (#52a, Design Wksht.)
 - If treated wood wall, skip to item #68a.3.
 - lbs./lineal ft. of wall
Circle correct washer choice for the capacity selected

Standard Washer
Oversized Washer

2) Using Table C-4A (masonry and concrete):
 a) Required anchor bolt diameter
 __________ in.
 b) Required anchor bolt spacing
 __________ in.
 c) Using Table C-3A:
 (1) Rebar size
 __________ *
 (2) Lap splice
 __________ in.
 (3) Rebar hook length
 __________ in.

3) Using Table C-4B (wood), which capacity is greater than the required Av? (#52a, Design Wksht.)
 If using concrete or masonry wall, skip to item #68b.
 __________ lbs./linear ft. of wall

4) Using Table C-4B (wood):
 a) Required nailing
 __________ *
 b) Minimum plywood thickness
 __________ in.
 c) Required anchor bolt diameter
 __________ in.
 d) Required anchor bolt spacing
 __________ in.

 b. Vertical Anchor Capacity for Piers
 (Types C, I, or type E with interior pier anchorage)
 (603-2.D.1)

 ____________ Exteriar
 ____________ Interior
 (when used for anchorage in multi-section units)

 1) Using Table C-3, which capacity in the table is greater than the required Av?
 (From #52a, Design Wksht.)
 ____________ ____________ lbs./pie
2) Using Table C-3:
 a) Number of anchor bolts 1 or 2
 b) Anchor diameter 1/2” or 5/8”

3) Using Table C-3A:
 a) Rebar size #4 or #5
 b) Lap splice
 c) Rebar hook length

Horizontal Anchorage and Reinforcement for Transverse Foundation Walls (603-3)

69. Using Appendix C, Table C-5A or C-5B, verify that the foundation anchorage will resist sliding at the transverse end foundation walls. Use for types C, E, or I.

 a. For continuous foundations.

 Using Table C-5A (concrete & masonry) or C-5B (wood), which capacity is greater than the required (Ah) (603-3) (item #56)? ——— ——— lbs./ft

 1) Using Table C-5A, find:
 a) Required anchor bolt diameter ——— ——— in.
 b) Required anchor bolt spacing ——— ——— in.
 c) Using Table C-3A:
 (1) Rebar size *
 (2) Lap splice ——— ——— in.
 (3) Rebar hook length ——— ——— in.

 2) Using Table C-5B, find:
 a) Required nailing *
b) Minimum plywood thickness

<table>
<thead>
<tr>
<th>End Wall</th>
<th>Interior Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>________</td>
<td>________ in.</td>
</tr>
</tbody>
</table>

c) Required anchor bolt diameter

<table>
<thead>
<tr>
<th>End Wall</th>
<th>Interior Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>________</td>
<td>________ in.</td>
</tr>
</tbody>
</table>

d) Required anchor bolt spacing

<table>
<thead>
<tr>
<th>End Wall</th>
<th>Interior Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>________</td>
<td>________ in.</td>
</tr>
</tbody>
</table>

b. *For short foundation walls completed with diagonal braces.*
(603-5)

Using Appendix C, Table C-5A, verify the diagonal anchorage capacity to the short foundation wall.

<table>
<thead>
<tr>
<th>End</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>________</td>
<td>________ lbs.</td>
</tr>
</tbody>
</table>

1) Record the required horizontal force (Ah \times Wt) from 602-5.G.1.a and item #56.

<table>
<thead>
<tr>
<th>End</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>________</td>
<td>________ lbs.</td>
</tr>
</tbody>
</table>

2) Table C-5A capacity for one 1/2" diameter bolt at 12" o.c.

<table>
<thead>
<tr>
<th>End</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>1800 lbs.</td>
</tr>
</tbody>
</table>

3) Number of bolts (Ah \times Wt \div 1800; one minimum) at concrete or masonry top of short wall.

<table>
<thead>
<tr>
<th>End</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>________</td>
<td>*</td>
</tr>
</tbody>
</table>

4) Size of anchor bolts

<table>
<thead>
<tr>
<th>End</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>________</td>
<td>________ in.</td>
</tr>
</tbody>
</table>

5) Using Table C-3A:
 a) Rebar size

<table>
<thead>
<tr>
<th>End</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>________</td>
<td>*</td>
</tr>
</tbody>
</table>
 b) Lap splice

<table>
<thead>
<tr>
<th>End</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>________</td>
<td>________ in.</td>
</tr>
</tbody>
</table>
 c) Rebar hook length

<table>
<thead>
<tr>
<th>End</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>________</td>
<td>________ in.</td>
</tr>
</tbody>
</table>

c. *For vertical X-bracing planes in the transverse direction.*
(603-6)

Using Appendix C, Table C-5A, verify the diagonal anchorage to the pier footings and the tension capacity of the diagonals.

1) Record the required horizontal force (C) from item #59c.

<table>
<thead>
<tr>
<th>End</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,637</td>
<td>lbs.</td>
</tr>
</tbody>
</table>

2) Table C-5A capacity for one 1/2" diameter bolt at 12" o.c.

<table>
<thead>
<tr>
<th>End</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>lbs.</td>
</tr>
</tbody>
</table>
3) Number of bolts \((C \div 1800; \text{one minimum})\) at top of a footing.

\[
\begin{array}{ll}
3 & * \\
\end{array}
\]

4) Record the required tension force \((T_r)\) from item #59e.

\[
\begin{array}{ll}
5,373 & \text{lbs./dit} \\
\end{array}
\]

5) Select tension strap capacity greater than or equal to \(T_r\) from owner’s product supplier or manufacturer’s supplied capacity (item #60).

\[
\begin{array}{ll}
5,600 & \text{lbs./dit} \\
\end{array}
\]

6) Record diagonal strap data

A36 galv. steel plate: 1/4" x

Horizontal Anchorage for Longitudinal Foundation Walls (603-4)

70. Using Appendix C, Table C-5A or C-5B, verify that the foundation horizontal anchorage will resist sliding at the long foundation walls. Use for types C, E and I.

a. *For continuous exterior foundation walls.*

Using Table C-5A (concrete and masonry) or Table C-5B (wood), which capacity is greater than the required exterior Ah? (602-6.E) (item #62a)

\[
\begin{array}{ll}
\text{___________} & \text{lbs./ft.} \\
\end{array}
\]

1) Using Table C-5A, find:

a) Required anchor bolt diameter

\[
\begin{array}{ll}
\text{___________} & \text{in.} \\
\end{array}
\]

b) Required anchor bolt spacing

\[
\begin{array}{ll}
\text{___________} & \text{in.} \\
\end{array}
\]

c) Using Table C-3A:

\[
\begin{array}{ll}
(1) & \text{Rebar size} \\
(2) & \text{Lap splice} \\
(3) & \text{Rebar hook length} \\
\end{array}
\]

\[
\begin{array}{ll}
\text{___________} & * \\
\text{___________} & \text{in.} \\
\text{___________} & \text{in.} \\
\end{array}
\]

2) Using Table C-5B, find:

a) Required nailing

\[
\begin{array}{ll}
\text{___________} & * \\
\end{array}
\]

b) Minimum plywood thickness

\[
\begin{array}{ll}
\text{___________} & \text{in.} \\
\end{array}
\]

c) Required anchor bolt diameter

\[
\begin{array}{ll}
\text{___________} & \text{in.} \\
\end{array}
\]

d) Required anchor bolt spacing

\[
\begin{array}{ll}
\text{___________} & \text{in.} \\
\end{array}
\]
b. For vertical X-bracing planes.
(603-6.A.(2))

Using Appendix C, Table C-5A, verify the diagonal anchorage to the pier footings and the tension capacity of the diagonals.

1) Record the required horizontal force (B) from item #62b.2.
 \[B = 1,293 \text{ lbs.} \]

2) Table C-5A capacity for one 1/2" diameter bolt at 12" o.c.
 \[1,800 \text{ lbs.} \]

3) Number of bolts (B ÷ 1800; one minimum)
 \[1 \text{ *} \]

4) Record the required tension force (T_L) from item #62b.4.
 \[1,471 \text{ lbs./diag.} \]

5) Select tension strap capacity greater than or equal to T_L from owner's product supplier or manufacturer's supplied capacity (item #60).
 \[5,600 \text{ lbs./diag.} \]

6) Record diagonal strap data
 A36 Galv. Steel Plate: 1/4" x 1

SUMMARY SHEET
(Accompanies Chapter 7)

71. Compare values from preceding questions.
Select the largest value.

a. Bearing area and vertical anchorage

1. Pier footings: types C, E & I.

<table>
<thead>
<tr>
<th>Piers</th>
<th>Exterior</th>
<th>Interior</th>
<th>Marriage Wall Cont.</th>
<th>At Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Effective Footing Area from questions #49, #50, & #51.</td>
<td>3.6 sq.ft.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required footing area to resist withdrawal due to uplift from Question #67. (for single-section or 2 tie-down system, only the exterior piers resist uplift, for 4 tie-down only the interior piers and exterior walls resist uplift)</td>
<td>9.0 sq.ft.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Piers

<table>
<thead>
<tr>
<th>Piers</th>
<th>Marriage Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pier Footing Sizes (largest of above)</td>
<td>Exterior</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
</tr>
<tr>
<td>"Dead-man" footing size.</td>
<td></td>
</tr>
</tbody>
</table>

Reinforcing for pier footings:
Bring forward answers from previous questions. (#68b)
(Types C, I, or E with interior pier anchorage.)

<table>
<thead>
<tr>
<th></th>
<th>Exterior</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of anchor bolts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchor bolt diameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebar size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lap splice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebar hook length</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Footing depth: grade to bottom of footing</th>
<th>Exterior</th>
<th>Interior</th>
<th>Marriage Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>sq.</td>
</tr>
</tbody>
</table>

Pier footing and "dead-man" footing reinforcing bars: #4 at 10" o.c.
"Dead-man" footing depth: grade to bottom of footing in.

2. **Long Foundation wall footing: type E or I:**

Required Effective Footing Width

Required Footing Width for soil bearing (#49) ft.

Required Footing Width to resist uplift withdrawal (#67a.6) ft.

Wall Footing Size (largest of above) ft.

Footing Depth: Grade to bottom of footing (#67a.5) in.
Footing reinforcing bars.

Reinforcing for longitudinal foundation walls: Record answers from item #68a and record sizes and spacings.

From 68a.2: masonry and concrete:

Required anchor bolt diameter

Required washer size

Required anchor bolt spacing

Rebar size

Lap splice

Rebar hook length

From 68a.4: wood: Record answers from item #68a.4 and record sizes and spacings.

Required railing

Minimum plywood thickness.

Required anchor bolt diameter

Required anchor bolt spacing

b. Horizontal anchorage in the transverse direction - foundation walls

1. Continuous foundation walls (#69a)

Number of transverse foundation walls (#55a) 2

Required Footing Width (minimum) 12 in.

From #69a.1: concrete / masonry:

Anchor bolt diameter

End Wall

Interior Wall

in.
<table>
<thead>
<tr>
<th>Anchor bolt spacing</th>
<th>End Wall</th>
<th>Interior Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebar size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lap splice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebar hook length</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From #69a.2: wood:

Required nailing		
Minimum plywood nailer		
Anchor bolt diameter		
Anchor bolt spacing		

2. For transverse short foundation walls completed with diagonal braces (#69b)

| Number of pairs of diagonals (1 for single-section units, 2 for multi-section units) times number of short walls (end or interior) (#55a) | End | Interior |
| Diagonal spacing (same as number of short walls) | | |

From #69b: concrete / masonry:

Anchor bolt diameter		i
Number of bolts		
Rebar size		
Lap splice		i
Rebar hook length		i

3. For vertical X-bracing planes in lieu of short walls. (#69c)

Number of X-brace locations (#59) 6
Spacing of vertical X-brace planes (#59) 11.07' ft.

Items from #69c.3 and #69c.5

Required anchor bolt diameter 1/2'' in.

Number of bolts at top of footing to connect diagonal

Diagonal strap size A36 galv. steel plate: 1/4'' x 1

Connection to top flange of chassis beam (describe)

c. Horizontal anchorage in the longitudinal direction - exterior foundation walls

1. Continuous foundation walls

Reinforcing for longitudinal foundation walls: record only if larger sizes or closer spacing than recorded for vertical anchorage (#71a.2).

From #70a.1: concrete / masonry:

Anchor bolt diameter

Anchor bolt spacing

Rebar size

Lap splice

Rebar hook length

From #70a.2: wood: record only if larger sizes or closer spacings than recorded for vertical anchorage (#71a.2)

Required nailing

Minimum plywood nailer

Anchor bolt diameter

Anchor bolt spacing
2. *Vertical X-bracing planes under chassis beam lines*
(#70b.)

Number of X-brace locations along one chassis beam line.

Spacing of X-brace locations along one chassis beam line.

Required anchor bolt diameter.

Number of bolts at top of footing at connection to the diagonal.

Diagonal strap size.

Connection to bottom flange of chassis beam (describe).

2

ft.

1/2" in.

1

A36 Galv. Steel Plate: 1/4"

72. Do foundation dimensions and details comply with Foundation Capacities Table, based on Foundation Design Table Values?

[] yes [] no

73. If #72 yes, approve. If no, return to applicant.

[] APPROVE [] DISAPPROVE