HUD-0050558

HUD Contract H-2073-R

z

TCOMS UTILITIES MANUAL

(DATA MANAGEMENT SECTION)

January 1976

DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT
OFFICE OF THE ASSISTANT SECRETARY FOR
POLICY, DEVELOPMENT & RESEARCH

THE INTER-REGIONAL INFORMATION SYSTEM

Regional Information Systems Department
Lane County Courthouse

Eugene, Oregon 97401

and

3

Data Processing Authority
4747 East Burnside
Portland, Oregon 97215

BIBLIOGRAPHIC 1. Report No. 2. ’ 3. Recipient's Accession No
DATA SHEET USACLCG20015
oL - 4. Title and Subtitle ' 5. Report Date
- ‘ TCDMS Utilities Manual (Data Management - ~ January 30, 1976
Section) T
. .
' 7. Author(s) 8. Performing Organization Report No.
9. Performing Organization Name and Address 10. Project/Task/Work Unit No.
Lane County Government
Lane County Courthouse
8 1. Contract/Grant No.
Eugene, Oregon 97401 H=2073-R
12. Sponsoring Organization Name and Address 3. Type of Report & Period Covered
- U.S. Dept of Housing and Urban Development
i . Office of Policy, Development & Research Special Technical Report
’ 451 7th St. 4 S.W. ﬂ4‘
, Washington, D.C. 20410
|

15. Supplementary Notes

16. Abstracts

This manual is from a USAC series produced by the Regional
Information Systems Department of Lane County. It contains
a description of the batch utilities available with the

Data Management Component of the Telecommunications Data
Management System.

17. Key Words and Document Analysis — 17a.

Information System
- Local Government ‘
- Computer System Programs

Data Retrieval
- §17b. Identifiers/Open-Ended Terms

Urban Information Systems Inter-Agency Committee
; : Municipal Information System
Lane County

Data Management System
17c. COSATI Field/Group 5B

Descriptors

Released for distribution by Unclassified 36 -
vailability Statement NTIS 19. Sccurity Class (This Report) |21. No. of Pages
' Unclassified
ol 20. Security Class (This Page) 122. Price

FORM NTI5-35 (REV. 372) USCOMM-D.C. 1495272

THE CITATION OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT
DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF
THE USE OF SUCH EQUIPMENT OR SOFTWARE.

ii

0.1 PREFACE

In 1972, the Data Processing Authority (representing the city of
Portland and Multnomah County, Oregon) and the Regional Infor-
mation Systems Department of the Lane County government (repre-
senting the cities of Eugene, Springfield, Albany, Cottage Grove,
and Florence; and Lane, Linn and Benton Counties, Oregon) formed

an organization called the Inter-Regional Information System (IRIS).
Its purpose was manifold:

to solve some of the complex problems of public
information handling through cooperative planning
and development of hardware and software environ-
ments;

to minimize the duplication of effort involved in

writing application systems;
to reduce the cost of governmental data processing; and
to increase the quality of service to the taxpayer.

Since its inception, the IRIS organization has grown to repre-

sent over one hundred different city, county, state, and federal
agencies serving over 70% of Oregon's population. Current pro-
jects include the Fleet Management System, the Assessment and
Taxation System, and the Telecommunications Data Management System.
Future involvement is anticipated in the areas of ciiminal justice,

management analysis, human resources, geo-coding, and financial

systems.
Much of the inter-regional success enjoyed by the IRIS organization

has been facilitated by a cost-reimbursement contract with the

Urban Information Systems Inter-Agency Committee (USAC). USAC is

iii

a consortium of ten federal agencies formed in 1968 to work
together with local governments across the United States in an
effort to improve urban governance through more effective use of
computer-based processing systems. USAC is sponsoring several
research and development projects which will result in trans-
ferable, computerized information systems available to local

governments throughout the United States.

With the support of USAC, IRIS is developing the system software
foundation for the application programs which control these com-
puterized systems. This foundation is called TeleCommunications/
Data Management System (TCDMS). This system contains two com-
ponents which bring together the state-of-the-art features in

both telecommunications and data base/data management systems.

The telecommunications component of TCDMS extends the power of the
modern computer to the desk of each user. Its facilities include
such features as terminal independent I/O functions, ‘user-specified
security, multiprogramming, priority scheduling, message switch-

ing, print-out spooling, on-line debugging, and remote job entry.

The data base/data management component of TCDMS optimizes the
efficiency of data file construction and minimizes data redundancy
by combining all files in the system into an integrated date base.
Its facilities include data access flexibility, file and data
element security, and application program independence from the
physical file structure.

Perhaps the most important feature of TCDMS is the transferability

of application systems it allows. Application programs running

under TCDMS control are isolated from changes in the hardware or

iv

software configuration of the installation. This means that
TCDMS-controlled application systems can be transferred between
IRIS installations without the costly conversion efforts usually
necessitated by such exchanges.

TCDMS may be implemented on any IBM System 360/370 computer having
252K bytes or more of storage capacity. It will support IBM
System 360/370 BAL, FORTRAN, COBOL, and DL/1 user languages.

TCDMS will run in real core under the control of IBM OS or VS
operating systems. The modular construction of TCDMS makes it
hardware independent; it can operate with any IBM terminal hard-
ware configuration.

The joint software development and maintenance by means of the
regional and inter-regional cooperation of IRIS and the inte-
grated data base/data communications approach of TCDMS are be-
coming an increasingly popular solution to the problems of

information handling in the public domain.

TABLE OF CONTENTS

0,1 PREFACE: « =« + « o o+ o « o o« o« « « o« « « o . page iii
TABLE OF CONTENTS: « = « o « = « « « « « « . vi

0,2 INTRODUCTION « + o « o « « o o & o o o o o vii
1,0 OVERVIEW OF DMS- = + = = « « o o o o o o« « . 1
2.0 DATA MANAGEMENT UTILITIES- R 4
2.1 DUAMLDDR - TCDMS FILE LOAD UTILITY. . . 5
2.1.1 CONTROL STATEMENTS . . « 5
2.1.2 DUAMLDDR EXAMPLE « « « « « .« .+ . 11

2.2 DUAMRGDR -~ TCDMS FILE REORGANIZATION UTILITY 14

2.2.1 CONTROL STATEMENTS 14

2.2.2 DUAMRGDR EXAMPLE . &+ v « & s o & 21

2.3 DUFRCDR - TCDMS DATA BASE BACKUP AND

RECOVERY UTILITY. 24
2.3.1 CONTROL STATEMENTS 24
2.3.2 DUFRCDR EXAMPLES . . &« « « & &+ & 27

vi

0.2 INTRODUCTION

This manual completes the TCDMS Utilities Manuals. It extends
the desériptions of utility programs in the TCS Utility Manual
‘to include DMS utility programs. This manual is a reference
guide for data base administrators and others responsible for
the creation and maintenance of a TCDMS data base. It contains
information describing the TCDMS utility programs which are used
in this process. 7

This manual is divided into two main sections. They are:

OVERVIEW OF DMS - There is a general overview
at the beginning of the manual which describes

the data management component of TCDMS.

DATA MANAGEMENT UTILITIES - This section contains
descriptions of the TCDMS batch utility programs
for the data management component. It describes
the options available with these programs and

illustrates sample job control statements.

The material presented in this manual is of a technical nature.
It is intended for experienced computer programmers and system
analysts. The user of this manual should be familiar with the
physical structureyof TCDMS data bases. In addition, knowledge

of the retrieval and update logic of the TCDMS data base access
may be useful.

For other information regarding any -aspect of the data manage-

ment component of TCDMS, the reader is referred to the following
documents. '

vii

INTRODUCTION Continued

TCDMS DETAIL DESIGN AND DEVELOPMENT ITCR - A
summary of the interrelation of DMS modules with-
in major functional areas and the interrelation
of these major areas during DMS processing. In
addition, the manual includes a description of

each module and its purpose.

TCDMS SYSTEM PROGRAMMER'S MANUAL - A summary of
the data base definition and DBCB generation
process.

TCDMS APPLICATION PROGRAMMER'S MANUAL - A de-
scription of the TCDMS data base access functions

available to application programmers.

For further information about TCDMS and its documentation pro-
ducts please contact the Regional Information Systems Depart-
ment, Lane County Courthouse, Eugene, Oregon 97401.

viii

1.0 OVERVIEW OF DMS

1.0 OVERVIEW

The data management component of TCDMS provides to an installa-
tion both a hierarchically structured data base with extensive
capabilities for inter-relating data, and a data base access

system which permits application programmers to retrieve, in-
sert, delete, or change data in the data base.

"Each installation defines the structure of its data base using
the data base definition and DBCB generation modules. The data
files are formatted and loaded onto direct access storage de-

vices using the DMS file load utility programs.

Data base éccess requests from an application program are initially
handled by the request manager modules. These modules determine the
nature of the request, convert the request to an appropriate for-
mat for the access method modules, and handle conversion of

data from its stored format to the format desired by the user.

In addition the request manager modules maintain positioning

within the data base for direct or sequential access requests.

The request manager modules handle data elements. Within the

data base, data elements are stored in segments. The request
manager modules call the segment processor modules to handle

data segments. . The segment processor modules manage the

segment work area (SWA) where segments are constructed from

data elements (for insertion) or held during data element re-
trieval. The segment processor also determines whether seg-

ments are pointers (which inter-relate different data base

files) and performs special processing for them. The segment pro-
cessor modules call the access method modules for actual data

base retrievals, insertions, or deletions.

The access method modules map the complex data structures to and
from their physical representations on direct access storage.

-The access method groups segments into data families and stores
each family on one physical block on disk (if possible). The
access method is designed so that the physical structuring of
segments into families is independent of the technique used to
~access families. This means that a family may be accessed in
several different ways. The access method index handling routines
provide direct or sequential access by index. A family may be accessed
via a pointer from another file. The access method modules also
manage any buffers needed during data base physical access. They

also perform the actual read and write operations to the data
files on disk.

The data base integrity modules provide data base restoration
facilities. They are used if a system failure has occurred.
DMS also provides utility programs to write off the data base
files for reorganization and reload.

y 2,0 DATA MANAGEMENT UTILITIES

2.1 DUAMLDDR - TCDMS FILE LOAD UTILITY

DUAMLDDR is a TCDMS utility used to create a TCDMS file and
relate it logically to the rest of the data base. This may
involve updating existing related files or loading entirely
new related files. DUAMLDDR runs as a batch job step inde-
pendent of TCDMS.

Input to DUAMLDDR consists of operating system job control
language statements and a utility control statement data set.
Output consists of a message data set, which includes sta-
tistical information about each of the files loaded and error

messages where appropriate.

2,1.1 CONTROL STATEMENTS

A description of the required job control and utility control
statements follows:

DUAMLDDR is invoked with an operating system EXEC statement
with a PARM field of 'FILE=n', where n is the one to five
digit decimal TCDMS file number of the primary file being loaded.

DD STATEMENTS

DUAMLDDR requires several operating system DD statements. They
are listed below by ddname. ‘

DDNAME DCTn

Ddname DCTn defines a control statement data set for TCDMS file n,
where n is the five-digit TCDMS file number. One such data set

is required for the primary file and for each related file being

loaded. None is required for existing related files.

Each DCTn data set consists of 80 byte records containing one
“utility control statement per record. A control statement
consists of an eight-byte keyword beginning in column one,
followed by an '=' sign and an appropriate value. The control
statements may appear in any order. The valid keywords-are
listed below.

HICHAIN#=n where n is a decimal number greater than zero
and less than 256 , represents the decimal
equivalent of the highest segment identifier on the file
that can represent a chain segment. Any data segments on
the file must have higher segment identifiers. If you do
' not code the HICHAIN# keyword, DUAMLDDR uses a value of 127.

INDXFREE=n where n is a one to five digit decimal number,
represents the approximate amount of free space

to be left in each index block. The minimum value you may
specify is five plus the file's key length (as specified

by the KEYLENTH keyword). The maximum is the block size
minus five minus the key length. If you do not code the
INDXFREE keyword, DUAMLDDR uses a value equal to ten per-
cent of the block size. DUAMLDDR ignores this keyword if
you code INDEXOPT=NO,

INDEXOPT=option where 'option' may be either 'YES' or

'NO', speéifies whether an index struc-
ture is to be created. DUAMLDDR will create an index
structure for the file if you code 'INDEXOPT=YES' or if
you do not code this keyword at all. If you code 'NO', no
index structure is built.

INTRACKS=n where n is a decimal number, represents the
number of tracks in the file that DUAMLDDR
will réserve for the index structure. This value must be
less than the primary space allocation for the file as
specified in the DD statement used to create the file.
The value you code must be large enough to accomodate
the index structure when it is created. Any unused space
will be reserved for expansion of the index structure due
to the addition of new root segments. You must code this
keyword unless you specified INDEXOPT=NO.

KEYLENTH=n where n is a decimal number, specifies the
length of the root segment for the file.
It must be greater than zero and less than sixty-five.

You must code this keyword.

MAXPFREE=n where n is a decimal number, specifies the
maximum amount of space that DUAMLDDR is to
leave ih each data block. TCDMS can use this free space
during normal processing of the file to expand data
families in the block. The value you specify for
MAXPFREE must be less than the block size and greater than
the file's key length plus twenty plus the value of
MINPFREE. If you do not code the MAXPFREE keyword,

DUAMLDDR uses a value equal to ten percent of the block
size.

- MAXSEGLN=n where n is a decimal number, specifies the

length of the largest possible segment for
the file. DUAMLDDR uses this value to reserve adequate
main storage for buffers. The value must be greater than
zero and less than 32,768. If you do not code this key-
word, DUAMLDDR uses a value of 256,

MINPFREE=n where n is a decimal number, specifies the
minimum amount of free space that DUAMLDDR

will leave in each data block. TCDMS can use this free

space during normal processing of the file to expand data

families in the block. The value you specify for MINPFREE

must be equal to or greater than zero and less than the value

of MAXPFREE minus the file's key length minus 20. If you

do not code the MINPFREE keyword, DUAMLDDR uses a value

equal to five percent of the block size.

Performance hint: You can use MAXPFREE and MINPFREE to limit the
number of data families which are split across two physical blocks.
If the typical data family size is considerably less than block
size, you may set MAXPFREE to a value somewhat larger than
MINPFREE plus typical data family size. This will keep DUAMLDDR
from splitting a data family of typical size across two blocks.

OVTRACKS=n where n is a decimal number, specifies the

_ number of overflow tracks that DUAMLDDR will
reserve for later expansion of existing families. TCDMS
uses this area during normal processing to expand existing
data families when there is insufficient free space in the
blocks where the families were originally loaded or created.
You must code a value for this keyword. It must be equal
to or greater than zero. |

PRTRACKS=n where n is a decimal number, specifies the num-

ber of tracks that DUAMLDDR will reserve for the
later addition of new data families to the file. You must
code a value for this keyword. It must be equal to or great-

er than =zero.

DDNAME DLDn

Ddname DLDn defines a data set which will become TCDMS file num-

ber n, where n is a five~-digit decimal number. You need to code
one such DD statement for the primary file and one for each re-
lated file that will be loaded in the same job step. You do not
need DD statements for existing related files. You may allocate
space for these files before running DUAMLDDR, or you may allocate
it in the same job step by coding 'NEW' in the DISP parameter of
the DD statement. The SPACE paramenter must include a primary
allocation greater than the number of tracks specified in the
INTRACKS keyword of the control data set for the file. You may
specify secondary allocations; DUAMLDDR will force secondary
allocations until the space requirements specified in the PRTRACKS
and OVTRACKS keywords are satisfied. |

DDNAME DMSCATLG

Ddname DMSCATLG defines the TCDMS catalog for the data base. You
nust specify the DISP parameter as SHR. '

DDNAME DMSIN

Ddname DMSIN defines the primary load input data set.

DDNAME DMSCHAIN

Ddname DMSCHAIN defines a temporary sequential data set. It is
used to collect chain segments to be resolved in the primary file.
Its format is fixed blocked. Each logical record is 22 bytes long.
You must specify the block size in the DCB parameter. It must

be a multiple of 22 and should be an appropriate block size for

the I/0 device. You should alloéate enough space to contain one
record for each chain segment loaded on the primary file. You

may specify secondary allocations in the SPACE parameter.

DDNAME DMSOUT

Ddname DMSOUT defines a temporary sequential data set. DUAMLDDR
- uses it to collect segments to be put on related files. Its

format is variable blocked. You must specify logical record

length and block size in the DCB parameter. Logical record

length may be any value less than the block size in this data

set and greater than the maximum segment length plus 206.

Block size should be appropriate for the I/0 device. You

should allocate enough space to contain one record for each seg-

ment in the load input which will be put on related files.

You may specify secondary allocations in the space parameter.

DDNAME DMSPRINT

Ddname DMSPRINT defines a sequential message data set. You do

not need to code DCB parameters for it.
DDNAME JOBLIB or STEPLIB

Ddname JOBLIB or STEPLIB must be included unless DUAMLDDR and
all the modules it links to are on the system library. These
include DUAMCHPS, DUAMCHSP, DUAMLOAD and SORT. SORT must be

an alias for a sort program which accepts input in the standard
form used by most IBM-developed sorts.

DDNAMES FOR SORT

Ddnames SORTLIB, SORTWKO0l, SORTWK(02, SORTWKO03, SORTWKQ04, SORTWKOS5,
SORTWKO06, and SYSOUT define data sets required by SORT. For‘
information on how to specify them, consult the documentation of
the SORT program you are using. You should allocate adequate
work space (SORTWKO0l, etc.) to sort a data set the size of the
DMSOUT data set.

10

2,1,2 DUAMLDDR EXAMPLE

In this example, three TCDMS files are loaded in one job step:

//LOAD35 JOB

// EXEC PGM=DUAMLDDR PARM='FILE=35"

//STEPLIB DD DSN=TCDMS.LOADLIB,DISP=SHR

//DMSCATLG DD DSN=DMS.CATALOG,DISP=SHR -

//DMSIN DD DSN=LOADTAPE,UNIT=2400,V0L=SER=001937,DISP=0LD
//DMSCHAIN DD UNIT=SYSDA,SPACE=(2200,(1000,100)),

// DCB=BLKSIZE=2200
//DMSOUT DD UNIT=SYSDA,SPACE=(2400, (4000,500)),
// DCB=(LRECL=500,BLKSIZE=2400)

//DMSPRINT DD SYOUT=A

//DLD0O0035 DD UNIT=3330,VOL=SER=333001,DSN=DMS.ACCTL,
// DISP=(,KEEP) ,SPACE=(TRK, (440,40))

//DCTO00035 DD * ‘
INTRACKS=25

PRTRACKS=100

OVTRACKS=40

INDXFREE=300

MINPFREE=T5

MAXPFREE=200

//DLD00020 DD UNIT=3330,VY0L=SER=333003,DSN=DMS.NAME,
// DISP=(,KEEP) ,SPACE=(TRK, (80,10))

//DCT00020 DD *

INTRACKS=12

PRTRACKS=20

OVTRACKS=10

//DLD00021 DD UNIT=3330,VOL=SER=333013,DSN=DMS.ADDRESS,
// DISP=0LD

//DCTQ002L DD *

INTRACKS=15

PRTRACKS=5

OVTRACKS=5

//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR

//SORTWKO1 DD UNIT=SYSDA,SPACE=(TRK,100)

//SORTWKO2 DD UNIT=SYSKA,SPACE=(TRK,100)

//SORTWKO3 DD UNIT=SYSKA,SPACE=(TRK,100)

//SORTWKO4 DD UNIT=SYSKA,SPACE=(TRK,100)

//SORTWKO5 DD UNIT=SYSKA,SPACE=(TRK,100)

//SORTWKO6 DD UNIT=SYSKA,SPACE=(TRK,100)

//SYSQOUT DD SYSOUT=A

EXPLANATION:

The EXEC statement specifies the execution of DUAMLDDR. “'The

11

PARM field specifies the primary file as number 35.

The STEPLIB DD statement specifies the load library containing
DUAMLDDR and its submodules.,

The DMSCATLG DD statement specifies the installation'’s DMS
catalog data set.

The DMSIN DD statement specifies a data set containing the
actual data to be loaded on the files.

The DMSCHAIN DD statement specifies a work data set for pointer
segments. '

The DMSOUT DD statement specifies a work data set for secondary

data segments and pointer segments.

The DMSPRINT DD statement specifies a message data set.

The DLD00035 DD statement specifies the primary file to be
loaded, file 35. 1In this example, space for it is to be allo-

cated at the beginning of the job step.

The DCTO00035 DD statement defines the control data set for file

35. The control statements specify certain physical characteristics
of the file:

INTRACKS=25 specifies that 25 tracks are to be re-
served for index area; any unused portion

will be available for expansion.
PRTRACKS=100 specifies that 100 tracks are to be re-

served for the expansion of prime data

with new data families after the load.

12

OVTRACKS=40 specifies that 40 tracks are to be re-
served for an overflow area. Overflow is

‘used for the expansion of existing families.

INDXFREE=300 specifies that 300 bytes are to'be left

for expansion in each index block.

MINPFREE=75 and MAXPFREE=200 specifies that between

_ 75 and 200 bytes are to be
left in each data block for expansion.

DLD00020 DD and DLD00021 DD specify TCDMS files 20 and 21,

respectively, as the secondary files to be loaded.

DCT00020 and DCT00021 define the control statement data set
for files 20 and 21, respectively.

Note that existing files which have a secondary relation to
file 35 need not have DLDn and DCTn DD statements.

SORTLIB DD, SORTLIBnn DD, and SYSOUT DD statements define the

data sets required by the SORT program, which is invoked by
DUAMLDDR.

13

2.2 DUAMRGDR - TCDMS FILE REORGANIZATION UTILITY

. DUAMRGDR is the TCDMS file reorganization utility. It is used
to physically restructure a file. This may be needed because
more space is required for the file, or because extensive
modification of the file has caused performance to deteriorate.
DUAMRGDR must also be used if you wish to move a file to a
different volume or to change the physical attributes of the
file which were assigned when it was loaded, such as the
amount of free space to be left in a data or index block, or
the amount of space to be reserved for index, prime data, or
overflow areas.

Input to DUAMRGDR consists of operating system Jjob control
language statements and a utility control statement data set.

Output consists of a message data set, which includes statistical

information about the reorganized file and error messages where
appropriate.

2,2.1 CONTROL STATEMENTS

A description of the required job control and utility control
statements follows.

DUAMRGDR is invoked with an operating system EXEC statement
with a PARM field of 'FILE=n', where n is the one to five

digit decimal TCDMS file number of the file being reorganized.

DD STATEMENTS

DUAMRGDR requires several operating system DD statements. They
are listed below by ddname.

14

DDNAME DCTN

Ddname DCTn defines a control statement data set for TCDMS file
n, where n is the five-digit TCDMS file number. One such data
set is required for the primary file and for each related file

being loaded. None is required for existing related files.

Each DCTn data set consists of 80 byte records containing one
utility control statement per record. A control statement
consists of an eight-byte keyword beginning in column one,
followed by an '=' sign and an appropriate value. The control
statements may appear in any order. The valid keywords are
listed below.

HICHAIN#=n where n is a decimal number greater than

zero and less than 256, represents the de-
cimal equivalent of the highest segment identifier on
the file that can represent a chain segment. Any data
segments on the file must have higher segment identi-
fiers. If you do not code the HICHAIN# keyword, DUAMRGDR
uses a value of 127.

INDXFREE=n where n is a one to five digit decimal number,
represents the approximate amount of free

space to be left in each index block. The minimum value

you may specify is five plus the file's key length (as

specified by the KEYLENTH keyword). The maximum ié the

block size minus five minus the key length. If you do

not code the INDXFREE keyword, DUAMRGDR uses a value

equal to ten percent of the block size. DUAMRGDR ignores

this keyword if you code INDEXOPT=NO.

15

INDEXOPT=option where 'option' may be either 'YES' or

'NO', specifies whether an index structure
is to be created. DUAMRGDR creates an index structure if
you code 'INDEXOPT=YES' or if you do not code this keyword
at all. If you code 'NO', no index structure is built.

INTRACKS=n where n is a decimal number, represents the
number of tracks in the file that DUAMRGDR

will reserve for the index structure. This value must be

less than the primary space allocation for the file as

specified in the DD statement used to create the file.

The value you . code must be large enough to accomodate

the index structure when it is created. Any unused space

will be reserved for expansion of the index structure due to

the addition of new root segments. You must code this keyword

unless you specified INDEXOPT=NO.

KEYLENTH-n where n is a decimal number, specifies the
length of the root segment for the file.
It must be greater than zero and less than sixty-five.

You must code this keyword.

MAXPFREE=n where n is a decimal number, specifies the
maximum amount of space that DUAMRGDR is to

leave in each data block. TCDMS can use this free space

during normal processing of the file to expand data families

in the block. The value you specify for MAXPFREE must

be less than the block size and greater than the file's

key length plus twenty plus the value of MINPFREE. If you

do not code the MAXPFREE keyword, DUAMRGDR uses a value

equal to ten percent of the block size.

16

MAXSEGLN=n where n is a decimal number, specifies the

length of the largest possible segment for
the file. DUBMRGDR uses this value to reserve adegquate
main storage for buffers. The value must be greater than
zero and less than 32,768. If you do not code this key-
word, DUAMRGDR uses a value of 256.

MINPFREE=m where n is a decimal number,'specifies the
minimum amount of free space that DUAMRGDR will

leave in each data block. TCDMS can use this free space

during normal processing of the file to expand data

families in the block. The value you specify for MINPFREE

must be equal to or greater than zero and less than the

value of MAXPFREE minus the file's key length minus 20. .

If you do not code the MINPFREE keyword, DUAMRGDR uses

a value equal to five percent of the block size.

Performance hint: You can use MAXPFREE and MINPFREE to limit the
number of data families which are split across two physical
blocks. If the typical data family size is considerably less
than block size, you may set MAXPFREE to a value somewhat larger
than MINPFREE plus typical data family size. This will keep
DUAMRGDR from splitting a data family of typical size across

two blocks

OVTRACKS=n where n is a decimal number, specifies the
number of overflow tracks that DUAMRGDR will
reserve for later expansion of existing families. TCDMS
uses this area during normal processing to expand existing
data families when there is insufficient free space in the
blocks where the families were originally loaded or created.
You must code a value for this keyword. It must be equal

to or greater than zero.

17

PRTRACKS=n where n is a decimal number, specifies the
.number of tracks that DUAMRGDR will reserve

for the later addition of new data families to the file.

You must code a value for this keyword. It must be equal

to or greater than 2zero.
DDNAME DLDn

Ddname DLDn defines a data set which will become the reorganized
TCDMS file n where n is the five-digit decimal file number of

the file being reorganized. You may specify the existing file.

n in this DD statement, or you may specify a different data

set. In the latter case, you may allocate space for this file
before running DUAMRGDR, or you may allocate it in the same job
step by coding 'NEW' in the DISP parameter of the DD statement.
The SPACE parameter must include a primary allocation greater than
the number of tracks specified in the INTRACKS keyword of the
control data set for the file. You may specify secondary allocations;:
DUAMRGDR will force secondary allocations until the space re-
qguirements specified in the PRTRACKS and OVTRACKS keywords

are satisfied.
DDNAME DMSCATLG

Ddname DMSCATLG defines the TCDMS catalog for the data base. You
must specify the DISP parameter as SHR.

DDNAME DMSCHAIN

Ddname DMSCHAIN defines a temporary sequential data set. It is
used to collect chain segments to be resolved in the file being
reorganized. Its format is fixed blocked. Each logical record

is 22 bytes long. You must specify the block size in the DCB-

18

parameter. It must be a multiple of 22 and should be an appro-
priate block size for the I/O device. You should allocate
enough space to contain one record for each chain segment on
the file being reorganized. You may specify a secondary
allocation.

DDNAME DMSOUT

Ddname DMSOUT defines a temporary sequential data set. DUAMRGDR
uses it to collect segments‘to be put on related files. Its

format is variable blocked. You must specify logical record

length and block size in the DCB parameter. Logical record length
may be any value less than the block size of this data set and
greater than the maximum segment length plus 206. Block size
should be appropriate for the I/0 device. You should allocate
enough space to contain one record for each chain segment in the

file being reorganized. You may specify secondary allocations
in the SPACE parameter.

DDNAME DMSPRINT

Ddname DMSPRINT defines a sequential message data set. You do
not need to code DCB parameters for it.

DDNAME JOBLIB or STEPLIB

Ddname JOBLIB or STEPLIB must be included unless DUAMRGDR and all
the modules it links to are on the system library. These include
DUAMCHPS, DUAMCHSP, DUAMLOAD, DUAMSGWO and SORT. SORT must be

an alias for a sort program which accepts input in the standard
form used by most IBM-developed sorts.

19

DDNAMES FOR SORT

Ddnames SORTLIB, SORTWK0Ol, SORTWK02, SORTWKO03, SORTWKO04, SORTWKO5,
SORTWK06, and SYSOUT define data sets required by SORT. For in-
formation on how tb specify them, consult the documentation of
the SORT program YOu use using. You should allocate adequate

work space (SORTWKO01l, etc.) to sort a data set the size of the
DMSOUT data set.

- 20

2,2,2 DUAMRGDR EXAMPLE

In this exémple, a TCDMS file is reorganized without moving it

from its original location:

//REDRG35 JOB '

// EXEC PGM=DUAMRGDR,PARM='FILE=35' -
//STEPLIB DD DSN=TCDMS.LOADLIB,DISP=SHR
//DMSCATLG DD DSN=DMS.CATALOG,DISP=SHR

//DMSWO DD UNIT=TAPE,VOL=SER=001756,

// DCB= (RECFM=VB,LRECL=500,BLKSIZE=7200)
//DMSCHAIN DD UNIT=SYSDA,SPACE=(2200, (1000,100)),
// DCB=BLKSIZE=2200

//DMSOUT DD UNIT=SYSDA,SPACE=(2400, (4000,500)),
/7 DCB=(LRECL=500,BLKSIZE=2400)

//DMSPRINT DD SYSOUT=A

//DLD00035 DD UNIT=3330,VO0L=SER=333001,DSN=DMS.ACCT1,DISP=0LD
//DCTO0035 DD *

INTRACKS=30

PRTRACKS=80

OVTRACKS=40

INDXFREE=300

MINPFREE=75

MAXPFREE=200

//SORTLIB DD DSN=SYSL1.SORTLIB,DISP=SHR
//SORTWKOL DD UNIT=SYSDA,SPACE=(TRK,100)
//SORTWKO2 DD UNIT=SYSDA,SPACE=(TRK,100)
//SORTWKO3 DD UNIT=SYSDA,SPACE={TRK,100)
//SORTWKO4 DD UNIT=SYSDA,SPACE=(TRK,100)
//SORTWKDO5 DD UNIT=SYSDA,SPACE=(TRK,100)
//SORTWKO6 DD UNIT=SYSDA,SPACE=(TRK,100)
//SYSOUT DD SYSOUT=A :

EXPLANATION: -

The EXEC statement specifies the execution of DUAMRGDR. The
PARM field indicates that file 35 is to be reorganized.

The STEPLIB DD statement specifies the load library containing
DUAMRGDR and its submodules.

21

The DMSCATLG DD statement specifies the installation's DMS
catalog data set.

The DMSWO DD statement specifies the work data set which will

contain the file in unloaded format.

The DMSCHAIN DD statement specifies a work data set for pointex
segments.

The DMSOUT DD statement specifies a work data set for secondary
data segments and pointer segments.

The DMSPRINT DD statement specifies a message data set.

The DLD00035 DD statement specifies the location of the re-

organized data set. 1In this case the data set will remain

in its old location, so this DD statement describes the existing
file.

The DCT00035 DD statement defines the control data set for file

35. The control statement specify certain physical characteristics
of the file.

INTRACKS=25 specifies that 25 tracks are to be reserved for
index area; any unused portion will be

available for expansion.

PRTRACKS=100 specifies that 100 tracks are to be reserved
s for expansion of prime data with new

data families after the load.
OVTRACKS=40 specifies that 40 tracks are to be reserved

for an overflow area. Overflow is used for

the expansion of existing families.

22

INDXFREE=300 specifies that 300 bytes are to be left for

expansion in each index block.

MINPFREE=75 and MAXPFREE=200 specifies that between 75 and
200 bytes are to be left in

each data block for expansion.

SORTLIB DD, SORTLIBnn DD, and SYSOUT DD define the data sets
required by the SORT program, which is invoked by DUAMRGDR.

23

2.3 DUFRCDR - TCDMS DATA BASE BACKUP AND RECOVERY UTILITY

DUFRCDR is a TCDMS utility used to back up a data base and to
restore it in the event of unrecoverable problems. The write-
off function may be used to create back up copies of a file or
group of logically related files. Then, in the event that hard-
ware or software problems make the files unusable, the reload
and catch up functions may be used to restore the files to

their condition as of a given point in time. The reload
function recreates the files from the back up copy. Then the
catch up function uses the TCDMS capture file to reapply

to the files the transactions which occurred between the time of
the write off and the time at which the files became unusable.

DUFRCDR runs as a batch job step independent of TCDMS.

Input to DUFRCDR consists of operating system job control language
statements and a utility control statement data set. Output
consists of a message data set, which includes statistical in-
formation about each of the files involved and error messages where
appropriate. A

2.3,1 CONTROL STATEMENTS

A description of the required job control and utility control
statements follows.

DUFRCDR is invoked with an operating system EXEC statement. The
PARM parameter indicates the function to be performed:

WO for write-off

RL. for reload

CT for catch-up

RLCT for reload and catch-up

24

DD STATEMENTS

DUFRCDR requires several operating system DD statements. They
are listed below by ddname.

DDNAME DMSCATLG

Ddname DMSCATLG defines the TCDMS catalog for the data base. You
must specify the DISP parameter as SHR.

DDNAME DMSIN

‘Ddname DMSIN defines a sequential control statement data set.
You use it to specify the files involved in the operation, and,
in the case that a catch-up is requested, to specify the ddnames
of the TCDMS capture files containing the transactions to be
reapplied to the files. |

This data set consists of 80 byte records. Each record may contain
'dne or more parameters, which must begin in column one and be k
separated by commas. DUFRCDR ignores any data after the first
blank in a record, so you may include comments if you wish.

You may have any number of control statement records. You may
specify the files involved in the operations by listing their
numbers as parameters. To specify all the files in the data

base, you may either code 'ALL' as a parameter, or simply code

no file numbers as parameters.

The integrity of the data base is preserved through a write-off
and reload operation only if all related files are written off

and reloaded at the same time. All files related through
intermediate files must also be included.

If you specify the catch-up or reload and catch-up operation, you

25

must code as parameters the ddnames of DD statements defining
the TCDMS capture files containing the transactions to be re-
applied. The ddname parameters must follow the parameters

specifying the files involved in the operation.
DDNAME DMSPRINT

' Ddname DMSPRINT defines a sequential message data set. You

do not need to code DCB parameters for it.
DDNAME DMSRIL

Ddname DMSRL is required only for the reload and reload with catch-
up operations, It defines a data set created by DUFRCDR in a
previous write off operation. This data set contains the back-

up copies of TCDMS files. See the description of DMSWO below.

DDNAME DMSWO

Ddname DMSWO is required only for the write-off operation. It
defines a sequential data set to which DUFRCDR will output the
back-up copies of the TCDMS files specified in the control
statements., The data set has fixed blocked format. You may
specify logical record length and block size if you wish. If
you do not, DUFRCDR uses a logical record length equal to the
block size of the TCDMS files, and a block size equal to the
logical record length times the number of blocks per track of the
TCDMS files. |

DDNAME JOBLIB or STEPLIB

Ddname JOBLIB or STEPLIB must be coded unless your installation's
system load library includes DUFRCDR.

26

2.3.2 DUFRCDR EXAMPLES

DUFRCDR Example 1

In this example, back-up copies of several TCDMS files are

written to tape:

//WOFILES JOB

//WO EXEC PGM=DUFRCDR,PARM=W0O

//STEPLIB DD DSN=TCDMS.LOADLIB,DISP=SHR

//DMSCATLG DD DSN=DMS.CATALOG,DISP=SHR

//DMSPRINT DD SYSOUT=A

//DMSWO DD UNIT=TAPE,DISP=(NEW,KEEP) ,VOL=SER=001351,

// DSN=WO. THURS

//DMSIN DD *

17,18,19,20 WRITE OFF

21,35 ALL RELATED FILES
//

EXPLANATION:

The EXEC statement specifies the execution of DUFRCDR. The
PARM field specifies the write-off function.

The STEPLIB DD statement specifies the load library containing
DUFRCDR.

The DMSCATLG DD statement specifies the installation's DMS
catalog data set.

The DMSPRINT DD statement specifies a message data set.

The DMSWO DD statement specifies the output tape which is to
contain the back-up copies of the data sets.

27

The DMSIN DD statement specifies the control data set. The
control statements in it specify that files 17, 18, 19, 20,
21, and 35 are to be written to tape.

DUFRCDR Example 2

In this example, several TCDMS files a reloaded from tape and

caught up using transactions from a capture file.

//RLCT JOB
// EXEC PGM=DUFRCDR,PARM=RLCT

.//STEPLIB DD DSN=TCDMS.LOADLIB,DISP=SHR

//DMSCATLG DD DSN=DMS.CATALOG,DISP=SHR
//DMSPRINT DD SYSOUT=A
//DMSRL DD UNIT=TAPE,DISP=0LD,VOL=SER=001351,

// DSN=WO.THURS
//CAPTAPE DD UNIT=TAPE,DISP=0LD,VOL=SER=01L0751,
// : DSN=TCDMS.CAPTURE

//DMSIN DD * , ;
20,21,35, CAPTAPE

//

EXPLANATION:

The DMSRL DD statement describes the input tape containing the
data sets (in unloaded format) to be reloaded and caught up.

Note that it might contain data sets not involved in the operation.

The DMSIN DD statement describes the control data set. The con-
trol statement specifies that files 20, 21, and 35 are to be
reloaded and caught up, and that the CAPTAPE DD statement
describes the TCDMS capture file containing the transactions to be
reapplied.

28

