Study of the Modernization Needs of the Public and Indian Housing Stock

National, Regional and Field Office Estimates: Backlog of Modernization Needs

Prepared by

Abt Associates Inc.
Cambridge, Massachusetts

Study of the Modernization Needs of the Public and Indian Housing Stock

National, Regional and Field Office Estimates: Backlog of Modernization Needs

Dixon Bain
Michael Battaglia
Sally Merrill
Vince Scardino
James E. Wallace
Abt Associates, Inc.
Cambridge, Massachusetts

The research and studies forming the basis of this report were conducted pursuant to Contract $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ HC－5685 with the Department of Housing and Urban Development（HUD）．The statements and conclusions contained herein are those of the contractor and do not necessarily reflect the views of the U．S．Govern－ ment in general or HUD in particular．Neither the United States nor HUD makes any warranty，expressed or implied，or assumes responsibility for the accuracy or completeness of the information contained herein．

CONTENTS

Foreword i
Acknowledgements 111
Executive Summary ix
PART I: Study Procedures and Background
I. Introduction 1
II. Program and Policy Context. 7
III. Overview of Data Collection and Operations. 15
IV. A Summary of Sampling and Estimation Procedures 27
Part II: Modernization Backlog Costs: National and Regional Estimates
V. FIX Estimate. 37
VI. ADDs Estimate 55
VII. Redesign Estimates 71
VIII. Energy Conservation Estimate 81
IX. Handicapped Accessibility Estimate 101
X. Indian Housing Program Estimate 105
XI. Lead-Based Paint Abatement Estimate. 111
Appendices
A. The FIX Cost Estimating Process 119
B. The ADDs Cost Estimating Process 127
C. The Redesign Cost Estimating Process 129
D. The Energy Conservation Improvement Cost Estimating Process 133
E. Accessibility for the Handicapped: The Cost Estimating Process 139
F. The Indian Housing Program Cost Estimation Process 141
G. The Lead-Based Paint Abatement Cost Estimation Process 145
H. Selection of FIX and ADDs Estimator 151
I. HUD Field Office and Regional Estimates 187
J. ADDs Requests by System and ISO. 271

In 1983 the Congress directed the Department of Housing and Urban Development to undertake a study of the renovation needs of the nation's public and Indian housing stock, and the cost of meeting the needs identified. The research was also expected to provide estimates of the annual accrual of physical depreciation in this housing stock, and the cost of making needed repairs and replacements in the future.

The public housing program, created by the U.S. Housing Act of 1937, has over 1.3 million housing units, and is home to over 3 million people. Over 3,000 public housing agenctes nationwide administer the program with 11,000 pubitic housing projects. Information about the physical condition of that stock, and work needed to bring it up to good condition and maintain it over time, is essential for decision-making about both appropriate levels of funding for public housing modernization and the appropriate program design for making those funds available to public housing agencres.

This report by Abt Associates, Inc., "Study of the Modernization Needs of the Public Housing Stock: National, Regional and Field Office Estimates: Backlog of Modernization Needs" is the first in a series of four reports. It presents national, regional and HUD Field Office estimates of the cost of correcting the backlog of physical deficiencies in the public and Indian housing stock identified during an inspection of a representative sample of public and Indian housing projects during the summer of 1985. Other reports are scheduled to be completed this year.

The second report, "Accrual Needs in the Public Housing Stock," to be prepared by ICF, Inc., will estimate the need for capital repairs and replacements for this housing stock through the year 2000.

The third report, "Project Characteristics Associated with Modernization Needs," wlil analyze the relationship of the level of repair and replacement needs to characteristics of housing projects. Among the characteristics to be examined are age, type of building, location and type of occupancy. This report will be prepared by HUD's Office of Policy Development and Research.

The fourth and final report, "Evaluation of the Comprehensive Improvement Assistance Program," also to be prepared by the Office of Policy Development and Research, will present information on the current program for providing modernization funds to Public and Indian Housing Agencies.

The Department expects the information in this report and those to follow to serve an important role in the deliberations by the Congress and the Administration on such key questions about public housing modernization as the level of rehabilitation work necessary to assure that the public housing program continues to serve effectively the housing needs of the poor, and the appropriate roles of Federal, State and local governments in providing the resources necessary to perform this rehabilitation work.

ACKNOWLEDGEMENTS

The preparation of this report reflects the work of many staff members over the last year in which the inspection data collected in the study's field component were processed, costed and analyzed. In addition to the efforts of the principal authors listed above, special thanks are also due to Louise Hadden who organized the project's extremely complex database; to Dennis Redfield, Karen Rich, David Warner, James McIntosh, and Gregory Bryant whose advanced programming skills were of crucial importance in preparing the cost estimates; and to Elisabeth Griffin, whose administrative capabilities and report preparation were of great assistance throughout.

Great appreciation is also due to the other firms and individuals who made this effort possible. Thomas Nutt-Powell of On-Site Insight assisted in all aspects of design; John Lane and Gayle Epp of Lane Frenchman and Associates contributed in particular to the Redesign and Handicapped studies; Dana Larson Roubal, Bradfield Associates, and Stull \& Lee were responsible for the nation-wide data collection; the R.S. Means company provided data and assistance in the design of costing procedures; and Vanderweil Engineers assisted in developing the Energy Study.

LIST OF EXHIBITS

Exhibit Page
i-1 Modernization Needs Study: FIX Inspection Elements xi
i-2 Estimated ADDs Cost, by Cost Category xiii
i-3 Summary of National Estimates of Modernization Costs xviii
i-4 Components of Modernization: Per Unit Costs xii
i-5 Modernization Costs by Region xiv
i-6 Distribution for Modernization Costs Relative to Share of Total Units: FIX, ADDs, ENERGY, REDESIGN xy
1-1 Components of the Modernization Needs Study 5
2-1 Modernization Funding, 1975-1986 -- Capital Cost Approvals 9
2-2 CIAP Allocations to HUD Regions for Public Housing Yearly Distribution Formula Used in 1986 13
3-1 Categories of Modernization Actions 18
3-2 Examples of FIX, ADD, Redesign for Units, Buildings and Sites 19
3-3 Modernization Needs Study: FIX Inspection Elements 20
3-4 Summary of Tasks for a Sampled Project 23
4-1 Inspection Samples Used in the Modernization Needs Study 28
4-2 Summary of Estimates by Type of Estimate 30
5-1 Modernization Needs Study: FIX Inspection Elements 37
5-2 Total FIX Costs by Region. 39
5-3 Total FIX Costs by Region. 40
5-4 Average Per Unit FIX Cost by Region and for the Nation 41
5-5 Distribution of FIX Per Unit Costs by Field Office. 42
5-6 List of Observable Systems 44
5-7 Observable System Concept 46
5-8 Observable System 23 -- Unit Interior Doors 47
5-9 Cost Files Associated with Type 非 -- Interior Doors 48
5-10 Examples of Project Types and Applicable Inspection Forms 51
5-11 Illustrative Recording Forms for the FIX Inspection 52
6-1 Estimated ADDs Costs, by Cost Category 56
6-2 Examples of Potential Needs 57
6-3 IIIustrative Page from ADDs Form 58

LIST OF EXHIBITS (continued)

Exhibit Page
6-4 Illustrative Instructions on Completing Entries on the ADDs Form. 60
6-5 Examples of the Use of ISO Codes 62
6-6 Per Unit ADDs Costs by Component by ISO 67
6-7 ADDs Components by Region. 69
6-8 ADDs Most Frequently Requested. 70
7-1 Redesign Costs by Region 73
7-2 Redesign Costs by Region 74
7-3 Illustrative Page from Redesign Diagnostic Interview Guide. 76
7-4 Standard Guidelines Used by Architects in Redesign Inspections 79
8-1 Per Unit Energy Savings and Implementation Costs for Residential Buildings 85
8-2 Illustrative Page from the Energy Usage Data Form. 88
8-3 Illustrative Content of the Energy Inspection Form. 89
8-4 Energy Conservation Opportunities 90
8-5 Variation in Energy Conservation Results by Inflation Parameter for Net Present Value Analysis 95
8-6 Energy Costs and Savings by Region 97
8-7 Energy Costs and Savings Pex Dwelling Unit by Region 98
9-1 , Handicapped Accessibility Costs by Region 102
9-2 Illustrative Page from the Project Characteristics-Form Addressing Issue of Accessibility. 103
10-1 Indian Housing ADDs Request Cost 109
11-1 Lead Paint Abatement Costs by HUD Region 112
11-2 Percentage of Units with Lead Paint 113
11-3 Surfaces Tested for Lead Paint 116
11-4 Illustrative Page from the Lead Paint Inspection Form 117
A-1 Distribution of Sample Developments, by Field Office 120
A-2 Number of Dwelling Units, by Field Office 124
B-1 Number of Developments in ADDs Analysis, by Field Office 128
C-1 The Redesign Population and Sample. 130

LIST OF EXHEBITS (continued)

Exhibit Page
D-1 The Energy Sample Strata 134
F-1 Population Dwelling Unit Counts. 142
G-1 Weights by Age Stratum 149
H-1 Sampled Developments Ordered by Field Office 155
H-2 Twenty-one Developments in Eleven Field Offices Effected by Weight Adjustment Process. 186
I-1 FIX Cost, by Region and Field Office 189
I-2 Total FIX Cost by Region 192
I-3 Estimated ADDs Cost, by Category and Field Office 194
I-4 Estimated ADDs Cost, by Category and Region 218
I-5 Total Redesign Cost, by Region and Field Office 243
I-6 Climate Zones by State 247
I-7 Estimated Energy Variables, All Buildings, by Region and Field Office 249
I-8 Total Allocated Handicap Cost, by Region and Field Office 260
I-9 Rental FIX OIP Cost Estimates, Indian Developments 264
I-10 Homeowner FIX OIP Cost Estimates, Indian Developments 265
I-11 Rental ADD OIP Cost Estimates, Indian Developments, by Category 266
I-12 Lead Paint Abatement Costs by Region and Field Office: Cost of Abatement for Family Units Built Prior to 1973 268
J-1 Inspector Second Opinion by ADDs System. 273

EXECUTIVE SUMMARY OF THE NATIONAL

MODERNIZATION BACKLOG NEEDS ESTIMATES

This Congressionally mandated study of the current (or "backlog") modernization needs of the public and Indian housing stock is one of the most complex research and cost estimation projects ever funded by the Department of Housing and Urban Development. New methods of measuring and costing modernization needs were specially developed for this project. These methods were tested, refined, and validated before conducting the full scale study, which involved data collection at more than 1,000 housing developments. Scientific sampling techniques were used to select representative developments, including a variety of project building types (e.g., high rises, townhouse-type buildings) and dweliing units.

To be exact, 2,194 dwelling units and 3,120 residential buildings at 1,000 public housing developments were inspected by more than 80 architects and engineers. Special subsamples were also selected for an Energy study at 241 developments, an intensive study of Redesign needs at 75 developments and a special study of the Indian housing program conducted at 31 developments in 20 Indian Housing Agencies (IHAs). Finally, a companion study to assess needs for lead-based paint abatement involved inspections at 131 developments in 34 cities, where 262 dwelling units, 94 residential buildings, and 33 site-wide facilities, such as recreation centers, were tested for lead-based paint.

This report presents nation-wide, regional, and field office estimates for each of seven types of modernization. ${ }^{1}$ These categories are:

1. FIX Costs. The costs of capital repairs and replacements in the nation's 11,000 public housing projects. FIX actions repair or replace existing architectural, mechanical and electrical systems.
2. ADDs Costs. The costs of additions and upgrades selected by PHAs from a list of over 150 actions that may be needed at a particular project

[^0]to meet specific standards or to insure long-term viability. ADDs were evaluated for appropriateness by the field inspection teams.
3. Redesign. The costs of architectural reconfiguration to improve projects with serious problems in order to make them viable in the long term.
4. Energy Conservation. The cost of capital improvements to reduce energy consumption in public housing projects.
5. Accessibility for the Handicapped. The costs of retrofitting public housing units and common spaces to make them accessible to handicapped people.
6. Indian Housing. Program. The costs of modernization of the nation's Indian housing stock. The estimates include FIX, ADDs and energy conservation needs.
7. Lead-based Paint Abatement. The costs of implementing HUD regulations (effective September 23, 1986) that require the abatement of lead based paint hazards in public housing.

FIX COST ESTIMATES '

Starting in June 1985, more than 1,000 public housing developments were inspected by specially trained teams of architects and engineers. In cooperation with the PHA staff, these inspectors performed a detailed assessment of the architectural, mechanical and electrical systems involved in dwelling units, residential and non-residential buildings at each development, and the overall site itself. Completion of up to 10 separate inspection booklets was required at each site as inspectors examined and rated the condition of the 101 possible architectural and engineering systems on a five point scale, ranging from "No Action Required" to "Replace."

Typically, the inspectors were accompanied by a knowledgeable expert from the PHA in order to access secure areas and to provide technical information
about the condition of the development's facilities and equipment. Elements of the FIX Inspection are shown below.

Exhibit 1.1Modernization Needs Study: Fix Inspection Elements			
Location	Nation-Wide	At Each Sampled Development	Illustrative Major Systems inspected At these Locations
OWELLING UNITS	2,194 units	1-4 units	- All intertor rooms - Unit-based mechanical \& electrical (M\&E) systems including furnaces, electric distribution panel, etc.
BUILDINGS	3,120 buildings	t-8 buildings	- Exterior walls, root, windows - Interior common areas inctuding lobbies, halls, basements, etc. - M\&E systems including boilers, water and waste lines, elevators, electric distribution systems, exterior lighting, etc.
SITES	1,000 sites	Entire site or one or more subsites in a scattered site development	- Landscaping and site equipment such as seating, playgrounds and site lighting - Paved areas including streets, parking and walks - M\&E distribution lines - Site-wide facilities such as management office, day-care center, community rooms, etc. - Central boiler and mechanical rooms

The field data collection was completed in September 1985, following onsite inspections in each of HUD's 51 field offices, including Alaska, Hawaii, and the Caxibbean. Inspectors went to 45 states in all.

The results of the field inspections have been converted into cost estimates. Costs are as of January 1986. Note that these estimates are for capital needs only. Thus, normal maintenance and normal repair needs, which have always been conceived as being handled through normal operating budgets, have been purposely excluded from this study.

The national estimate of the modernization needs for FIX, as defined above, is $\$ 9,307$ million. Taking into account the sample design, the 95 percent confidence interval of the estimate is plus or minus $\$ 701$ miliion.

ADDs COST ESTIMATE

This component of the study was developed to identify needed additions and upgrades. A special ADDs Catalog and ADDs Form containing detailed information on a "menu" of more than 150 different additions and upgrades that might be needed at a development, were mailed in advance to each sampled PHA. The definition of ADDs is:

> To add, upgrade, or change existing features in order to modernize the quality of existing developments; to enhance long-term viability; or to achieve other specific standards, including standards mandated by law or by HUD regulation.

Examples of potential ADDs include heavy duty lock sets, metal doors and doorframes, energy efficient windows, kitchen cabinets and sinks, electric service, roof insulation, fire escapes, fire alarms, sprinkler systems and road drainage.

At the close of the inspection visit at a sampled PHA development, the inspection team reviewed the ADDs identified for the project, based upon PHA's selections from the special catalog. The review enabled the inspector to answer questions, check for consistency with the inspector's own observation and experience and to provide a "second opinion" about the appropriateness of the request.

Based on the Inspector's Second Opinion (ISO) rating, the PHA's reason for the requested $A D D$, and the nature of the $A D D$, each item was classified into one of the types of ADDs, each of which has a separate cost estimate.

Exhıbit 1.2
ESTIMATED ADDS COST, BY COST CATEGORY

Cost Category	Estimate (\$millions)	Percent of Total	95 Percent Confidence Interval (\$miflions)
ADDs Required by Code or Modernization Standards*			
150=1	389.4	3.01	93.1
$150=2$	491.6	3.80	192.3
$150=3$	408.3	3.15	439.9
$150=4$	170.3	1.32	214.1
$1 \mathrm{SO}=5$	105.7	0.82	162.2
	1,565.3	12.10	
Project Specific ADDs			
1SO=1	2,675.2	20.66	383.3
$1 \mathrm{SO}=2$	2,795.6	21.59	340.9
$150=3$	2,028.1	15.66	427.7
$150=4$	1,211.9	9.36	553.9
$150=5$	584.1	4.51	235.2
	9,294.9	71.78	
Energy ADDs**			
ISO=1	780.8	6.03	131.4
$150=2$	305.4	2.36	76.5
$1 \mathrm{SO}=3$	149.5	1.15	42.5
$150=4$	74.9	0.58	41.7
$150=5$	84.2	0.65	52.4
	1,394.8	10.77	

Handicapped Accessibility ADDs**

$I S O=1$	17.0	0.13	12.1
$I S O=2$	37.7	0.29	28.3
$I S O=3$	5.2	0.04	3.1
$I S O=4$	3.8	0.03	5.5
$I S O=5$	$\frac{1.5}{65.2}$	$\underline{0.01}$	1.3
		0.50	
			149.3
Other Categories	515.4	3.98	6.2
No iSO	6.1	0.05	61.9
Other (Not in ADDs Catalog)	$\underline{104.8}$	$\underline{0.81}$	4.84
Currently prohibited by HUD	626.3		
		$12,946.5$	

[^1]The ADDs data collection and inspector's second opinion (ISO) are discussed in detail in Section 6.2. In sumary, however, an ISO of 1 or 2 indicates that an item is appropriate, 3 indicates that there was not sufficient information to provide an opinion, and 4 or 5 indicate disagreement with the need for the item. As is evident, inspectors agreed with the appropriateness of the majority of identified ADDs: about 60 percent of the items received an ISO of 1 or 2 .

Redesign Cost Estimate

Relatively few public housing developments are in need of substantial structural changes to ensure their continued viability--the definition of redesign which was used in this study. A first count of developments that might be redesign candidates was determined from the preliminary Mod Needs Data Form survey, and further refinement of projects meeting the definition of redesign was identified by a second data gathering effort, the Redesign Mail Survey. A sample of 75 developments in need of Redesign was then selected for in-depth three-day site visits, interviews, inspections, and related data gathering activities. The Redesign Study was conducted by 20 senior architects familiar with redesign solutions to address a variety of problems.

These senior design architects, selected from the three architectural firms that Abt Associates had chosen as subcontractors for the main study field data collection effort, were given additional special training in the conduct of the Redesign assessment. Review of condition data from the prior FIX inspection at each of these developments was part of the preparation process that each Redesign inspector undertook before an intensive on-site design assessment of the needs of each Redesign candidate project. These inspections took place between September 1985 and January 1986.

The national estimate of Redesign costs totals $\$ 2,063$ milion. The 95 percent confidence interval of the estimate is plus or minus $\$ 120$ million. We estimate that PHAs would like to have redesign work performed at a total of 883 projects containing approximately 160,000 units.

This cost estimate has been adjusted to net out FIX actions already identified and presumably to be taken at the 75 developments so as to avoid any "double counting" of modernization needs. However, the estimate does not
net out ADD actions because it is not clear which of them would be done during redesign. An accurate estimate of redesign net of ADDs is therefore not feasible.

Energy Conservation Improvements Cost Estimate

In order to gather more information about energy conservation opportunities at the nation's public housing stock, a subsample of 241 developments were visited for additional data collection.

For each of the developments selected for the energy study, one building of each major type if present (high-rise, low-rise, and site-wide facility) was identified and specific data were collected for the energy substudy. Prior to the arrival of the inspection team, PHAs were asked to complete an historical Energy Usage Data Form. The architects and engineers conducting the main study also administered an Energy Practices Interview with appropriate PHA staff and completed an Energy Inspection for each of the identified buildings in the selected projects. In all, the inspectors conducted energy-related interviews and additional inspections in a sample of 346 buildings. The energy data collection effort began in July, 1985 and was completed in September of that year.

Using current HUD regulations that require energy conservation capital improvements that are cost effective using a test of a 15 -year simple payback period, the public housing stock requires energy conservation capital improvements estimated to cost $\$ 939$ million. The 95 percent confidence interval of the estimate is plus or minus $\$ 60$ million. These improvements would save $\$ 211$ million in energy costs yearly for an average simple payback period of $4 \frac{1}{2}$ years.

Costs of Providing Accessibility for the Handicapped

The process of collecting the relevant data on modernization needs for handicapped accessibility resembles that used for the ADD requests. The PHA was the source of the data, providing information in the study's Project Characteristics form on the current provisions for handicapped accessibility at the sampled project as well as estimating present needs for that development. Data were requested in terms of wheelchair and non-wheelchair (sensory or other impairments) requirements.

The Project Characteristics forms were mailed out in advance to the sampled project and completed forms were checked by the inspectors during his visits. Not all PHAs were successful in completing the forms in time for on site review by the inspectors. Some of these forms were subsequently mailed to Abt Associates; others were never received. As a consequence, handicapped accessibility information was obtained for 745 of the 1,000 developments sampled for inspection.

The national estimate for the cost of handicapped accessibility modernization required by law totals $\$ 232$ million. The 95 percent confidence interval is plus or minus $\$ 59$ million.

Indian Housing Program Needs

Architects with specialized experience in designing Indian housing and in working with Indian Housing Authorities (IHAs) were designated to perform the Indian housing FIX/ADDs inspections. The inspectors visited 354 units in 31 Indian housing projects. These projects were located in 20 IHAs scattered throughout HUD's six Indian houșing regions. Both rental and homeownership developments were included in the sample. However, the emphasis was on rental housing because HUD contributes modernization funds to rental units just as it does in non-Indian public housing, but funds only some types of modernization in the homeownership program.

The national estimates of modernization costs for the Indian housing stock are:

- Rental Indian stock FIX costs: $\$ 161$ million. The 95 percent confidence interval is plus or minus. $\$ 42$ million.
- Homeownership Indian stock FIX costs: \$223 million. Only part of these costs are eligible for funding under the CIAP program. The 95 percent confidence interval is plus or minus $\$ 166$ million.
- Rental Indian stock ADDs that are rated by appropriateness by the study inspectors

Required by local code or HUD regulation:
(ISO 1 and 2): $\$ 48.6$ million. The 95 percent confidence interval is plus or minus $\$ 51$ million. (ISO 3, 4 and 5): $\$ 4.9$ million. The 95 percent confidence interval is plus or minus $\$ 8$ million.

Project Specific:
(ISO 1 and 2): $\$ 234.9$ million. The 95 percent confidence interval is plus or minus $\$ 58$ million.
(ISO 3, 4 and 5): $\$ 24.4$ million. The 95 percent
confidence interval is $\$ 19$ million.
Energy:
(ISO 1 and 2): $\$ 57.2$ million. The 95 percent confidence interval is $\$ 36$ million.
(ISO 3, 4 and 5): $\$ 3.7$ million. The 95 percent confidence interval is \$2 million.

- Rental Indian ADDs currently prohibited by HUD: \$38 million. The 95 percent confidence interval is $\$ 32$ million.

Lead Based Paint Abatement Estimate

The data were collected during 1984-85 in family public housing projects by local lead poisoning prevention programs in 34 cities. The local programs used X-ray fluorescence analyzers to detect the amount of lead in the paint of 131 public housing projects. The detectors measure the amount of lead in. paint surfaces in milligrams per square centimeter, expressed as $\mathrm{mg} / \mathrm{cm}^{2}$. Inspectors visited 262 units plus their associated common areas (such as halls and entries) and site wide facilities (such as day care centers). Using. standard procedures and reporting forms, the inspectors reported whether lead was found in the paint, the location and amount of the lead, and the condition of the paint. These data were combined with estimates of abatement, costs from a cost engineering firm and multiplied by the number of units in the whole nation to produce national abatement costs. Based on HUD regulations that require abatement when the lead level in defective paint or chewable surfaces exceeds $1.0 \mathrm{mg} / \mathrm{cm}^{2}$, we estimate national abatement costs. at. $\$ 446 \mathrm{million}$.

Summary of Backlog Estimates

Exhibit i. 3 summarizes for the reader's convenience backlog estimates of all of the components of modernization addressed by this study.

For several reasons, however, a total estimate is not listed. First, the component estimates are based on different methodologies and in several instances the categories overlap. These cases are discussed below and rough estimates of the overlap are given. Second, the appropriate total is to some

Exhibit i. 3
Sunmary of National Estimates of Modernization Costs

Cost Category	Estimate (\$millions)	95 Percent Confidence Interva (smillions)
FIX	\$9,307	\$701
ADDs Required by Code or Modernization Standards*		
150 $=1$	389.4	93.1
$150=2$	491.6	192.3
$150=3$	408.3	439.9
1 SO=4	170.3	214.1
1S05	105.7	162.2
	1,565.3	
Project Specific ADOs		
$150=1$	2,675.2	383.3
$150=2$	2,795.6	340.9
$150=3$	2,028.1	427.7
$150=4$	1,211.9	553.9
$1 S 0=5$	584.1	235.2
	9,294.9	
Energy ADDs**		
$150=1$	780.8	131.4
$150=2$	305.4	76.5
$150=3$	149.5	42.5
$150=4$	74.9	41.7
$150=5$	84.2	52.4
	1,394.8	
Handicapped Accessibulity ADOs**		
$150=1$	17.0	12.1
$150=2$	37.7	28.3
$150=3$	5.2	3.1
$150=4$	3.8	5.5
1SO=5	1.5	1.3
	$\overline{65.2}$	
Other Categories		
No ISO	515.4	149.3
Other (Not in ADDs Catalog)	6.1	6.2
Currently prohibited by HUD	104.8	61.9
	626.3	
ADDS TOTALS	12,946.5	-
REDESIGN	\$2,063	\$120
ENERGY (Payback Method)	\$939	\$60
HANDICAPPED ACCESSIBILITY	\$232	\$59

* Mod Standards consist of items required for health and safety or systems integrity.
** Energy Conservation and Handicapped ADDs overlap the findings of the Energy Conservation Study and Handicapped Estimate.

Exhibit 1.3 (continued)

Sumary of National Estimates of Modernization Costs

extent a policy question that is outside the scope of this research. For example, certain ADDs are currently prohibited in the HUD Modernization Standards Handbook and thus a separate estimate has been prepared for this category.

As discussed in greater detail in Part II of the report, great care was taken in developing the computerized costing procedures to avoid double counting in the estimates of modernization costs. Thus, where appropriate, FIX actions are "netted out" of ADDs, REDESIGN, and Handicapped Accessibility; in addition, FIX actions provide the beginning blueprint for assessment of energy conservation opportunities in the Energy Study. Thus, in the great majority of instances overlap has been carefully avoided.

There are, however, three categories in which some amount of overlap exists: Energy ADDs and the Energy Study; Handicapped ADDs and the Handicapped estimate, and ADDs requested for developments requiring Redesign. In each case, some adjustment should be made to avoid double counting.

The estimates from the Energy Study, as described in Chapter 8, are based on state-of-the-art procedures for determining energy costs and savings. Two different estimates have been made for the capital costs of implementing energy conservation opportunities: the payback method, estimated to cost $\$ 939$ million and the net present value approach estimated to cost $\$ 1,209$. In both approaches, estimates of savings and costs already take into account FIX actions at that development.

Energy ADDs, for all ISO categories total $\$ 1,395$ million; the estimate for ISO categories 1 and 2 is $\$ 1,086$. Again, FIX actions have already been considered in costing the ADDs. Clearly, the estimates from the two sources-that is the Energy study and Energy ADDs are roughly comparable. However, because the methodology for the Energy Study was very carefully developed, the Energy Study provides'consistent estimates for comparable developments and the interactions among multiple energy actions. For these reasons, it is suggested that only the Energy Study estimate be included in any national total.

The potential overlap between handicapped costs and Handicapped ADDs is less straightforward. The Project Characteristics form asked PHAs to list their needs for accessibility of units. Handicapped ADDs, however, include
site as well as unit accessibility. Thus, it is assumed that accessibility needs for units overlap but that site requirements do not. An exact measure of the overlap would require a detailed analysis of individual ADDs items; this is not now available. A rough estimate therefore suggests that approximately one-half of the Handicapped ADDs estimate should be included along with the Handicapped Accessibility estimate.

Finally, there is some possibility of overlap between ADDs and Redesign. As mentioned, FIX estimates are netted out from the Redesign estimates. It is not clear, however, which ADD requests should be netted out, if any. Some ADDs would remain perfectly relevant after redesign was undertaken and some might become unnecessary. Only a case-by-case examination of specific ADDs and specific redesign suggestions would provide an exact solution; therefore, no assumptions about overlap are made here and both categories could be included.

Per Unit Costs

In order to provide a better understanding of the magnitude of the various modernization estimates, per unit costs for each component are presented in Exhibit i.4. Average per unit FIX costs are $\$ 7,392$. As discussed in Chapter 5, however, there is considerable variation around this average. Indian FIX costs are comparable: $\$ 8,664$ for Indian Rental FIX and \$7,221 for Indian Homeowner FIX costs.

As might be expected, Redesign costs per unit ($\$ 12,931$ for those units needing redesign) represent the highest single category of per unit costs for public housing. Since only a portion of the housing stock needs redesign, however, costs per unit are only $\$ 1,640$ when all units are considered.

ADDs per unit costs represent the second highest category. For the public housing stock, all ADD categories for ISO 1 and 2 total $\$ 5,953$ per unit. For the Indian housing stock, the total is $\$ 18,364$. There is a substantial amount of variation among ADDs categories, however. Of the ADDs

Exhibit i. 4
Components of Modernization: Per Unit Costs

categories, project specific ADDs show the largest per unit costs for both public and Indian housing, $\$ 5,959$ and $\$ 13,976$, respectively. ${ }^{1}$

For Indian housing only, total ADDs are shown since almost no ADDs were categorized as ISO 3, 4, or 5. Refer to the discussion in Chapter 10; ADDs estimates were obtained by different procedures for Indian housing.

With regard to energy, Chapter 8 details a variety of energy conservation savings and their associated costs. Figure i. 2 presents per unit costs ($\$ 746$) and annual savings ($\$ 167$) calculated according to the payback approach. In addition, the net present value (of future energy savings) is estimated to be \$2,892 per unit.

Costs for Handicapped Accessibility, as listed by the PHAs on the Project Characteristics Form, require $\$ 185$ per unit on average. Handicapped Accessibility ADDs, at $\$ 42$ per unit, provide a somewhat lower estimate.

Finally, the average per unit cost of lead based pant abatement is \$754. The number of units used to derive this figure is all family units built prior to 1973. About half of all pre-1973 family units need abatement. The average cost per abated unit is about $\$ 1,450$.

Regional Modernization Costs

Exhibit i. 5 presents modernization costs by region. Additional details presented in Part II of this report and in Appendix I, including an explanation of the procedures used to allocate each component to the HUD regions and field offices. Exhibit i.5 also indicates the share of total public units by region and the shares of modernization costs for each component. Clearly, the regions vary greatly in size and an obvious question is how the distribution of modernization costs compares with the distribution of units. Exhibit i. 6 is designed to help answer that question graphically: each bar in the chart represents the ratio of the percent of modernization costs to the percent of units in that region. If the value of this ratio is close to one, the region received a share just proportional to size; if the

[^2]

Exhibit 1.6
Distribution of Modernization Costs
Relative to Share of Total Units:
FIX, ADDS, ENERGY, REDESIGN

ratio is much greater (lesser) than one, a share of modernization funds is allocated that exceeds (is less than) the share suggested by size alone.

Several comments can be made regarding the results shown in Exhibit i.6. There is a great deal of variation in all modernization components in the relative shares allocated to regions as compared with regional size. Also, several regiors capture a rather large relative share, for all or most components, several receive a lesser relative share, and the others simply show a mixture of results. Regions I \& V, for example, are allocated a relatively higher share of all components except FIX while Regions IV, VI, VII and X capture a relatively lesser share. Note also that FIX and Redesign show greater variation in distribution across regions than ADDs and Energy costs.

Finally, Exhibit i. 6 is merely illustrative and not meant to indicate what shares "should" be distributed by region. Clearly, number of units is only one of a myriad of factors that determine relative need for modernization. Other important factors include age of stock, climate, urban/rural location, type of buildings, family/elderly, tenancy and construction materials. A great deal of additional analysis will be required to understand the major determinants of need.

STUDY PROCEDURES AND BACKGROUND

I. INTRODUCTION

The physical condition and viability of the public housing stock is of concern to HUD, to Congress, and to the Public Housing Agencies (PHAs) and Indian Housing Authorities (IHAs) that own and operate public housing. The dimensions of the problem are not adequately known and thus the mechanisms for planning appropriate levels of funding are not in place. Much of the public housing stock is in adequate condition, requiring only relatively minior repair. Another segment of the stock, however, shows the effectsiof deferred maintenance and modernization backlog. And, unfortunately, a small proportion of the stock--chronically troubled projects or those projects requiring substantial redesign in order to remain viable--capture a disproportionate share of public attention and tend to cloud our understanding of the actual dimensions of the problem.

1.1 MAJOR PURPOSES OF THE STUDY

The major purpose of this study is to assess the current (backlog) level of modernization required for the health, safety, and building integrity and viability of the public housing stock. In addition, in order to continue to respond to a variety of policy concerns, a computerized data base containing our inspection results and docmentation of modernization cost estimation is a major product of the study. A future, related study will develop an estimate of future needs for modernization funding; that is, to determine the rate at which modernization needs accrue over time.

Our assessment of Modernization Needs addresses the full scope of needs, ranging from repairs and replacement, for example, to energy conservation and redesign of specific types of projects. The research categories defined for the study were chosen in order to maximize the ability to understand and measure modernization need. As is described below, each category has a unique analytical approach, sample design, and data collection procedure. While not constrained by any particular set of standards, the research categories can be
placed into current HUD policy categories. However, this report is designed to be policy neutral and thus avoids making judgements about whether or not. particular groups of items are needed. It is intended to be an objective source of data that can be used by HUD, Congress, PHAs, and others as background data for policy choices.

1.2 ORGANIZATION OF THE REPORT

This study of the modernization needs of the public and Indian housing stock is one of the most complex research and cost estimation projects ever funded by the Department of Housing and Urban Development. New methods of measuring and costing modernization needs had to be specially developed for this project. These methods were tested, refined, and validated before conducting the full scale study, which involved data collection at more than 1,000 housing developments. Scientific sampling techniques selected representative developments, kinds of project buildings (e.g., high rises, townhouse) and dweiling units.

To be exact, 2,194 dwelling units and 3,120 residential buildings were inspected at 1,000 public housing developments by more than 80 architects and engineers. Special subsamples were also selected for an Energy study at 241 developments, a study of the Comprehensive Assistance Improvement Program (CIAP) at 155 developments, and an intensive study of Redesign needs at 75 developments. Furthermore, a special study of the Indian housing program was conducted at 31 developments in 20 IHAs. Finally, a companion study to assess lead-based paint abatement needs involved inspections at 131 developments in 34 cities where 262 dwelling units, 94 residential buildings, and 33 site-wide facifities were tested for lead-based paint.

1.3 COST ESTIMATION COMPONENTS

This report presents the estimated costs of modernization actions required to restore the public and Indian housing stock to a variety of possible standards, including standards established by the Department of Housing and Urban Development. It includes modernization costs at the national, regional, and field office levels.

Included in this report is not only the national cost estimate total but the components which make it up. These components provide an important insight into the range and nature of the stock's modernization needs and suggest a variety of possible remedial approaches. The components used in constructing the estimates are:

- FIX -- Actions at this level are required to repair or replace in accordance with contemporary standards architectural or:engineering systems that are already present at a particular public, housing development. Examples range from roofs to boilers, floor finishes to storm windows, landscaping to roadways. In all, there are 101 architectural and engineering systems that cover all the possible combinations found in public housing today. The condition of each of these systems was determined by a team of specially-trained architects and engineers.
- ADP -- Actions at this level add equipment or features that do not presentiy exist at a particular development but are identified by PHAs for code compliance, project integrity, Iong-term viability or efficient operations. Upgrades of components are also included here. Examples include the addition of a fire alarm system, increasing the size of a recreational facility or changing from well water supply to a municipal tie-in. Such actions, chosen by the PHA staff from a catalog of more than 150 possible additions or upgrades, were reviewed and evaluated for appropriateness by the professional inspectors at each development.
- REDESIGN -- Actions at this level include substantial structural change in order to ensure continued viability at a particular development. Included here might be such measures as reconfiguration of buildings andor dwelling units to make them more suitable for their current use. Special inspections for the developments selected as Redesign candidates by PHAs were performed by senior architects with extensive design experience and provided for PHA input at each stage of the process.
- ENERGY -- Actions here are based on energy conservation measures involving cost effective changes to the housing stock as determined jointly by the inspection team and the PHA.
- ACCESSIBILITY -- Actions in this area are based on PHA assessments of needed improvements at sampled developments to increase accessibility for the handicapped;
- ABATEMENT OF LEAD BASED PAINT -- In a related study conducted under this contract, staff from local lead poisoning prevention centers used specially designed data collection forms to report the incidence of lead paint in £amily PHA projects sampled separately. These incidence data were then analyzed to determine abatement costs.
- MODERNIZATION NEEDS OF INDIAN HOUSING -- A sample of rental and homeownership IHA developments was inspected using the same methods involved in the FIX and ADDs assessments for the main PHA modernization needs estimate, with resultant costs derived in the same manner.

Graphically, the components of the Modernization Needs study can be presented as shown in Exhibit 1-1 below.

Exhybit 1-1

COMPONENTS OF THE MODERNIZATION NEEDS STUDY

1.4 ORGANIZATION OF THE REPORT

The remainder of this report covers the following:

Chapter II--Program and Policy Context, provides important background information on the nation's present public housing programs, modernization funding efforts, and why the study is needed.

Chapter III--Overview of Data Collection Operations, introduces the critical techniques developed for estimating modernization costs, and discusses field operations--inspections, interviews, performing takeoffs (e.g., recording of building dimensions) in the field and from building plans.

Chapter IV--A Sumary of Sampling and Estimation Procedures, presents further details on the statistical aspects of the study and the associated analytical files.

Part II--National Modernization Estimates gives national modernization estimates for each of the seven types of needs studied.

Appendices--Consists of technical material giving details of how each type of need was measured and estimated.

II. PROGRAM AND POLICY CONTEXT

2.1 SCOPE OF THE PUBLIC AND INDTAN HOUSING PROGRAM

The Public Housing Program is the nation's oldest and most visible program for sheltering the poor. Today, it houses about three and a half million people in nearly 1.3 million rental units. The program is highly decentralized, with about 3,000 Public Housing Authorities (PHAs) administering local housing programs. Despite the number of PHAs, about two-thirds of the program units are administered by the 134 large PHAs that have over 1,250 units each. In addition to rental units, PHAs operate about 10,000 units that are intended for sale to occupant families under the Turnkey III Homeownership Program.

Under the Public Housing Program, HUD pays debt service on capital costs of the project and provides operating subsidies to make up the difference between the rental income and the expenses of operating the project. Families are generally required to pay 30 percent of their income toward rent. They are eligible for entry into the program if their family income is 50 percent. or less of the area's median income, as adjusted for family size. HUD also pays for the development or acquisition of the project.

Most public housing units (63 percent) are occupied by families, with an average of 1.9 children. According to survey data, 76 percent of the families have a female head of household, 75 percent are minority, and 59 percent receive welfare payments. Public housing for the elderly has a somewhat different set of characteristics. Only 39 percent of its residents are minority, households consist primarily of one person, the age of the head of household averages 74 , and 38 percent of the households receive welfare. Like family households, about three-quarters of the elderly households (73 percent) are headed by women. ${ }^{1}$

The Indian Housing Program has been operated for over 20 years, and is the primary housing assistance program for Native Americans. It is administered by 163 Indian Housing Authorities (IHAs) which manage about 50,000
$\overline{1}$ Loux, Suzanne B. and Robert Sadacca, "Comparison of Public Housing Tenant Characteristics: 1976 to 1979." Washington, D.C., The Urban Institute, Working Paper 1279-01, 1980.
units. About 29,000, or 58 percent of HUD assisted Indian housing units are in the Mutual Help Homeownership Opportunity Program. Under this program, the homebuyer occupies the home under a lease-purchase contract and is expected to maintain the home, pay utility and maintenance costs, and make a monthly payment. The homebuying family generally obtains title after 25 years. IHAs also operate the Turnkey III Program, which is similar to the Mutual Help Program, and which includes 2,000 Indian units. The other major program for Indian housing is rental public housing, which includes about 19,000 units. The program operates much the same way as it does in non-Indian PHAs.

About 70 percent of housing built on Indian lands in the past two decades has been sponsored by HUD. This is because of the very low income level of most Native Americans and because restrictions regarding land titles on Indian trust lands makes home purchases using conventional mortgages impossible.

Both the Public Housing Program and the Indian Housing Program obtain annual operating subsidies from HUD to make up the difference between the rents that occupants can afford and the expenses of operating the units. These subsidies enable PHAs and IHAs to pay for utilities, normal maintenance, administration and other day to day activities. Rental income and operating subsidies, however, have not been adequate to fund major repairs, system replacements, or the correction of major design deficiencies. As a result, some projects have deteriorated over time, endangering the health, safety, and well-being of the residents.

In response to this need, in 1968, the Modernization Program began funding selected capital improvements (alterations, additions, betterments, and replacements) at projects. In 1981; the Comprehensive Improvement Assistance Program (CIAP) replaced the Modernization Program and provided a comprehensive approach to improving both physical and management deficiencies in existing public and Indian housing projects.

Funding under the Modernization Program and the CIAP has been significant, totalling $\$ 7.9$ billion since 1975. Funding in recent years has ranged from $\$ 707.4$ million in 1986 to $\$ 1,259.9$ million in 1983. (See Exhibit 2-1.) Despite these expenditures, there is evidence of a significant unmet need for the renovation of many of the ten thousand public and Indian housing projects in the inventory.

Exhibit 2-1
MODERNIZATION FUNDING, 1975 TO 1986
CAPITAL COST APPROVALS

Year	Funding (Millions)
1975	$\$ 423.4$
1976	213.9
1977	324.0
1978	448.1
1979	544.1
1980	545.2
1981	926.9
1982	854.8
1983	$1,259.9$
1984	786.9
1985	822.9
1986	754.5^{*}
Total	$7,904.6$
\#ncludes use of development funds for major	
reconstruction of obselete projects	

Estimates of this "backlog" of unmet needs are substantial, but not welldefined. One of the major tasks of this research is to provide estimates of those needs based on careful inspections and accurate statistics. Among the problems with estimating the unmet needs is that the amount is a moving target: hundreds of millions are spent yearly to modernize projects while physical depreciation of the public housing stock creates a new need for large amounts of additional rehabilitation. Thus, the backiog estimate will be made for a single point in time, but renovation needs will continue indefinitely.

2.2 PREVIOUS ESTIMATES OF MODERNIZATION NEEDS

The most significant previous attempt to deal with the issue of modernization needs was completed in 1980 , when the results of the previous review of the Public Housing Program's modernization needs were published. That review was prepared by a joint venture of two architectural firms, Perkins \& Will and The Ehrenkrantz Group (PW/E). The review sent inspectors to over 300 public
housing projects and produced a series of reports on rehabilitation needs, energy conservation measures, and handicapped accessibility.

The PW / E report divided the cost of upgrading public housing into three levels:

- Level I, the cost of correcting basic health and safety needs, was estimated to cost $\$ 260$ million.
- Level II, the cost of correcting violations of HUD Minimum Property Standards (including Leve1 I needs) was estimated at $\$ 1.506$ billion.
- Level III, the additional cost of making projects more habitable and easier to maintain, was estimated at $\$ 6.791$ billion (net of Levels I and II).

The cost of making projects fully accessible to the handicapped was estimated at $\$ 307$ million. Energy conservation measures with simple payback periods of up to 15 years were estimated to cost $\$ 2.2$ billion. The total cost added to $\$ 10.8$ billion in 1980 dollars. Because some of the estimates were not clearly defined, especially the Level III estimates, and the statistical reliability of the estimates was in doubt, the total estimate was open to varying interpretations. Furthermore, since the data were not computerized or documented, additional analysis of the information was not possible. Thus, the ambiguity of the PW / E results was one of the reasons that the current research was started.

2.3 THE COMPREHENSIVE IMPROVEMENT ASSISTANCE PROGRAM (CLAP)

The Comprehensive Improvement Assistance Program was established by the Housing and Community Development Act of 1980 and implemented beginning in Federal Fiscal Year 1981. CIAP replaced the Public Housing Modernization Program, and in contrast was intended to provide for a more comprehensive approach toward the physical improvement needs of projects, more advance planning by PHAs including the use of a five-year modernization plan for the entire PHA, and the funding of management improvements.

Under CIAP, Modernization Standards are set forth in a HUD Handbook. Work items are categorized by that handbook into (1) mandatory standards that apply to all projects throughout the country, and (2) project specific work
that is necessary or highly desirable for the long-term viability of a particular project. There is also a relatively short list of luxury items that are prohibited, including swimming pools, atriums, dishwashers, and dwelling unit trash compactors.

Four types of project modernization are funded under the CIAP regulations:

1. Comprehensive Modernization. Complete funding for all. required physical and management improvements at a project.
2. Emergency Modernization. Funding of physical improvements to correct immediate threats to the life, health, and safety of tenants, including fire safety.
3. Special Purpose Modernization. Funding of cost-effective energy conservation work items.
4. Homeownexship Modernization. Funding of 1imited physical improvements for Turnkey III and Mutual Help projects. Eligible improvements relate to health and safety, energy conservation, and the correction of development deficiencies.

Starting in 1985, a new requirement was initiated for a viability review of each project being considered for funding other than emergency. The purpose was to assure that identified physical and management problems at the project will be solved by the proposed modernization and that the project after modernization will be suitable for operation as public housing for at least 20 years. Relatively few projects have failed this test, perhaps because few nonviable projects have been proposed for funding by the PHAs. Projects that cannot be made viable through physical and management improvements are ineligible for modernization other than emergency unless no alternative housing is available for the tenants.

Because the Modernization Needs Study report is intended to help guide CIAP program policies, a set of cross-references was developed that places each of the research inspection categories into policy related categories. In general, it puts modernization actions into the following categories:

1. "HUD modernization standards," consisting of repairs and replacements (FIX), and code-required or HUD-required additions and upgrades (Required Adds).
2. "Project specific items," consisting of additions or upgrades that are regarded as needed by particular developments for their longterm viability, not required by local code or universally required by HUD. Also, architectural redesign (Redesign) of projects that need reconfiguration to solve fundamental operational problems is ancluded in this category.
3. "Further PHA requested additions," consisting of additions and upgrades that PHAs would like to see at their projects, but which are currently prohibited by HUD (currently prohibited Adds), or for which the research inspectors found less than clear-cut evidence of need (Lower ISO). Also, Adds with no ISOs and Other Adds (not in Adds catalog) are found here.
4. Energy conservation measures that are cost-effective.
5. Handicapped accessibility as required by Federal regulations.
6. Lead-based paint abatement required by HUD regulation.
7. Indian housing modernization.

Under CIAP, 98 percent of funding available is assigned by HUD Headquarters to the ten Regional Public Housing Offices. Regional Offices make funding decisions based on recommendations from the 51 Field Offices. Exhibit 2-2 presents the allocation by Regional Office for FY 1986. The remaining 2 percent of funding available is assigned by HUD Headquarters to the Regional Offices, specifically earmarked for the six Indian Field Offices. The Public Housing assignments are based on a weighted allocation formula. That formula gives 45 percent weight to needs determined by Levels I and II of the PW/E study (health and safety and compliance with HUD Minimum Property Standards), and 55 percent weight to PHA utility costs in each Region, which is regarded as a reasonable proxy for energy conservation needs. The share of funding ranges from a low of 0.61 percent for region VIII (Denver) to a high of 35.20 percent in Region II (New York). The appropriateness of these allocations will be evaluated by HUD on the basis of the present study of modernization needs.

Exhibit 2-2
CIAP ALLOCATIONS TO HUD REGIONS FOR PUBLYC HOUSING YEARLY DISTRIBUTION FORMULA USED IN 1986*

	Region	Percentage of Funds	Percentage of Public Housing Units
I	Boston	8.24	5.69
II	New York	35.20	22.79
III	Philadelphia	14.34	11.42
IV	Atlanta	15.07	20.15
V	Chicago	11.65	16.37
VI	Ft. Worth	8.77	10.59
VII	Kansas City	1.23	3.05
VIII	Denver	0.61	2.39
IX	San Francisco	4.01	5.42
X	Seattie	0.88	2.30
		100.00	100.00

* Excludes Indian Housing Program

2.4 NEED FOR THIS STUDY

In 1983, HUD, the Congress, and the public housing interest groups all concluded that it was necessary to begin a new study of the modernization needs of the public and Indian housing stock. The $1980 \mathrm{PW} / \mathrm{E}$ study, while making a contribution to our knowledge of modernization needs, was not sufficient. In addition to the ambiguities of the Level III estimate, many other questions remained, incłuding:

- The PW/E study inspections were performed in 1979. Massive changes in the stock, including billions of dollars in modernization expenditures and further aging of projects, have occurred since then. What are the current needs of the stock?
- At what rate does the public housing stock undergo physical depreciation? What amount of funding will be neces-
sary to keep projects in good physical condition, and what is the distribution needed for that funding? (This issue will be evaluated in a future HUD-sponsored study.)
- What are the details of the modernization needs of public housing? How reliable are the estimates? Reports with detailed results of inspections and statistical procedures plus the computerized data will be made available. Thus, other researchers can create modified estimates based on alternative assumptions.
- What are the additional needs of the public housing stock in several areas that were not evaluated in PW/E study, specifically project additions and upgrades ("ADDs"), redesign of projects where needed, lead-based paint abatement, and needs of the Indian Housing Program?
- What is the most appropriate way to distribute GIAP funds to the HUD Regional and Field Offices? The current allocation formula, based on a combination of findings from the PW/E report and estimates of needs for energy conservation, needs to be improved.

III.

OVERVIEN OF DATA COLLECTION OPERATIONS

The civersity of the pub1ic and Indian housing stock presented unique challenges for the Modernization Needs Study. The design of the study and the data collection operations had to take into account both small public housing developments with fewer than 12 dwelling units and huge projects containing well over 1,000 units. The study had to consider the architectural features of older projects built in the 1940 s in the northeast as well as newer projects built in the late 1970s in the southwest; central heating plants that served several hundred apartments and small heaters serving a single unit; project sites with substantial open space and landscaping to sites with little more than a sidewalk leading into the development's building. Section 3.1 discusses the prelimary data collection needed to design the study. Section 3.2 introduces the critical measurement concepts for determining modernization needs at these different types of housing developments. Section 3.3 presents an overview of the main study and various substudies that required different kinds of data collection. The remainder of the chapter is devoted to discussions of the specific data collection operations for the study.

3.1 PRELIMINARY MOD NEEDS SURVEY

As noted in Chapter 1, the Modernization Needs Study involved detailed inspections of a sample of the nation's public housing developments, including inspections at representative residential buildings and dwelling units. In order to select the required samples, accurate information was needed on the number of dwelling units and buildings at all public housing developments. Unfortunately, no data base existed with the necessary up-to-date information.

In addition, in order to design an efficient sample that was representative of developments ${ }^{\prime}$ modernization needs, it was important to identify projects with relatively high modernization needs so that they could be sampled more heavily and, thus, improve the accuracy of the final modernization estimates. Also, an updated listing of specific developments that had been funded under CIAP was needed for selecting the subsample for the special CIAP study. Furthermore, the Energy Study could be greatly improved upon if the special sample for that substudy focused on developments with the greatest
energy conservation potential. In essence, a considerable amount of data was needed before the fell scale study could be efficiently designed, much less implemented.

Accordingly, a preliminary survey of modernization needs was designed and conducted. There are approximately 3,000 PHAs (containing over 11,000 projects and roughly $1,200,000$ dwelling units). 2,600 PHAs are classified as "smal1," having less than 500 units. For the mail survey, all PHAs classified as "medium" or larger were included in the survey, and a sample of approximately 600 smaller PHAs was selected. In all, 954 PHAs were mailed Mod Needs Data Forms requesting information on approximately 6,670 developments.

This mail survey gathered general information to create an updated sampling frame for the full scale study. Questions also were included to determine the PHAs own estimate of modernization needs so that this data could be used to stratify the full sample. Detailed information concerning the number and types of residential buildings and the number of dwelling units in each building were needed to select the associated samples for the full study. Information on recent modernization activity at each development was also collected so that the CIAP sample could be selected, and energy-related questions were included to identify appropriate developments for the Energy substudy. Lastly, questions on the form served to identify potential candidates for the Redesign study.

The results of this first data collection effort provided Abt Associates with data for an updated sampling frame. In addition, it offered HUD an improved count of PHAs, developments, buildings, and dwelling units, thus updating HUD's internal FORMS data base.

3.2 APPROACH TO MEASURING MODERNIZATION NEEDS

To understand how the Modernization Needs Study was conducted, it is critical that the study's approaches to measurement be explained.

First, we needed to develop a classification scheme to capture the range of modernization that might be required at any given development. Three operational categories of modernization were developed for data collection purposes--FIX, ADD, REDESIGN. In other words, the modernization needed was to FIX--that is, repair or replace something that already existed at the develop-
ment; or to ADD--that is, add something that did not presently exist or to upgrade with something different. REDESIGN could also be needed--that is, substantial structural changes were needed in units, and/or buildings, and/or the project's site. Exhibit 3-1 illustrates the interconnected nature of these three concepts.

Second, modernization costs could always be attributed to one of three basic elements at a development. Modernization could be needed in units (e.g., kitchens, bathrooms, living rooms), in buildings (e.g., lobbies, elevators, foundations, roofs), or at the sites (e.g., sidewalks, parking areas, central heating plants, community centers).

Third, using these basic "building blocks," a representative sample of public housing developments was selected. The sites of these developments were all inspected; a sample of buildings was inspected, and a sample of dwelling units within, those buildings was inspected. Based on our estimation techniques, it would then be possible to aggregate the costs of site modernization needs, with the costs of building modernization, and the costs of dwelling unit, modernization needs to arrive at overall national estimates of capital improvement needs. Exhibit $3-2$ provides examples of FIX, ADD, and REDESIGN for dwelling units, buildings, and sites.

Exhibit 3-2
Examples of FIX, ADO, REDESIGN For Units, Buildings, and Sites

Location	FIX	ADD	REDES IGN
Dwellang Units	- Replace kitchen stoves	- Add washer \& dryer hookups	- Combine two small units into one larger unit
	- Repair ce:ling water damage	- Add smoke detectors	',
Buildings	- Replace floor coverings in corridors	- Add fire alarm system	- Redesign building entries to improve security
	- Reparr damaged walls in lobby	- Add weather vestibule	
Sites	- Restore landscaping	- Increase capacity of central heating system	- Redesign roadways to enable access by fire-fighting equipment
	- Repave parking areas	- Change from well water supply to municipal tie-in	

The fourth important measure concept in the study is that a systems approach was utilized. A capital budgeting approach to cost estimation, based on a set of 101 architectural, mechanical and electrical systems and an "action level" for each system element formed the basis for our inspection and costing procedures. Further discussions of the systems approach and our other measurement concepts are presented in Chapter 4.

3.3 Components of the Main Study and Various Substudies

More than 1,000 public housing projects/developments throughout the nation were visited during the data collection phase of the Modernization Needs Study. The inspection teams--consisting of an architect and an engineer-usually began each assignment at the central office of the PHA where they picked up and reviewed the ADDs Form and other self-administered forms completed by the PHA staff, performed takeoffs of measurements from site and
building plans, selected samples of dwelling units to be inspected, and coordinated inspection scheduling details with the PHA 1iaison.

At each sampled project, detailed inspections were made of the architectural, mechanical and electrical components of dwelling units, buildings, and sites. In nearly all cases, both architect and engineer were accompanied by a knowledgeable escort from the PHA who enabled access to secured areas and who usually was able to provide additional anformation about the development's conditions. Exhibit 3-3 depicts the sampling of units, buildings, and sites in the main study.

Exhibit 3-3			
Modernization Needs Study:			FIX Inspection Elements
Location	Nation-W. ${ }^{\text {de }}$	At Each Sampled Development	lllustrative Major Systems inspected At these Locations
DHELLING UNITS	2,194 units	1-4 units	- All interior rooms - Unit-based mechanical \& electrical (M\&E) systems including furnaces, electric distribution panel, etc.
BUILDINGS	3,120 buildings	1-8 burldings	- Exterior walis, roof, windows - Interior common areas including lobbies, halls, basements, etc. - M\&E systems including boilers, water and waste lines, elevators, electric distribution systems, exterior lighting, ete.
SITES	1,000 sites	Entire site or one or more subsites in a scattered site development	- Landscaping and site equipment such as seating, playgrounds and site lighting - Paved areas including streets, parking and walks - M\&E distribution lines - Site-wide facilities such as management office, day-care center, community rooms, etc. - Central boiler and mechanical rooms

In addition to the main study of 1,000 developments where the FIX and ADD inspections were conducted, there were three substudies in the main sample, plus two separate special studies, namely:

1. Redesign Study. Relatively few public housing developments were in need of substantial structural changes to ensure their continued viability-the definition of redesign which was used in this study. A first count of developments that might be redesign candidates was determined from the preIiminary Modernization Needs Data Form survey, and further refinement of projects meeting the definition of redesign was identified by a second data gathering effort, the Redesign Mail Survey. A sample of 75 developments in need of Redesign was then selected for in-depth three-day site visits, interviews, inspections, and related data gathering activities. The Redesign Study was conducted by senior architects familiar with redesign solutions to address a variety of problems.
2. Energy Conservation Study. In order to gather more information about energy conservation opportunities at the nation's public housing stock, a subsample of 241 developments from the main sample was selected for additional data collection. Prior to the inspection visit, the PHAs were requested to complete various self-administered forms concerning historical energy usage. The inspectors conducted energy-related interviews and additional inspections in a sample of 346 buildings.
3. Handicapped Accessibility Study. Each PHA sampled for the main study was requested to provide detailed background information on each of the characteristics of each of its developments selected for inspection, including an estimate of the current number of wheelchair-accessible dwelling units as well as the current number for individuals with sensory or other impalments. The PHA was then requested to state the number of additional units needed for persons with mobility, sensory, or other impairments. These requests were analyzed and their costs estimated as part of the overall study.
4. Indian Subsample. Since Indian Housing Authorities (IHAs) are funded separately in the CIAP program and have their own Field offices, a special separate study of IHA housing was conducted. FIX and ADD inspections were conducted at 20 IHAs covering 31 developments where 322 buildings and 354 units were inspected.
5. Lead-Based Paint Study. Accurate detection of lead-based paint requires specialized equipment--XK-3 flourescence analyzers--and it was not feasible to conduct such measurements during the regular field inspections. In cooperation with the staff of local Childhood Lead Paint Poisoning Preven-
tion Programs, a special separate study of 131 developments in 34 cities was conducted where tests were conducted in samples of dwelling units, buildings, and site-wide facilities for the presence of lead paint hazards.

3.4 SUMMARY OF FIEED ACTIVITIES

The site visits to the PHAs/IHAs and the associated sampled projects were generally divided into three distinct phases:

Pre-inspection Activities--these activities (or tasks) normally were conducted at the PHA central office prior to the inspections. They included a visit with the Executive Director (or other person in charge of the agency), meeting with the 1 iaison person designated by the PHA, drawing a sample of the dwelling units that were to be inspected, recording measurements from the plans/drawings provided by the PHA, reviewing the Project Characteristics Form, ADDs Form, and other forms completed by the PHA for this study, and finalizing last-minute details for escorts, scheduling, and related matters.

Inspection Activities-this was the core of the data collection phase and involved the inspection of a sample of the project's dwelling units, a sample of the residential buildings, all of the site-wide facilities, including central boiler and electrical rooms, and site surface.

Post-Inspection Activities--this last phase involved the inspector's providing a "second opinion" concerning the PHA's requested ADDs (additions and upgrades); the activities also included a variety of "housekeeping" and recordkeeping tasks that were completed before continuing to the next assigned project.

Exhıbit 3-4, Summary of Tasks for a Sample Project, lists the specific activities that usually occurred during each phase of the field visit. It also outlines the additional tasks that were conducted when the sampled project was also included in the special Energy Study and/or the CIAP Study.

3.5 OPERATIONAL HIGHLIGHTS OF THE FIELD INSPECTION PROCESS

An account of the measurement techniques used in the study would not be complete without some mention of the operational components involved. Some of those we consider to be most significant are briefly mentioned below.

Exhibit 3-4

Summary of Tasks for a Sampled Project

PRE-INSPECTION ACTIVITIES

INSPECTION ACTIVITIES

POST-INSPECTION ACTIVITIES

Inspector Training and Quality Control

Architectural and engineering (A\&E) inspectors were selected from a number of highly qualified firms in New England, the Southeast, and the Western regions of the country. Each of the some 100 inspectors selected was trained in a five-day intensive session focusing on the 101 observable systems and the associated action levels. The training staff included senior technical instructors from the project team as well as staff with special expertise in working in the PHA environment. Extensive audio/visual materials, a 140-page training manual and carefully supervised field inspection trials were used to ensure that all material was properly understood. Training sessions were held in May 1985 in Atlanta and Boston, and in Omaha during June of that year. Actual inspection began in the week directly following training.

Subsequent quality control was provided in several forms. During the first week or two of actual field inspections, project managers from the A\&E firms reinspected portions of developments just inspected by their respective staff members to ensure uniform compliance with the training materials. During the succeeding months, these same senior managers, who had themselves participated in the training, reviewed inspection forms submitted by their field teams prior to sending them to Abt Associates for data processing. Where necessary, corrective actions were implemented, ranging from brief corrective coaching to two instances where inspectors who failed to respond to warnings on the quality of their performance were terminated.

The Field Inspection Staff

Abt Associates selected the field architects and engineers from the following A\&E firms, each of which is highly regarded in the field of public housing design. Senior redesign inspectors were also drawn from these companies:

Bradfield Associates, Atlanta, Georgia
Dana Larson Roubal and Associates, Omaha, Nebraska and Seattle, Washington
Lane Frenchman and Associates, Inc., Boston, Massachusetts
On-Site Insight, Inc., Norwood, Massachusetts
Stull \& Lee, Boston, Massachusetts

The Boston-based firm of R.G. Vanderweil Engineers, Inc. also provided important technical assistance in the preparation of inspector training materiais.

PHA Involvement in the Field Effort

PHA staff were involved in many aspects of the study, including responding to early questionnaires to determine the number and condition of their various developments. Regarding the field inspections, however, their major contributions included the following:

PHA Action

- Arrange for knowledgeable escorts for the inspection team to allow access to roofs, secured rooms, day-care centers, boiler rooms, site-wide facilities, as well as to provide any clarifying information concerning the condition/history/special situations at the project
- Eill out the Project Characteristics form
- Fill out ADDs form

Fill out Energy forms

- Have site and building plans/drawings available for the inspectors upon arrival (for taking measurements from plans and for selecting the dwelling unit sample)
- Arrange notification of tenants whose units have been sampled for inspection
- If elevator building, have an elevator escort who can arrange for brief shutdown to allow for adequate inspection.

Typical PHA Person Responsible

Executive Director or
Project Director

Planning Director
Planning Director
Planning Director

Modernization
Coordinator

Project Manager

Project Manager or Maintenance
Director

Cooperation by PHA staff in filling out the research forms, preparing for the field visits, and assisting during the inspection visit was a crucial element in the success of the inspection process, the largest ever undertaken by the federal government in the field of multi-family housing. PHAs were, of course, not reimbursed for their considerable efforts.

IV. A SUMHARY OF SAMPLING AND ESTIMATION PROCEDURES

As has become clear from the previous chapters, the Modernization Needs Study is not one single study but many studies, each focusing on a different aspect of capital repair and improvement. Thus, the overall sample design is quite complicated and includes a large "main" sample of 1,000 developments, where FIX and ADD data were obtained, and special subsamples for the study of energy conservation, redesign and CIAP. Furthermore, entirely separate sampling plans were utilized for Indian Housing and Lead-Based Paint. This chapter very briefly describes the sample design for the main study and the special studies, outlines the approach used for estimation, and summarizes the estimates that will be provided by the study. ${ }^{1}$

Exhibit 4-1 summarizes the samples used for inspection in the main study of FIX, ADD, and handicapped accessibility, the subsamples (that is, the developments used to analyze energy, redesign, and CIAP drawn from among the 1,000 developments), and the separate special study samples.

The main sample is best described as a "multi-stage cluster sample" of PHAs, developments within PHAs, and buildings and units within these developments. The sample was allocated to the 51 HUD Field Offices, with the goal of obtaining individual modernization estimates for each field office.

In the first stage of sampling, 277 PHAs were selected from the universe of PHAs. Then, 1,000 developments were sampled from these PHAs and 3,120 buildings were sampled from each development. Finally, 2,194 dwelling units

[^3]were sampled from these buildings. ${ }^{1}$ These stages are the "building blocks" for the estimate of total national modernization costs, for once the field inspections are completed and costed, an estimate of total modernization costs for the nation will be developed by taking:

1) Site level cost observations (e.g., site power distribution) at each sample project, and aggregating up to the universe of projects in the national public housing stock.
2) Building leve1 cost observations (e.g., roofing) at each sample building, and aggregating up to the universe of buildings.
3) Unit level cost observations (e.g., kitchens) at each sample housing unit, and aggregating up to the universe of units.

Exhibit 4-1
Inspection Samples Used in the Modernization Needs Study

	Sample	Purpose	Developments	Buildings	Units
$\cdot \mathrm{I}$.	Main Study Samp1e	FIX, ADD \& Handicapped Estimates	$\begin{aligned} & 1,000 \text { develop- } \\ & \text { ments in } 277 \\ & \text { PHAs } \end{aligned}$	3,120	2,194
	A. Energy Subsample	Energy Conservation Estimate	241	346	N.A.
	B. Redesign Subsample	Redesign Estimate	75	N. A.	N.A.
II. Special Samples					
	A. IHAs	Indian Housing Estimates	31 developments in 20 IHAs	322	354
	B. Lead-Based Paint	Lead-Based Paint Estimate	131	94	262

I There was oversampling at each stage of sampling to take into account nonresponse, inaccessibility of some sampled buildings and dwelling units, and other attrition factors.

2 ADDs data was completed for 843 of the 1,000 developments, while handicapped data was obtained for 746 developments. The ADDs data include the ISOs, determined by the inspectors.

Unique weights exist for each stage of the sampling process (again, units, buildings, developments, and PHAs) and for each field office. These weights will be used to "expand" each level of the sample to the next highest level and ultimately to the field office level. Thus, conceptually, the following types of "weighting up" occur: (1) The modernization costs of development sites are "expanded" from the development through the PHA to the field office level. (2) Each inspected building in a development will have its building modernization cost "expanded" to the development level and then through the PHA to the field office level. (3) Each inspected unit will have its modernization cost first "expanded" through the building in which it is located then to the development, and then through the PHA to the field office level. A ratio estimator is then used to produce a total modernization need estimate for each field office. The sum of the field office estimates is the national estimate.

The main study sample is designed to provide estimates of FIX and ADD costs at the national, HUD regional, and individual field office level. Refer to Exhibit 4-2 for a sumary of these and other estimates. Thus, direct estimates of FIX and ADD costs will be provided for each of the 51 field offices and ten HUD regions as well as for the nation. ${ }^{1}$

Direct estimates will also be provided at the national level for Energy, Redesign, and Indian Housing. However, since these-samples are too small to provide direct regional and field office estimates, we developed special procedures to allocate these funds geographically.

The national estimates in this report are based on samples and are therefore accompanied by standard errors and 95-percent confidence intervals. The standard error of an estimate is a measure of the reliability of the estimate, that is, the variation that occurred by chance because a sample rather than

[^4]Exhabit 4-2

Summary of EstImates by Type of Estimate

Key:
Direct Estimate. A direct estimate is one which by design, is directly available from the sample.

Allocated. Allocated estimates are provided when sample sizes are insufficient to provide reliabie, direct estimates. The allocation will be based on as much information as possible.
the entire population of developments was inspected. The sample estimates and their standard errors enable one to derive confidence intervals. Confidence intervals are ranges that would include the average result of all possible samples with a known chance. We constructed 95-percent confidence intervals by multiplying the standard error by 1.96 . The 95 -percent confidence interval should be interpreted as follows:

> Approximately 95 percent of the intervals from 1.96 standard errors below the estimate to 1.96 standard errors above the estimate would include the average result of all possible samples.

That is, one can say with 95 -percent confidence that the average estimate derived from all possible samples is included in the interval represented by the sample estimate plus or minus the confidence interval value provided in the report.

Standard errors and 95 -percent confidence intervals were also computed for the FIX and ADDs field office and HUD region estimates.

PART II

MODERNIZATION BACKLOG COSTS: NATIONAL AND REGIONAL ESTIMATES

The previous section of this report has presented the background of the study and an overview of the data collection procedures. This Section will present the national and regional backlog estimates for each of the seven study components. Field Office estimates are presented in Appendix I. In keeping with the nature of this report, no conc1usion is reached about the need for the types of modernization studied. This study simply reports the measured need and describes how the need was estimated. For each type of modernization, there is also a statistical appendix that provides details of how the cost estimation was performed.

The chapters of this section will, in turn, provide estimates of national needs for 1) FIX; 2) ADDs, 3) Redesign, 4) Energy Conservation, 5) Handicapped Accessibility, 6) Indian Housing, and 7) Lead-Based Paint Abatement.

V. FIX ESTIMATES

5.1 SUMAARY OF FIX COST ESTIMATES

Starting in June 1985, more than 1,000 public housing developments were visited by specially trained teams of architects and engineers. In cooperation with the PHA staff, these inspectors performed a detailed assessment of the architectural, mechanical and electrical systems involved in dwelling units, residential and non-residential buildings at each development as well as the overall site itself. Completion of up to 10 separate inspection booklets was required at each site as inspectors examined and rated the condition of the 101 possible architectural and engineering systems on a five point scale, ranging from "No Action Required" to "Replace."

Typically, the inspectors were accompanied by a knowledgeable expert from the PHA in order to access secure areas and to provide technical information about the condition of the developnent's facilities and equipment. Elements of the FIX Inspection are shown below.

Exhibit 5-1Modernization Needs Study: FIX Inspection Elements			
Location	Nation-Wide	At Each Sampled Development	lliustrative Major Systems Inspected At these Locations
DWELLING UNITS	2,194 units	1-4 units	- All interior rooms - Unit-based mechanical \& electrical (M\&E) systems including furnaces, electric distribution panel, etc.
buildings	3,120 buildings	1-8 buildings	- Exterior walls, roof, windows - Interior common areas including lobbies, halls, basements, etc. - MEE systems including botlers, water and waste lines, elevators, electric distribution systems, exterior lighting, etc.
sites	1,000 sites	Entire site or one or more subsites in a scattered site development	- Landscaping and site equipment such as seating, playgrounds and site lighting - Paved areas including streets, parking and walks - M8E distribution Jines - Site-wide facilities such as management office, day-care center, community rooms, etc. - Central boiler and mechanical rooms

The field data collection was completed in September 1985, following onsite inspections in each of HUD's 51 Field Offices, including Alaska, Hawaii, and the Caribbean. Inspectors went to 45 states in all.

The results of the field inspections were converted into backlog cost. estimates and weighted up to national estimates. The estimates are for capital needs only. Thus, normal maintenance and normal repair needs, which have always been conceived as being handled through normal operating budgets, have been purposely excluded from this study. Anticipated future modernization needs will be separately evaluated in a HUD sponsored report on the accrual of depreciation.

The national estimate of the modernization needs for FIX, as defined above, is $\$ 9,307$ million. ${ }^{1}$ The 95 percent confidence interval is plus or minus $\$ 701$ million.

Exhibits 5-2 and 5-3 present the distribution of FIX costs by region. The regional share of FIX costs relative to the share of total units in the region is indicated in the last column of Exhibit 5-3. A ratio greater (smaller) than one indicates a share of FIX costs relatively larger (smaller) than the region's share, of units. Regional size is only one of many factors determining the need for modernization funds; nevertheless, it is interesting to note some rather substantial differences in regional shares. For example, Region IX and Region III have the largest FIX needs per unit.

Another approach to examining the distribution of FIX costs is to look at per unit costs. The national average FIX cost is $\$ 7,392$. Exhibits $5 \mathbf{4}$ and 5-5 show average per unit FIX costs by region and the distribution of per unit costs by field office (refer to Appendix I for details). Regional per unit cost range from approximately $\$ 5,000$ in Regions IV and X to over $\$ 11,000$ in Regions III and IX. Similarly, substantial variation is seen across field offices. The modal value for the field offices shown in Exhibit 5-5 is per unit costs between $\$ 5,000$ and $\$ 6,000$; however, one field office shows per unit costs between $\$ 1,000$ and $\$ 2,000$ while others have per unit costs exceeding $\$ 12,000$.

[^5]Exhibit 5.2
Total Fix Costs by Region
(\$ millions)

Exhibit 5.3

Total FIX Costs by Region
(\$ millions)

Region	$\begin{gathered} \text { (1) } \\ \text { Total } \\ \text { FIX Costs } \end{gathered}$	(2) \% of Total	(3) \% of Total Units	(4) Ratio of (2) to (3)
I	\$495.6	5.32	5.88	. 905
II	\$2,440.2	26.22	23.44	1.119
III	\$1,689.1	18.15	11.71	1.550
IV	\$1,376.4	14.79	21.55	$\therefore .686$
V	\$1,417.8	15.23	16.64	-. 915
VI	$\begin{gathered} \$ 693.5 \\ 5 \end{gathered}$	7.45	9.94	. 749
VII	\$285.5	3.07	3.31	. 927
VIII	\$134.6	1.45	1.29	1.124
IX	$\$ 653.2$	7.02	4.37	1.606
X	\$120.9	1.30	1.86	. 699

Nation
$\$ 9,306.9$
. 100%. -100%.

Exhibit 5.5
Distribution of FIX Per Unit Costs
by Field Office

Per Unit FIX Costs
Nationwide Mean $=\$ 7,392$

5.2 FLX ESTIMATION PROCEDURES

The three-part classification of modernization needs along the FIX/ADD/ REDESIGN continuum defines FIX as follows:
to repair or replace existing architectural, mechanical, and electrical systems at a development to contemporary standards.

Modernization costs for rehabilitation (FIX) are based on observable actions and the associated costs for these actions for a set of 101 mechanical, electrical, and architectural systems. These Observable Systems are listed in Exhibit 5-6.

Observable Systems Concept

The term "Observable System" (OS) is used to indicate that the physical condition of the system is capable of being observed and or otherwise assessed in the field, by either an architect or engineer. In certain instances the observation is indirect--that is, it is based on professional knowledge of conditions and performance of such systems, modified by whatever data (either inferred or provided) is available at the development from the escort, repair logs, and so forth.

The term "action level" refers to the level or nature of repair required to restore the system to its original condition. For each Observable System, the inspector will choose among five action levels, each of which has a specific set of modernızation activities associated with it. The five levels of FIX activity are:
(1) No action required
(2) Minor action required
(3) Moderate action required
(4) Major action required
(5) Replacement required

The Observable System concept is specifically designed for capital budgeting purposes. Rather than prepare a "work item list," the observations

Exhibit 5-6

List of Observable Systems

AREHI TECTURAL SYSTEMS
Foundations

Exterior Common Doors
Storm/Screen Doors

Window Security
Canopies
Parapet Wall
13. Appurtenant Structures
14. Roof Structure
15. Roof Covering
6. Ceilings, Soffits
18. Chimneys
19. Matches/Skylights

Penthouses
22. Ceilings
23. Unit Interior Doors
24. Floor Finish
25. Interior Construction
27. Local HVAC Unit or Wood Stove
28. Air Terminals
29. Temperature Controls

Dwefting Unit Electrical
32. Signaling/Communications/Security
33. Master TV Distribution
34. Fire/Smoke Detection
35. Kıtchen Cabınets/Sink
36. Kitchen Stoves

Kitchen Rerigerators
39. Bathroom Accessories
40. Laundry Facilities
41. Mail Facilities
42. Compactor
43. Incinerators
44. Management Office Equipment Package
46. Earthwork
47. Roadways
48. Parking

Pedestrian Paying
51. Soft Site Development
52. Site-Wide, Free Standing Structures (exterior)
54. Slab
55. Wcod Frame

MECHANICAL/ELECTRICAL SYSTEMS
56. Elevator/Shaft and Doorways
57. Elevator/Cab
58. Elevator
59. Fuel OII Storage
60. Fuel OII Transfer System
61. Purchased Steam Supply Station
62. Solid Fuel Storage and Conveyance
63. Bottled Gas System
64. Heat Exchanger for Space Heating
65. Boilers/Hydronic Packaged Unit
66. Hot Air Furnace System
67. Flue Exhaust System
68. Combustion Air System
69. Boller Rcom Piping
70. Boiler Room Pipe Insulation
71. Plant Hot Water Circulation
72. Blowdown and Water Treatment
73. Condensate and Feedwater System
74. Central Space Temperature Control
75. Building Heating Zone Valve
76. Building Heating Risers and Distribution
77. Ventilation and Exhaust System
78. Air Conditioning
79. Gas Supply Station
80. Building Gas Distribution
81. Domestic Hot Water Generation
82. Building Domestic Hot and Cold Water Distribution
83. Domestic Cold Water Supply Station
84. Sewage Ejectors
85. Sump Pumps
86. Building Sanitary Waste and Vent Distribution
87. Fire Pumps
88. Fire Suppression System
89. Smoke and Ventilation Control
90. Power Transformer Station
91. Electric Distribution Center
92. Building Power Wiring
93. Emergency Lights and Power
94. Site Heating Distribution
95. Site Gas Distribution
96. Site Domestic Cold Water Distribution
97. Site Domestic Hot Water Distribution
98. Hel! Water System
99. Site Power Distribution, Hiring
100. Site Sanitary
101. Water Tank
define action levels which, in turn, link to costs. These final costs create a budget range adequate to do work at the action level needed, including variations of specific work tasks which might occur at the observed level and given the variations in materials and structure types. Note again that this study focuses only on capital improvement work items and not on work items typically taken care of as routine maintenance via the PHA's operating budget.

The 101 observable systems are nested within ten major systems that*". reflect the major components of a building or development: foundation, exterior closure, roofing, mechanical, and so on. Further, the systems are clustered into those used on the study's architectural inspection forms, and. those used on engineering inspection forms.

Exhibit 5-7 presents the Observable Systems concept. Each observable system is numbered and named. Sub-systems are defined within each observable system when there is a identifiable cost difference between types (materials, fuel source, etc.) or sizes. The observations are generic to all sub-systems, as a basis for establishing the action level necessary for remedy. The coost variations occür as a result of the range of necessary sub-systems.

Exhibit 5-8 presents Observable System 23--Unit Interior Doors. There are four types of doors. Note that type 非l includes both wood solid and metal doors. Since they have similar costs, these two types need not be differentiated for capital budget purposes. Action at the MINOR ${ }^{\text {fi}}$ level for this system was determined to be, by both description and cost, in the maintenance . category and therefore has no capital improvements action level (and cost) associated with it. For example, a broken lock is normally a maintenance rather than a capital item. The other three levels of action have an associated set of generic observations which would prompt action at each level. The action levels in turn have a set of general descriptions of the sort of action involved. The associated costs reflect the degree of action needed to remedy such conditions for each door type. Note that for many other systems, minor repairs are regarded as capital costs.

Exhibit 5-9 presents the cost file with the three action levels for Type \#l--Interior Doors. The pricing unit for interior doors is "Each." (Other systems have appropriate pricing units--square feet and so on.) After

Exhibit 5-7
Observable System Concept
(i) OBSERVABLE SYSTEM NAME Materials/Components: a.
b.
C.
d.
e.

SET OF	ACTIONS	COST
OBSERVATIONS	NEEDED TO	FILE
ON CONDITION	REMEDY	

Exhibit 5-8

Observable System 23 -- Unit Interior Doors

- 1

(23) OBSERVABLE SYSTEM: Types: UNIT INTERIOR DO $1=$ Wood Solid Co 2= Wood Hollow C 3= Extra- W_{2} de Cl 4= Sliding Glass	Unıt $=$ Each	
OBSERVATIONS	ACTION LEVEL	ACTIONS
NA	MINOR	NA
Door intact but ajar in frame; some hardware damaged or missing.	MODERATE	Replace hardware and rehang door.
Door has lost its integrity as a result of fire or water damage, vandalism, or deterioration (buckling, holes, cracks, surface scars). Jamb intact.	MAJOR	Replace hardware and door (frame is retained); paint wood doors.
Jamb has lost its integrity--broken, warped, deteriorated, buckled, etc.	REPLACE	Replace frame, door and hardware; paint wood doors.

Exhibit 5-9
Cost Filyes Associated with Type fl-Interior Doors

SUB SYSTEM: 600230102
interior doors - wood solid, hetal - hoderate

		$\begin{aligned} & \text { FACTOR: } \\ & 4.000 \end{aligned}$	MATERIAL 17.24	INSTALL 3542	$\begin{aligned} & \text { TOTAL } \\ & 5267 \end{aligned}$
LINE ITEMS FOLLOW:					
		quantity	MATERIAL	InSTALL	total
0109000100	REMOVE, REPAIR, RETMSTALL DOOR	0.126	000	3214	3214
0873401510	SPCIAL HNGE.NON TEMPLATE FULL MORTISE-AVG	1.500	35.31	0.00	35.31
0374001720	LOCKSET, RESIDNTL, INTERIOR DOOR, MAX	1.000	27.07	3128	5835
0981702400	DCORSWINDW, PANL OCDR/FRM PER SIDE OIL ES	2.000	6.61	78.28	84.89

SUB SYSTEM : 600230103
INTERIOR DOORS - WOOD SOLID, METAL - MAIOR

LINE ITEMS FOLLOW:

010	9009100	REMOVE, REPAIR, REINSTALL DDOR
087	3401510	SPCIAL HNGE.NON TEMPLATE FULL MORTISE-AVG
087	4001720	LOCXSET, RESIDNTL, INTERIOR DOOR, MAX
098	1702400	DOOR\&WINDW, PANL DOOR/FRH PER SIDE OIL BS
081	2101060	COMRCL. ST DOOR, FLUSH HOLLW.CORE, $1-3 / 4^{\prime \prime}$ T,
	1000100	STEEL FRANCS, XROCK DOWN, 7'-0' HYGH, 3'-

FACTOR:	MATERIAL	INSTALL	
1.250	55.19	138.67	TOTAL QUANTITY
0.250			
1.500	0.86		

SUB SYSTEMK: 600230104

INTERIOR		$\begin{gathered} \text { FACTOR: } \\ 1.500 \end{gathered}$	MATERIAL 179.38	$\begin{aligned} & \text { INSTALL } \\ & 142.17 \end{aligned}$	$\begin{array}{r} \text { TOTAL } \\ 321.55 \end{array}$
LINE ITEMS FOLLOW:					
		Quantity	material	INSTALL	total
0109000100	REMOVE DCOR \& FRAME	0163	0.00	4158	4158
0873401510	SPCIAL HNGE NON TEMPLATE FULL MORTISE-AVG	1.500	35.31	000	3531
0874001720	LOCKSET, RESIDMTL. INTERIOR DCORR, HAX	1.000	27.07	3128	58.35
0981702400	DOORAWINOW, PANL DCOR/FRM PER SIDE OIL BS	2.000	6.61	78.28	8489
0812101060	COMRCL. ST DOOR, FLUSH HOLLW.CDRE, $1-3 / 4^{\prime \prime} \mathrm{T}$,	1.000	147.12	29.97	17709
0811000100	STEEL FRANCS, KNOCK DOHN: ${ }^{\prime \prime}-0^{\prime \prime}$ HIGH, ${ }^{3+}$	1000	52.96	32.15	85.11

costs are estimated the estimation procedures then account for variations in local wage rates, using price adjusters from the R.S. Means Co., a nationally recognized construction cost estimating firm.

The capital budget for Interior Doors would be generated in the following fashion:

1. Inspector observes an Interior Door. The door "has lost its integrity;" it has holes and cracks but the frame is in good condition.
2. The inspector enters "Major" repair as the action level on the appropriate inspection form.
3. The inspection form data is entered into the appropriate file. A cost of $\$ 193.86$ is generated as the budget level for this level of action on this door type. Totals of individual line items do not always equal the total cost because they have been adjusted by R.S. Means using actual bid results to produce a best final estimate of actual total costs, based on bid results.

The same process is repeated for each Observable System present in each dwelling unit, building, and site inspected.

The inspection process was identical at all of the 1,000 sampled developments. Our specially-trained architects and engineers first inspected the entire site. Some number of sampled buildings were then inspected, with the number dependent on the size of the development, and the range of building types at that project. Other facilities were rated and their required action levels noted on the appropriate inspection booklet. Finally, a sample of dwelling units were inspected, using similar procedures.

Inspection Forms

There were a total of ten different inspection forms used for the FIX data collection effort:

For Use by the Architects Only

- Dwelling Unit (DU)
- Building Architectural (BA)
- Single Family Detached/Attached (SFD/A)
- Single Buílding Project Architectural (SBA)
- Site Surface (SS)
- Site Wide Facilities (SWF)

For use primarily by the Engineers, and occasionally by the Architects at smaller, less complex projects.

- Building Mechanical and Electrical (BME)
- Central Electrical Room (CER)
- Central Mechanical Room (CMR)
- Site Mechanical and Electrical (SME)

Exhibit 5-10 indicates the types of PHA projects at which these forms generally were used. The ten inspection booklets for collection of field data were developed from these systems and actions. The inspection instruments allow the inspectors to record their evaluation of condition by indicating which of five ordinal categories most accurately describes the nature of the improvement needed. Each action level for each system is associated with a specific cost. These costs, based on restoring the system to contemporary standards, have been developed by Abt Associates and its subcontractors in conjunction with the R.S. Means Co.

In Exhibit 5-11, illustrative pages from the inspection booklets used to gather modernization needs data on building level locations-Building Corridors, and Building Roofs-mare presented. Note that in this exhibit it can be seen that not all Observable Systems used all five levels of possible modernization--for instance, for OS22 on the exhibit, Ceilings, the "Major Repair" category is not an allowable code. The operational definition of various action levels was predicated on differences in capital repair costs: if there was little or no difference between adjacent modernization cost levels, that particular action level was excluded.

Exhibit 5-10
Examples of Project Types and Applicable Inspection Forms

	ARCHITECTURAL						ENGINEERING			
PROJECT TYPES	DU	BA	SFD/A	SBA	SS	SWE	BME	CMR	CER	SME
1. Single high-rise structure for the elderly	*			1	1		1			1
2. Attached townhouses/duplexes with unit-level M\&E systems on a single parcel of 1 and	*		*		1	1				1
3. Individual single family \qquad	*		*		*	1				*
4. Mu1ti-family walk-up apartments with a central boiler plant	\cdots	*			1	1	*	1	*	1
5. Private-entry units clustered in several buildings on a single site; central boiler plant with heat exchangers in the basement of each building	*		*		1	1		1		1

\dot{M} Multiple forms required depending on specific sample

Exhibit 5-11
Illustrative Recording Forms for the-FIX Inspection

5.3 DEVELOPING THE MODERNIZATION ESTIMATES ..

Once the field data collection process was completed, the study focused on calculating the actual estimates of PHA modernization needs. Conceptualiy, the process is relatively straightforward, involving three principal steps:

1. Cost File Linkage, Each field observed condition of an architectural or mechanical system requiring a modernization action (minor, moderate, major, or replace) must be computer linked to the appropriate cost file and calculation algorithm in order to calculate the initial raw cost involved. These costs are identified as either site, building, or dwelling unit related.
2. Calculation of Adjusted Gosts. Once the raw costs for each such system in a development are calculated and summed in terms of site, buildings, and dwelling unit costs for the HUD Field Office of which they are a part, these raw costs must be adjusted to reflect:

- typical builder overhead and profit margins;
- regional construction cost variations; and
- inflation in construction costs over time.

3. Weighting the Adjusted Costs to Develop Final Modernization Estimates. Finally, once the adjusted costs are available, the individual site, building and dwelling unit costs are precisely linked to their counterparts in the sampling plan. That is, each "location"-site, building and dwelling unit--sampled for inspection has a distinct weight value to reflect its relative position in the overall sample. Once the adjusted cost for that location has been calculated, it is statistically manipulated using its associated weight to determine national, regional, and field office cost estimates.

VI. ADDs COST ESTIMATE

6.1 SUMMARY OF THE ADDs COST ESTIMATES

This component of the study was developed to identify potential additions and upgrades. Special ADDs Catalogs and ADDs Forms containing detailed information on a "menu" of more than 150 different additions and upgrades that might be needed at a development, were mailed in advance to each sampled PHA. The working definition of ADDs is:

To add, upgrade, or change existing features in order to modernize the quality of existing developments; to enhance long-term viability; or to achieve other specific standards, inciuding standards mandated by law, local codes, or HUD regulations.

At the close of the inspection visit at a sampled PHA development, the inspection team reviewed the PHA's ADD requests for the project, based upon PHA's selections from the special catalog. The review enabled the unspector to answer questions and to provide a "second opinion" on the extent to which the request seemed warranted in the light of the inspector's observation at the particular development and his experience.

Based on the inspector's second opinion (ISO) rating, the PHA's reason for the requested $A D D$, and the nature of the $A D D$, each item was classified into one of twenty-three types of ADDs, each of which has a separate cost estimate. The costs of individual ADDs are based on the cost estimation process described in Sections 5.3 above and 6.4. The ISOs, explained in more detail in Section 6.3, give the relative appropriateness of the ADDs. Exhibit 6-1 presents the national estimates. A discussion of estimates by region and by type of ADD is presented in Section 6.5.

```
Exhibit 6-1
Estimated ADDs Cost, by Cost Category
```

Cost Category	Estimate (\$mil\|lons)	Percent of Total	95 Percent Confidence Interval (\$mı (Hions)
ADDs Required by Code or Modernization Standards*			
$150=1$	389.4	3.01	93.1
$150=2$	491.6	3.80	192.3
$150=3$	408.3	3.15	439.9
$1 \mathrm{SO}=4$	170.3	1.32	214.1
$150=5$	105.7	0.82	162.2
	1,565.3	12.10	
Project Specific ADDs			
$150=1$	2,675.2	20.66	383.3
$150=2$	2,795.6	21.59	340.9
$150=3$	2,028.1	15.66	427.7
$150=4$	1,211.9	9.36	553.9
$150=5$	584.1	4.51	235.2
	9,294.9	71.78	
Energy ADDs**			
ISO=1	780.8	6.03	131.4
$150=2$	305.4	2.36	76.5
$150=3$	149.5	1.15	42.5
$150=4$	74.9	0.58	41.7
$150=5$	84.2	0.65	52.4
	1,394.8	10.77	

Handıcapped Accessıbılity ADDs**

$I S O=1$	17.0	0.13	12.1
$I S O=2$	37.7	0.29	28.3
$I S O=3$	5.2	0.04	3.1
$I S O=4$	3.8	0.03	5.5
$I S O=5$	$\frac{1.5}{}$	$\frac{0.01}{0.3}$	
		0.50	
Other Categories	515.4	3.98	6.2
No ISO	6.1	0.05	51.9
Other (Not in ADDs Catalog)	$\frac{104.8}{626.3}$	$\underline{0.81}$	4.84
Currently prohibited by HUD			

TOTALS
$12,946.5$
100\%

[^6]
6．2 THE ADDs DATA COLLECTION

The ADDs cost estimate is based on data collected from local PHA managers about additions and upgrades that they identified for their projects．The PHAs filled out a data instrument called the ADDs Form，and each item was classified by the Abt inspectors in level of appropriateness（see Section 6．3）．Each item was then costed using computerized cost files developed in conjunction with R．S．Means．

The 150 potential additions and upgrades included a variety of types of potential needs，as shown in Exhibit 6－2．

Exhibit 6－2
Examples of ADDs and ADDs Justifications

Purpose of ADD	Example
Building Integrity	\＃011，Add gutter and leader system
Fire safety	非057，Add fire alarm system
Security	\＃003，Add heavy duty lockset to exterior door
Energy Conservation	非017，Add storm windows
Handicapped accessibiluty	\＃075，Add interior railings
Sanitation	非136，Increase sanitary pipe capacity
Tenant convenience	\＃521，Add／increase laundry facilities
Meet needs of families	非184，Add playgrounds
Increase durability	\＃019，Change windows to non－breakable material
Project viability	\＃154，Add／increase community center
Decrease maintenance costs	\＃072，Change floor finish in lobby

Illustrative parts of the ADDs Form is presented as Exhibit 6－3．Note that on the recording form，the PHA was asked to indicate their justification for each addition，upgrade，or other change．Many of the items are required by the HUD Modernization Standards Handbook or by local code．Depending upon their rationale for a particular ADD，one or more other following justifica－ tion codes was to be recorded in the spaces provided：

Exhibit 6-3

Illustrative Page from the ADDs Form

13-14/

$\begin{aligned} & \text { CHECX } \\ & \text { IF } \\ & \text { NEEDED } \end{aligned}$	Fire Fighting Equipment/Systems		Type of Materials or Quantities	JUSTIF SCATIONE		For 0ヶflee Use
			At This Developatent	Msin	Other	
1-i	053 Add fire extingulshers $15-18 /$	19-22/B	f of flre extinguishers	$\left\|\frac{1}{28-291}\right\|$		1
\mid	054 Add tire pumps 15-18/	19-22/日	All Bldgs, or Bldgs.	$\left\|\frac{\square}{28-291}\right\|$		
$\left\|\left.\right\|_{-} ^{-}\right\|$	055 Add sprinkler/standpipe system $15-18 /$	19-22/B	All Bidgs. or Bldgs. [$\frac{1}{28-291}$		
	056 Add standpipe system $15-18 /$	19-22/B		$\left.\frac{1}{28-29} \right\rvert\,$		$1-1$
	Fire/Smoke Alares					
	057 Add fire alarm system 15-18/	19-22/B	All Blogs. or Bldgs.	$\frac{1}{28-291}$	$\left.\frac{\square}{\frac{1}{30-31 /}} \right\rvert\,$	$\left.\right\|_{-1} ^{-1}$
$\left.\right\|_{1} ^{-}$	058 Add smoke detectors in common ar 15-18/ Other Fire Safety	eas $19-22 / \mathrm{B}$	of smoke detectors * \square 23-27/	$\frac{1}{28-29 /}$	$\left\|\frac{1}{30-31}\right\|$	
	059 Add smoke and ventilation control 15-18/	$19-22 / B$		$\left\|\frac{1}{28-29}\right\|$		$\|\ldots\|$
$\left.\right\|_{-} ^{-} \mid$	060 Add smoke hatches $15-18 /$	$19-22 / 3$	* of smoke hatches * \square 23-27/	$\frac{1}{28-29 /}$	$\left.\frac{1}{30-31} \right\rvert\,$	[-1
	Signalling/Communications					
	061 Add Signaliling/ communications Communic $15-18 /$	Communcation Sysiem Code F* \qquad 19-221	All Bldgs. or Bldgr.	$\frac{-}{28-291}$		$1{ }_{3}^{-1}$
Window Security						
1-1	062 Add security devices to windows 15-18/	Device to be used, \quad Used code J* $\left.\right\|_{19-22 /} ^{\|c\|} \mid$				$\left.\right\|_{-1}{ }_{32}$
$\left\|\left.\right\|_{\ldots} ^{-}\right\|$	```063 Block-up basement windows for security 15-18/ 19-22/B```	* windors to be blocked blocked up \square 23-27/		$\frac{1}{28-291}$		$1-1$
\|-1	064 Add chtid guards 15-18/	19-22/B	f of child guards 4			\square_{-1}^{-1}

*See last page for code categories to be used.

01	$=$	Reduce the need for maintenance/increase durability
02	=	Improve security
03	=	Comply with local or state codes
04	$=$	Other health and safety reasons
05	=	Comply with HJD Modernization Standards
06	$=$	Reduce vandalism/tenant abuse
07	$=$	Energy conservation
08	$=$	Maintain or increase occupancy
09	$=$	For accessibility by the handicapped
10	$=$	Meet needs or requests of elderly occupants
11	=	Meet needs or requests of large family occupants
12	$=$	Convenience/lack of availability in the neighborhood
13	=	Faulty original design/construction
14	$=$	Obsolete system/materials; replacement parts unavailable
15	$=$	Other

The other entries listed on the ADDs Form were specific to the particular items being proposed by the PHA and were necessary for costing purposes. Each PHA was mailed ${ }^{-a}$ instructional booklet--called the ADDs Catalog--that provided step-by-step directions on the completion of the form. Exhibit 6-4 presents a page from the booklet illustrating how to complete the various entries on the ADDs Form.

The ADDs Form was reviewed at two different times: first, the form was reviewed for completeness (and any corrections or clarifications noted) before the inspections began; then, after the development was inspected, the anspectors again reviewed the form and gave their second opinion concerning the appropriateness of the $\mathrm{PHA}^{\prime} \mathrm{s}$ proposed changes, additions, and upgrades. Both architect and engineer had responsibilities for reviewing the ADDs Form--the architect for the architectural systems, the engineer for the M\&E systems.

6.3 GUIDELINES FOR GIVING A SECOND OPINION

Inspector's professional opinions of the appropriateness of the ADDs items took into account everything they learned about the project-whether from the Project Characteristic Form, conversations with PHA personnel, unformation that may have been gathered from the escort during the inspections,

Exhibit 6-4

Illustrative Instructions on Completing Entries on the ADDs Foril

Example f1

As part of the modernization work needed at this development you need to install an upgraded intercom and buzzer system between the lobby and apartments in your five high-rise buildings (but not needed at the townousetype buildings).

Step $\# 1$: Locate the appropriate listing by:
a. looking at the various listings in the "FIRE SAFETY/SECURITY" section of the Catalog listings, until you find "Add signaling/commanications" (Listing 061);

OR
b. referring to the index at the end of the catalog under "intercom", "signalling equipment", or "communications".

Step ${ }^{2}$: Turn to kisting 061 on page 7 of the ADDs Form, and complete that listing.

observations during inspections, and so forth. V1sual evidence of the need for certain changes, additions, and upgrades was, of course, the strongest corroboration for the item listed by the PHA. However, visual evidence may not always be present, and the inspectors might have to use several pieces of information in trying to determine the appropriateness of an ADDs item that was indicated by the PHA.

In illustration, a request to change glazed windows to a non-breakable material (Item 019) may be readily evident by observing many cracked or broken windows. However, none of the windows may be broken because the PHA is constantly replacing them, and their request for this change is to reduce maintenance costs; in such a situation, the inspectors would have to ask the escort about the need for changing glazed windows to a non-breakable material, and the second opinion rating would, thus, be based not only on direct observations at the development but also on the additional information provided by the escort.

Inspectors were alerted to the potential confusion of PHAs/IHAs between FIX and ADD when reviewing the ADDs Form. Although the ADDs Catalog and information flyer sent to the PHA attempted to clarify the distinction between FIX and ADD, there undoubtedly would be some confusion where the PHA used the ADDs Form to indicate needed repairs, renovations and replacements of systems/equipment that were already present at the development. Thus, there might be requests for "Add Storm/Screen Windows," when, in fact, the PHA really wanted to replace the present storm/screen windows because they were at the end of their normal useful lives. In this instance a nonconcurrence would be noted, unless the justification involved premature upgrade. ADD items filled out on the forms that were confused with FIX received a second opinion rating indicating that the ADD was not needed because the needed replacement was already found and budgeted for in the FIX estiamte.

Inspectors also assessed the feasibility of ADD items (these are the ISOs). For example, adding roof insulation was only feasible at buildings with pitched roofs (Observable System 非15, Types 5-10); pitched roofs can only be added to buildings with flat roofs. The addition of parking or playgrounds was dependent on the availability of PHA-owned land and so forth. Examples of the use of the ISO ratings can be seen in Exhibit 6-5. The ISOs varied

Exhibit 6-5
 Examples of the Use of ISO Codes

ISO 1 Examples

ADD 非 ITEM
020 Install showers in bathtubs
012 Add roof insulation
070x Remove or cover hazardous asbestos insulation on ceiling

117 Full upgrade of electric service
016 Install energy efficient windows
131x Add cathodic protection to water distribution system

063 block up basement windows
179 Add drain to parking areas

ISO 2 Examples
034 Add washer/dryer laundry hookups

173 Add 1andscaping

038 Change bedroom floor finish

103 Add exhaust fans in kitchens
027 Add self-contained radiator valves

ISO 3 Examples
073 Change floor finish in corridor

035
Add closet space inside DUs
Add bathroom vanities
Add walls along streets to protect pedestrians

REASON
Improved sanitation
Energy Conservation

Health and Safety
Solve brown outs/safety
Energy Conservation
extend life of existing distribution system
Security
Solve drainage problem .

Would be useful and increase tenant convenience, but common facilities available elsewhere.

Margina1 landscaping on site, more would add to site viability

Present finish has persistent maintenance problems.

Present ventilation marginal
Increases energy conservation

Present finish looked shabby but functional, couldn't tell if change was needed.
Present storage seemed ok. Current storage ok
Walls needed but not possible due to lack of space on site.

Exhibit 6-5 (continued)

Examples of the Use of ISO Codes
095 Change type of elevator door
029 Change or upgrade kitchen cabinet

ISO 4 Examples
010 Change exterior wall materials

138 Add water conditioning equipment

175 Add carports

030 Change/upgrade kitchen stoves

065 Add video surveillance

037 Construct exterior storage shed for each unit

ISO 5 Examples
031 Change/upgrade kitchen refrigerators

171 Add Eencing to define private yards

028 Add cabinets and counter space in kitchens

062 Add window security devices
116 Add master TV distribution

Current doors functional, although they are beaten up.

Current cabinets ok, although shabby in appearance.

Present wall ok, request access for aesthetic reasons only
PHA in hard water area butno an excessive problem.
Present parking lot adequate but exposed
Present stoves appear functional

Low crime area; can see entrance from office

Present storage is adequate

Present refrigerators are very good, request is excessive.
Present yards in excellent condition.
Present storage is quite adequate and in good condition.
Low crime area, unneeded. Present reception good within dwelling units.
window security devices was coded 非 (clear evidence of need) in several Northeast urban projects, but coded 非 (clear evidence that items is not needed) in a small town PHA with a low crime rate.

Inspectors used one of five codes to indicate their professional opinions as to the appropriateness of the ADDs items recorded by the PHA:
$1=$ Definitely Appropriate; clear evidence of need
$2=$ Probably Appropriate; some evidence of need
$3=$ No Second Opinion; unable to determine appropriateness; insuf-

$4=$| ficient information; no information pro or con |
| :--- |

$5=$| Definitely Inappropriate; clear evidence that item is not |
| :--- |

$5 \quad$ needed.

After the $A D D$ forms were returned to the search staff for computer processing, the ADDs were divided into 23 separate categories based on program needs. This typology, dubbed the "crosswalk," took into account the inspector's second opinion, the justification of the PHA in listing the item, and the nature of the item requested. The categories and their meanings are explained here:

1. ADDs Required by Local Code or Modernization Standards (Required ADDs). These are items that are identified by the PHAs as required at all projects under the HUD public housing modernization standards handbook. Since the handbook requires PHAs to meet local codes, most of these items are included here because the PHA has noted the item as code required its main justification. There are also a few items that are required in order to preserve building integrity, health, and safety, such as roof drainage gutters, chimney flue liners, emergency lights, and enclosure walls for refuse.

The inspectors agreed with the need for most of these items. However, some of these ADDs were rated low by the inspectors. In some cases, the current condition of the building was good, and no additions to preserve building integrity were needed. For example, it would be unnecessary to add a gutter and leader system to a roof
if existing drainage was good. In other cases, inspectors disagreed with the need for items that were identified as scode required, either because the PHA made an error in its justification, or because the inspector disagreed with the need for the items even though it was code required. Of all the items coded as "Definitely inappropriate," 86 percent were found in one small field office that had an extremely high ADDs budget request. Thus, most of the ADDs items rated very low are concentrated in only a few PHAs.
2. Project Specific ADDs. The HUD Modernization Standards Handbook allows PHAs to list items that are not on the required list when justified by the conditions at the individual project.' Project specific work is necessary or highly desirable for the long-term viability of a particular project. For example, additional security is needed at some projects in high crime areas while it is unnecessary at other projects. Specific vandalism or maintenance problems may call for the use of especially sturdy materials to reduce operating costs. Marketing problems and tenant needs may require other items.
3. Energy Conservation ADDs. These ADDs are items that have clear energy conservation purposes, such as adding insulation, storm windows, and flue heat exchangers. As has been indicated, it is expected that the Energy ADDs overlap with the findings of the Energy Study described in detail in Chapter 8. Since the estimates from the Energy analysis are based on state-of-the-art procedures for determining costs and savings (including careful consideration of modernization undertaken as a result of the FIX inspection), they are regarded as more accurate.
4. Handicapped Accessibility ADDs. These are items that were justified by the PHA for the purpose of accessibility for the handicapped.
5. Supplemental ADDs.
A. No ISO. These are ADDs for which there is no ISO recorded. In some cases the inspector simply neglected to complete the form, while in other cases the forms were mailed in to Abt after the inspector had left the project and it was impossible to conclude whether or not the item was appropriate.
B. Other. These are ADDs that were not listed on the inspection form, but which PHAs wrote in on the form. The cost estimates were prepared by hand.
C. Currently Prohibited ADDs. These are items that the HUD program handbook has on a list of items that are currently prohibited, such as garages, swimming pools, dishwashers, and individual unit trash compactors.

6.4 USE OF COST FILES FOR ADDs

In the computerized calculation of costs associated with requested ADDs, a program feature was developed to "net out" any ADD that may be requested if the FIX inspection has already called for the same action. Thus, the cost estimate for a PHA request for an upgrade of a development's heating plant (ADD 非146) would be reduced by the FIX amount if the FIX inspection had called for repair of the same facility, since this action by definition would be in accordance with contemporary standards of heating plant design. This netting out is an important safeguard against double counting capital needs and thereby introducing an upward bias into the modernization estimates.

Each ADD item was costed using cost files developed in conjunction with the R.S. Means Company, a nationwide cost engineering firm. The cost programs were applied in a way analogous to those used in the FIX cost files.

6.5 ANALYSIS OF ADDs ESTIMATE

Exhibit 6-1 presented estimates of total ADDs costs by category and ISO. Average per unit costs for these groups are shown in Exhibit 6-6. One interesting aspect of the ADDs estimates is the dominance of project specrfic ADDs: for all ISO categories project specific ADDs considerably exceed the other categories. ADDs required by local code or universally required by HUD

and energy conservation Adds are also important categories. However, relatively few requests were made for handicapped accessibility ADDs or for the miscellaneous categories of ADDs.

Total ADDs costs for any combination of categories and ISOs can be obtained from adding the individual components in Exhibit 6-1. Similarly, average per unit costs can be obtained by adding the desired components in Exhibit 6-6. Indeed, the overview of modernization costs presented in the introduction, indicated average per unit costs by category for ISOs 1 and 2, $\$ 700$ for Required ADDs, $\$ 4,347$ for Project Specific, $\$ 863$ for Energy ADDs, and \$43 for Handicapped ADDs.

Exhibit 6-7 provides the regional distribution for these groups of ADDs. Other totals can be calculated using data in Appendix I. As for FIX costs, there is considerable variation in the distribution of ADDs costs by region relative to the size of the region. Regions.I, III, and IV identified a relatively large share while Region VII identified a relatively smaller amount.

Finally, Exhibit 6-8 lists the most frequently requested ADDs. Clearly ADDs requests cover numerous aspects of building, unit, and site needs and represent a wide variety of justifications.

Exhibit 6-7
ADDs Components by Region
(ISO 1 and 2) (\% of column total)

ADDs Component Region	(1) MANDATORY ADDs $(1 \text { SO } 1,2)$	(2) PROJECT SPECIFIC ADDs $(150$ 1,2)	(3) ENERGY ADDs $(1501,2)$	(4) HANDICAPPED ADDs (150 1,2)	(5) TOTAL (1) to (4)	(6) TOTAL ADDS All Categories $(\$$ millions $)$ \& all isos	(7) \% of Total Units	(8) Ratio of Percentage 10 Column (6) to Column (7)
	\$76.7	\$467.4	\$51.8	\$1.55	\$597.5	\$923.8		
	8.7\%	8.5\%	4.8\%	2.8\%	8.0%	7.2\%	5.88	1.22
11	257.7	1,734.6	271.8	10.3	2,274.4	2,868.5	23.44	. 964
	29.3	31.8	25.0	18.7	30.3	22.5		
111	110.49	567.9	137.1	4.8	820.2	1,787.6		
	12.5	10.4	12.9	8.7\%	10.9	13.8	11.71	1.178
IV	128.3	838.3.0	161.1	10.02	1,137.7	2,104.i		
	14.6	15.3	14.8	18.1	15.2	16.3	21.55	. 756
V	201.6	994.5	247.5	26.8	1,470.4	3,034.3		
	22.9\%	18.2	22.8	48.5	19.6	23.4	16.64	1.406
VI	62.53	336.9	76.9	. 8	477.1	1,098.2	9.94	. 855
	7.1	6.2	7.0	1.4	6.4	8.5		
VII	20.26	118.4	33.4	.12	172.2	275.3		
	2.3\%	2.2	3.1	. 22	2,3	2.1	3.31	. 634
VII!	$\begin{array}{ll}.7 & \\ & .08\end{array}$	83.6	24.1	0	109.1	149.1		
		1.5	2.2	0	1.5	1.2	1.29	. 93
IX	$\begin{array}{rrr}14.9 & \\ & & 1.7\end{array}$	252.6	62.1	. 006	329.5	$491.2=$		
		4.6	5.7	. 01	4.4	3.8	4.37	. 87
x	$\begin{array}{rr}7.69 & \\ & .87\end{array}$	$\begin{array}{rr}74.9 & \\ & 1.4\end{array}$	19.2	. 86	102.5	214.5		
			1.8	1.6	1.4	1.7	1.86	. 914
Total	$\begin{array}{r}\$ 881.7 \\ 100 \% \\ \hline\end{array}$	$\$ 5,469.1$$100 \%$	\$1,084.9	\$55.2	\$7,490.8	\$12,946.5	100\%	
			100\%	100\%	1008	100\%		

Exhibit 6-8

ADDs Most Frequently Identified

\#-of Requests
Security Features
Security Devices 428
Heavy Duty Locks 864
Metal Doors and Frames 747
Building Mounted Site Lighting 483
Electricity
Site Electricity Upgrade 1,208
DU Electricity Upgrade 410
Unit Features
Shower in Tubs 427
Vanity 437
Upgrade Sinks and Cabinets 848
Refrigerators 778
Stoves 812
Energy Efficiency
Energy Efficient Windows 1,057
Other
Gutter/Leaders 477
Bedroom Floor Finish 413
Other Floor Finish 437

VII. REDESIGN

7.1 SUMMARY OF REDESIGN COST ESTIMATES

Relatively few public housing developments are in need of substantial structural changes to ensure their continued viability--the definttion of redesign which was used in this study. A first count of developments that might be redesign candidates was determined from the preliminary Mod Needs Data Form survey, and further refinement of projects meeting the definition of redesign was identified by a second data gathering effort, the Redesign Mail Survey. A sample of 75 developments in need of Redesign was then selected for in-depth three-day site visits, interviews, inspections, and related data gathering activities. The Redesign Study was conducted by 20 senior architects familiar with redesign solutions to address a variety of problems.

These senior design architects, selected from the three A\&E firms that Abt Associates had chosen as subcontractors for the main study field data collection effort, were given additional special training in the conduct of the Redesign assessment. Review of condrtion data from the prior FIX inspection at each of these developments was part of the preparation process that each Redesign inspector undertook before an intensive on-site design assessment of the needs of each Redesign candidate projects. These inspections took place between September 1985 and January 1986.

The surveys did not include HUD field office opinions regarding the need for redesign. Thus, the estimates are an indication of PHA-perceived redesign needs.

The national estimate of Redesign costs totals $\$ 2,063$ million. The 95 percent confidence interval of the estimate is plus or minus $\$ 120$ million. We estimate that PHAs would like to have redesign work performed at 883 projects containing 160,000 units.

This cost estimate has been adjusted to net out FIX actions already identified and presumably to be taken at the 75 developments so as to avoid any "double counting" of modernization needs. However, the estimate does not net out ADD actions because not all of them would be done during redesign. An accurate estimate net of ADDs is therefore not feasible. Exhibit 1.2 in the introduction indicated that average per unit redesign costs for units
requiring redesign is $\$ 12,931$ (as compared with an average of $\$ 1,640$ per unit when all units are used in the denominator). Substantial variation exists across the redesign sample in both the problems at the developments and in the design solutions called for by architects, however, and further analysis is needed to indicate the types of modifications that are needed.

Exhibits $7-1$ and $7-2$ indicate redesign costs by region. The redesign component of modernization, perhaps more than any other, is unevenly distributed relative to the size of the region. Clearly, many additional factors need explanation to further our understanding of this distribution.

7.2 REDESIGN INSPECTIONS

Although most public housing developments are well-designed to meet the needs of their tenants, some projects may be in need of redesign to ensure long-term viability. Some redesign needs may stem from inadequacies of the initial design. In other cases, the redesign may be necessitated by problems associated with elderly/family mix, overall density, neighborhood or internal security.

In one of the preliminary data collection efforts in the Modernization Needs Study, ${ }^{1}$ PHAs indicated which, if any, of their developments were in need of redesign. A "Redesign Questionnaire" was then mailed to those developments reporting such needs in order to gather further detailed information on these needs from the responding PHAs. Based on the results of this preliminary Redesign Mail Survey, a sample of 75 developments was selected for intensive three-day inspections by senior architects who had been given special additional training for this task. The working definition used as a guide in these inspections was that:

Redesign indicates substantial structural changes in units, buildings, and/or site are needed. A project is considered to require REDESIGN when, if simply restored

[^7]Exhibit 7.1
Redesign Costs by Region

to good condition without redesign the development would become increasingly vacant, continue to deteriorate, or fail to serve the needs of the tenants.

Clearly, modernization of a housing development might involve actions in all three of these categories of FIX, ADD and REDESIGN, or just in one or two of them.

Our purpose in surveying the 75 projects that comprised the redesign sample was threefold:

- to determine the nature of redesign needs, as distinct from these projects' modernization needs that have been measured in the FIX and ADD component of the study;
- to estimate the costs associated with projects in need of redesign; and
- to determine the prevalence of the need for redesign, by relating the redesign sample to the larger universe of public housing projects (or developments) that are in need of redesign.

In order to gather this data, we developed a set of procedures and data gathering instruments that senior architects used to analyze existing problems and to scope initial design interventions for projects during three-day site visits. This method was standardized so that different architects in different sections of the country could reach comparable decisions on the level of work and scale of change necessary in each project. Exhibit 7-3 presents a typical page from the REDESIGN Diagnostic Interview guide where the architect sought to identify potential problems at the site that would be indicative of the need for redesigning that component of the development. Analysts then estimated the costs of the various redesign proposals for inclusion in the National Estimates Report.

More specifically, we offer this definition of Redesign:

Exhibit 7-3
 Illustrative Page from Redesign Diagnostic Interview Guide

SITE
B23. Which, if any, of these design concerns contribute to the site problems? SHOW EXHLBIT \#10 AND CODE ALL THAT APPLY.
Streets and Parking

Recreation Areas

Trash Disposal
r. Inappropriate dumpster location for truck pick-up $68 /$
s. Inconvenient dumpster or incinerator location for tenants ${ }^{-} \mid 0$
t. Insufficient number of dumpsters. - 1
u. Lack of space for trash cans 2
Site Layout
v. Lack of private yards —69/
w. Areas of site that do not appear to belong to anyone 4x. Areas which invite tresspassing and/or mashief by
outsiders outsiders 5
y. Hiding places
y. Hiding places 6 6
z. Areas of site not accessible to handrcapped 7
aa. Proximity to "attractive nuisance" or incompatible land use 1 8
Equipment and materials
ab. Poorly functioning or poorly designed site furniture 1 - 9ac. Inappropriate site furniture for current residents
or lack of site furnzture. - 0
ad. Inappropriate materials which are easily damaged 1
ae. Poor initial construction 2
af. Other? (PLEASE DESCRIBE)
ag. No design concerns in site (SKIP TO B28) $\cdots-$
71/ 72/
CO4 CONT

1. Redesign involves substantial structural changes in the units, buildings, and/or the site. For example, redesign might involve: 1) removal of partitions to reconfigure or expand apartments; 2) change in the size or layout of the existing entry system; or 3) removal of buildings or parts. of buildings to reduce density.
2. Redesign of a project does not require that the entire site, all units or all buildings be redesigned. It is possible to have only portions of a project redesigned; for example, only some units or areas of some buildings may call for this approach. The remaining buildings, units, and site would be rehabilitated as necessary, consistent with the original design.
3. Redesign should not be confused with repairs, rehabilitation, or additions, no matter how extensive these may be. Consequently, it is possible for a project to have a very large FIX cost without needing redesign. For example, remodelling to restore units to their "like-new" condition is rehabilitation; adding cabinet space to the kitchen without reconfiguring the unit is an "addation." In contrast, transforming a three-bedroom unit to a two-bedroom unit is redesign.

From the above defintion, it is clear that there are many actions that could be done at a public housing development--e.g., renovating kitchens and bathrooms with new appliances and fixtures, refurbishing the site's landscaping, of replacing inadequate wring or plumbing systems--that, by themselves, would not fall in the definitions of "redesign."

The purpose of the redesign scoping performed by the architects was to ascertain the level of capital expenditure or redesign budget judged to be adequate to address the design problems, rather than a detailed design solution for that particular project. Given only a three day site visit, it was not feasible for an architect to develop a detailed design solution for a project. To respond to this constraint, the redesign protocol included a series of redesign actions which the architect could specify for different locations or "elements" in the project. These redesign actions represented a spectrum of design intervention from "refurbish" (fix what exists) to "reno-
vate" (enhance and modify what exists while respecting the basic structure) to "reconfigure" (fundamentally change the original design). These actions are defined generically for seven project elements: Units, Common Entries and Exits, Common Circulation, Building Envelope, Site, Community Facilities and Mechanical and Electrical Systems. Exhibit. 7-4 illustrates the standard guidelines used by the senior architects in determinang the level of antervention required for site redesign. By specifying the type of redesign action appropriate for each redesign element and by calibrating to the level of problem which had been described by the PHA, the redesign inspector defined a level of physical intervention at each location or element commensurate with the scale of the observed problems. This will allow calculation of gross per square foot cost budgets for each recommended action level of each element to achieve an overall scale of costs specific to the particular conditions at each project.

Three additional factors distinguish REDESIGN from the FIX and ADD components of the Modernization Needs Study. First, in REDESIGN, the unit of observation is the entire project. Although the project will be analyzed in terms of various components--units, common entries, common circulation, and so forth--the solutions proposed attempted to address problems of the entire project, taking into account the interrelationship of the components. In contrast, the FIX/ADD inspections will produce separate estimates for units, buildings, and the site.

Second, for REDESIGN, the goal of the site visit is for the inspector to scope the appropriate level of redesign intervention commensurate to the severity of the problems. In FIX/ADD, the emphasis is on correctly observing and recording each work item needed.

Finally, the cost files for the two surveys have been constructed differently. The FIX/ADD cost file, developed from the R.S. Means system, is made up of literally thousands of costs estimates for specitic work items, such as replacing a standard 2 x 3 window or reconditioning a closet door. In contrast, the redesign cost are based on levels of renovation, estimated on a square foot basis. Cost estimates are further refined by asking for specific quantities for high ticket items, such as the replacement of a kitchen or roof.

Exhibit 7-4
Standard Guidelines Used by Architects in REDESIGN Inspections
5 SITE
REDESIGN ACTIONS

A. | Restore site facilaties and areas in |
| :--- |
| exlsting locations to original |
| condition |

The cost assigned to each redesign action is a composite of the square foot costs associater with specific construction activities which would typically be performed under that task. These subactions include, for example, demolition and cartage, sheetrock and taping, overhead and profit, and so forth and are unique to each redesign action. The redesign action costs will be further refined by three descriptors:

1) construction type ('heavy' masonry construction or 'light' wood frame construction)
2) building type (low-rise, mid-rise, or high-rise), and
3) physical condition (excellent, good, fair, or poor).

Each cost estimate for the redesign of a project is net of the FIX costs. However, because it is unclear which ADDs costs would actually be funded and done in the context of redesign, the Redesign costs are not adjusted for $A D D$ at those projects. After these costs have been estimated for the 75 sample redesign projects, they were weighted in order to provide the required national estimates.

VIII. ENFRGY CONSERVATION COST ESTIMATES

8.1 SUMMARY OF ENERGY CONSERVATION IMPROVEMENTS COST ESTIMATE

In order to gather more information about energy conservation opportunities at the nation's public housing stock, a subsample of 241 developments was visited for additional data collection.

For each of the developments selected into the energy study sample component, one bullding of each major type where present (high-rise, low-rise, and site-wide facility) was identified and specific data collected for the energy substudy. Prior to the arrival of the inspection team, PHAs were asked to complete an historical Energy Usage Data Form. The architects and engineers conducting the main study also administered an Energy Practices Intervien with responsible PHA staff while at the development and completed an Energy Inspection for each of the identified buildings in the selected projects. In all, the inspectors conducted energy-related interviews and additional inspections in a sample of 346 buildings. The energy data collection effort began in July, 1985 and was completed in September of that year.

Using current $H U D$ regulations that require energy conservation capital improvements that are cost effective using a test of a 15 year single payback period, the pubiic housing stock needs energy conservation capital improvements estimated to cost $\$ 939$ miliion. The 95 percent confidence interval of the estimate is plus or minus $\$ 60$ million. These 1 mprovements would save $\$ 211$ million in energy costs yearly for an average single payback period of 4 $\frac{1}{2}$ years.

8.2 USING THE ENERGY DATA

From the energy study data, supplemented by the FIX inspections conducted for the main study, cost-effective energy conservation actions were identified. Using the HUD energy audit (provided by Perkins and Will/The Ehrenkrantz group, ${ }^{l}$) the potential energy conservation action and resulting

[^8]energy savings is computed for each of nearly 50 energy conservation opportunities (ECOs).

Energy conservation opportunities applying to operating and maintenance items are regarded as part of the operating budget and not part of the capital budget. Thus, unless it was clear from the data collection forms that the PHA already had implemented the operating and maintenance actions, the energy savings resulting from these actions were computed and subtracted from the energy cost totals.

Next, some of the FIX actions indicated in the main study have an impact on energy conservation. For example, window replacement that is indicated because the present ones are rotten will achieve an energy savings as well. Thus, the next step is to estimate this by-product energy saving and revise the energy usage schedule accordingly. Finally, many of the energy savings computations are based on a percentage savings of the total energy used; obviously, once energy use is reduced by an energy conservation action the total energy used from that source is reduced and the absolute savings achievable from other actions is also reduced. Thus, the most cost-effective energy conservation action is regarded as being implemented first, with its resulting reduction in energy use, then the second most cost effective, and so on. ECOs were estimated using both a 15 year simple payback method and using a net present value method.

Selection of Energy Conservation Actions based on Payback Period

The simple payback method of evaluating energy conservation actions was evaluated as indicated in the PWE workbook and HUD regulations. This method simply divides the cost of implementation by the estimated first-year energy cost savings and regards the result as the payback period, that is, how long it will take for the savings to add up to the cost of implementation, disregarding energy inflation rates and the time value of money. Energy conservation actions are to be implemented as long as the payback period does not exceed 15 years or the expected lifetime of the action, whichever is shorter. In the current study, energy conservation actions are implemented sequentially, starting with the action with the shortest payback period and continuing until all actions satisfying the 15-year/1ifetime criterion have been exhausted.

Selection of Energy Conservation Actions Based on Net Present Value

A cost-effectiveness calculation is performed taking into account the cost of implementing the action and the lifetime energy cost savings expected (including allowances for increases in energy costs over time and discounting future years' savings to compute their present value). Energy conservation actions are regarded as cost-effective as long as the present value of the savings is greater than or equal to the cost (or present value of the cost, if the action is financed) of implementation. ${ }^{1}$

Energy conservation actions are implemented beginning with the action with the highest net present value (excess of discounted present value over the cost of implementation) and continuing until all actions with positive net present value have been exhausted. Energy inflation rates were taken as the simple average over the period 1987 through 1998 of the Personal Consumption Deflators for fuel oil, electricity, and natural gas, while the discount rate was taken as the simple average over the same period of the 30 -year Treasury bond and Treasury bill rates as published by Data Resources Inc., "U.S. Longterm Review," Fall 1986.

8.3 THE FINDINGS

The study finds that, using the 15 year payback method, energy conservation capital improvements costing $\$ 939$ million are needed. These actions are estimated to save $\$ 211$ million annually, for an average payback period of about $4 \frac{1}{2}$ years.

Using the net present value approach, energy conservation capital needs are $\$ 1,209$ million, while the annual cost savings are $\$ 221$ million annually, slightly more than the savings obtained in the simple payback method. The present value of energy cost savings discounted over the lifetime of energy conservation actions, net of implementation costs is estimated to be $\$ 3,639$ million.

[^9]The energy cost savings from the FIX actions, such as repairing or replacing windows, is $\$ 29$ milion. The model also estimates that improved operating and maintenance practices would cost $\$ 98$ million total and would save $\$ 83$ million annually. Many of these items such as weatherstripping and caulking last about three to five years.

Exhibit 8-1 sumnarizes the estimated savings per unit in energy costs and per-unit costs of implementation of energy conservation actions. Annual perunit energy savings of $\$ 23$ is estimated to result as a by-product of implementing the FIX actions--at no further cost of implementation. If all the applicable operating and maintenance (O\&M) actions were taken, we estimate that annual per-unit savings of $\$ 66$ would result. Our O\&M implementation cost estimates were based on somewhat arbitrary scale factors against project size or other measures. Estimated annual expenditures, presumably out of operating and maintenance budgets, average $\$ 78$ per unit.

A project by project assessment more closely fitting the savings available and costs of implementation should be made to identify those operating and maintenance actions actually worth doing, although the value of implementing them (for example maintaining a reliable provision of heat) may not be reflected in energy savings.

Energy conservation opportunities were evaluated in two ways.

1. Accepting any Energy Conservation Opportunity (ECO) with a payback period within 15 years (implementation cost divided by annual energy cost savings equal to or less than 15 years).
2. Accepting ECOs as long as the discounted present value of the stream of energy cost savings equalled or exceeded the 1 mplementation cost, that is, for all positive net present values.

As Exhibit 8-1 indicates, the payback criterion justifies an average of $\$ 746$ per unit in ECO implementation costs to achieve per-unit annual energy cost savings of $\$ 167$, for an average payback period of 4.5 years. For ECOs jusitified on the basis of positive net present value, implementation costs of

\$961 per unit are estimated to achieve $\$ 176$ in annual energy cost savings, amounting to a discounted present value of $\$ 2,892$ per unit in energy cost savings.

8.4 DETAILS OF ENERGY STUDY PROCEDURES

Components of public housing that do not require repair or replacement for reasons of physical deterioration may yet have capital improvements that should be made for reasons of energy conservation. The special Energy Conservation study builds upon the data and results of the main modernization cost study of modernization backlog to 2dentify cost-effective energy conservation actions that should be taken in addition to other modernization actions. Previous work for HUD by Perkins and Will/The Ehrenkrantz Group produced a workbook ${ }^{1}$ for PHAs on energy conservation opportunıties that provides part of the basis for the current study.

As indicated above, as part of the effort to design the main study and the various substudies, PHAs were mailed a brief self-administered questionnaire, the Modernization Needs Data Form. This project-specific data form obtained basic project configuration descriptions and indicated the extent to which basic energy conservation actions already had been taken in such areas as insulation, installation of window replacement, and improvements in heating systems. The Modernization Needs Data Form gathered this information on 6,670 public housing projects, comprising the sampling frame from which the main study sample of more than 1,000 projects was scientifically selected.

In combination with the energy use and potential savings computations performed by Perkins and Will/The Ehrenkrantz Group, ${ }^{2}$ estimates of potential energy savings were made for each of the projects in the main sample. A total of 241 projects for the special Energy Substudy was selected from within each of four strata of ranges of estimated per-dwelling-unit energy savings.

[^10]For each of the 241 projects in the Energy Substudy, one building of each major type, where present (high rise, low rise, single family, towhouse, or site-wide facility), was identified as a subset of the buildings inspected for the main study of $F I X$ and $A D D$ needs. PHAs were marled and asked to complete an Energy Usage Data Form, a self-administered questionnaire that gathered historical data on use of various types of fuels and their costs. To the extent that such data were available for the sampled 346 buildings in which we were especially interested, the PHAs were asked to report data on the Energy Usage Data Form for those specific buildings; otherwise, project-level usage data were requested instead. Exhibit $8-2$ presents a typical page from the form, requesting detailed usage and cost data on heating oil (provided this was the source of heat at the development).

When the architects and engineers who were conducting the main study arrived on site, they first reviewed the Energy Usage Data Form for completeness and, if needed, obtained clarifications to the form's entries. In conjunction with the main study's FIX/ADD inspections, the field staff also conducted Energy Practices Interviews on the buildings selected into the Energy Study. Questions asked in the Energy Practices Interview covered such topics as the $\mathrm{PHA}^{\prime} \mathrm{s}$ maintenance practices with respect to heating equipment, typical day/nıght temperature settings, and previous efforts to minimize energy usage at the sampled buildings.

The field architects and engineers also conducted a focused inspection on the energy characteristics of the sampled buildings and dwelling units. Exhibit 8-3 illustrates one page of the Energy Inspection Form, in this case for the first floor common areas of apartment buifdings.

From this set of data, supplemented by the inspections conducted for the main study, cost-effective energy conservation actions can be identified. Using the PWE workbook, the potential energy conservation action and resulting energy savings is computed for each of approximately 50 energy conservation opportunities, listed in Exhibit 8-4. The energy saving for each energy conservation opportunity first is computed as though accomplished in isolation from all the others. If these savings were simply added up, they would overestimate actual potential savings for two reasons. First, some of the FIX actions indicated in the main study will have an impact on energy conservation; for example, window replacement indicated because the present ones are

Exhibit 8-2

Illustrative Page from the Energy Usage Data Form

B4. What is the energy source used for? (CIRCLE ALL THAT APPLY.)

P1PED-IN GAS		OTHER (RS Above)
Space Heating................. 1	$56 /$	Space Heating.... 1
Hot Water... 2		Hot Water 2
Cooking 3		Cooking. 3
Power Generation.............. ${ }^{4}$		Porer Generation... 4

B5. Please indicate the tame period covered by these data.

C. Rnergy Sources Delivered in Bulk -- Available Only at the Project Level

CARO
10 1-121 13-14/06
This section covers other energy sources that may be used by your project chat are delivered in bulk-for instance, deliveries of coal, bottled gas, or wood. (If this project uses these types of energy and they are avallable for the specific residential building(s) and free standing site wide facilities Insted on the cover page, please enter these data in Part fil of thus booklet.)

Fuel 0_{11}
Cl. Ts fuel oil used? (CIRCLE ONE)

C2. Please provide data by delivery for all deliveries durang the most recently completed PHA fiscal year.

FUFL Oill				
$\begin{aligned} & \text { OELIVERY } \\ & \text { NUMEER } \end{aligned}$	MONTH/YEAR REC.E IVED	\cos T	AMOUNT (Gatlons)	indicaje grade N'S 2, 4, or 6
1	$\frac{1198}{16-18 /}$	8 $19-251$	$26-30 \%$	2, 4, 6 31/
2	$\frac{198}{32-34}$	8 35-4]/	$42-46 /$	2, 4, 6 4\%/
3	$-\frac{1198}{48-50 /}$	s $51-57 /$	$58-621$	2, 4, 6 63/
4	$\frac{1198}{64-66 \%}$	\$ 67.731	$\overline{74-78 ;}$	2, 4, 6 79/
5	$\frac{1198}{15-17 \%}$	s	$25-397$	2, 4, $630 /$
6	\cdots	$5 \ldots$	"——4i-45/	2, 4, 6 46/

CARD *07
10 1-121
13-14/07

Exhibit 8-3

Illustrative Content of the Energy Inspection Form

MUE: MULTI-UNIT BU:LDING (with Internal Common Areas)

c. First Floor Circulation Areas

1. Openable Windows

a. Are storm windows present1

C. Window fit

d. What percentage of windows are weatherstripoed?
e. Enter percentage of windows with missing or deteriorated putty?
2. Air Conditioning
a. is this space oir conditioned,
b Window tinting t
 $2 \longrightarrow$ \qquad
SKIP TO SUESIIOX 3
701

Whaow finting
Clear. \qquad
\qquad ...

Tinted \qquad
\qquad 2
c. Interior Wiadow covering Thermal shutters, biinds or shodes..
 None of the above \qquad
\square 2721
d. Are east, south, and west-facing windows welt shaded by trees, vegetation, or exterior overhangs, sunshades, awnings, or canopres?

Exhibit 8－4
Energy Conservation Opportunities

architectural ecos

非：Improve Architectural O\＆M

非2：Insta11 Replacement Windows
\＃3：Install Storm Windows
\＃\＃4：Weatherstrip Windows and Doors
［⿰⿰三丨⿰丨三⿻⿻一𠃋十一 ：Install Insulating Window Shades－－engineering subcontractor indicates usual choice is either storm windows or thermopane glass and shades often are tenant responsibility］
\＃6：Instal1 Window Sun Shades
非7：Install Storm Doors
\＃8：Construct Vestibules
\＃9：Install or Increase Attic Insulation
非10：Install Roof Insulation
韭11：Install Wall Insulation
非12：Install Passive Solar Collectors

HEATING ECOs

\＃13：Ingtall Setback Thermostats
非14：Improve Space Heating O\＆M
非15：Install Flue Dampers
\＃16：Convert to Electric Ignition
［\＃17：Reduce Burner Nozzle Size－－engineering subcontractor indicates that although PWE workbook indicates flat 7 percent saving on heating fuel，in practice there is much less potential because PHAs will have already done this if it is feasible］
外18：Install Tenant Fuel Meters
\＃19：Improve Central Heating O\＆M
［非20：Install Modulating Burners－－engineering subcontractor indicates that most large boilers already have these and that the number of cases where they might be installed does not justify the cost of data collection］
非21：Install Flue Heat Recovery
［非22：Install Turbulatorsmengineering subcontractor indicates these might actually decrease energy efficiency；unless turbulators are cleaned twice a year the carbon buildup around them reduces the efficiency of heat transfer－－they are not often used］
非23：Install Summer－time Domestic Hot Water（DHW）Heaters
非24：Replace Obsolete Heating Plant
\＃25：Improve Central Distribution O\＆M
\＃26：Insulate Hot Water or Steam Pipes
［非27：Install Radiator or Zone Controls－－engineering subcontractor suggests removing this one because equipment is difficult to shield from tenant tampering；PHAs installing these often take them out．$]$

Exhibit 8－4（continued）

Energy Conservation Opportunities

SECONDARY SYSTEMS ECOs

```
##28: Improve Domestic Hot Water (DHW) O&M
#29: Install Flow Restrictors
#30: Insulate DHW Tanks
#31: Convert DHW Systems to Solar
{32: Install DHW Off-peak Controls
#33: Install Gold Water Saving Devices
#34: Convert Water Supply Pumps
非35: Convert Laundry to Cold Rinse
#36: Improve Ventilation/AC O&M
[游3: Install Ventilation Warm-up Cycle--engineering subcontractor suggests
that this ECO is applicable to so few cases that it does not justify
the cost of data collection.]
#38: Replace Obsolete AC Equipment
```


ELECIRICAL SYSTEMS ECOs

\＃39：Improve Electrical／Lighting O\＆M
栍40：Convert Incandescent Lamps（Dwe11ings）

\＃42：Convert Incandescent Lamps（Public Areas）
\＃43：Repiace Fluorescent Bulbs
\＄44：Install High－efficiency Ballasts
\＃45：Install Daylighting Controls
＇⿰⿰三丨⿰丨三一年：Gonvert Site Lighting Lamps
\＃47：Install Site Lighting Photo－controls
非48：Install Tenant Metering
\＃49：Correct Low Power Factor
［符50：Instal1 Load－shedding Controls－－engineering subcontractor indicates that in most residential applications the number of loads that can be shed is too small to justify the costs of installing the necessary instrumentation and controls．Other engineering firms have indicated to HUD that such controls can be quite cost effective in all－edectric buildings．］
rotten will achieve an energy savings as well. Thus a first step is to estimate this by-product energy saving and'revise the energy usage schedule accordingly. The second consideration is that many of the energy savings computations are based on a percentage savings of the total energy used; obviously once energy use is reduced by an energy conservation action the total energy used from that source is reduced and the amount of savings achievable from other actions is also reduced. Thus the most cost-effective energy conservation action is regarded as being implemented first, with its resulting reduction in energy use, then the second most cost effective, and so on. We tested the results of three types of energy conservation approaches: the simple payback method, the net present value (NPV) method, and a special NPV case where energy cost inflation equals the Federal discount rate.

The NPV approach is a cost-effectiveness calculation that takes into account the cost of implementing the action, the lifetime cost savings expected (including allowances for increases in energy costs over time and discounting future years' savings to compute their present value). Energy conservation actions are regarded as cost-effective as long as the present value of the savings is greater than the cost (or present value of the cost, if the action is financed) of implementation.

The conventional "payback" method currently used by HUD for evaluating energy conservation actions simply divides the cost of implementation by the estimated annual energy cost savings and uses the result in computing the payback period, that is, how long it will take for the annual savings to add up to the cost of implementation. The payback method of evaluation has some important drawbacks, however. It $1 g$ nores the value of the savings that accrue in the years after the payback period until the end of the useful life of the energy conservation action. (When applied with care the payback method limits the effective payback period to be no more than the useful life of the energy conservation action.) The payback method also essentially ignores the issue of relative inflation in energy costs (hence, increases in annual savings) and the difference in value between current year savings and future year savings. Although the payback method of evaluating energy conservation opportunities has these drawbacks, it, too, is used in our study for an alternative computation of justifiable actions, because this method is the one called for in current HUD regulations. Energy conservation actions are regarded as cost
effective under the payback method if the payback period is less than 15 years or the life of the conservation measure, whichever is smaller. While the simple payback method is less elegant, it has the advantage of computational simplicity and is therefore used by many PHAs. Another advantage of the simple payback approach is that it does not identify conservation measures that have such long payback periods that they exceed the useful lifetimes of the buildings. Also, tests of the method have shown that the results are quite similar to those obtained by more complex energy audits.

Even if the more elegant net present value approach is not used, another approach with some of its advantages is to use the result of the net present value formula for the case where energy cost inflation equals the federal discount rate (cost of money). In this case net present value is:

$$
N P V=E_{0} L-C
$$

where $\quad E_{0}$ is the first-year energy cost savings
I is the expected lifetime of the energy conservation action and C is the cost of implementation.

Conservation actions should be undertaken starting with the one with the largest NPV for which budget is available and continuing to implement others in order of NPV until the energy conservation budget is exhausted or further possible actions would have negative NPV. This is the same as saying that an action is justified only if its expected lifetime is at least as long as the payback period. This can be seen by rewriting the equation for NPV as

$$
N P V-E_{0}(I-P)
$$

where

$$
P=\frac{C}{E_{0}}
$$

or the payback period.

Once the cost effective energy actions are compiled for each of the buildings in the energy substudy sample, the probability of selection of each building is used to form sample'weights for projecting these results to national totals: The substudy results in the followng national totals:

- costs of implementation of all cost-effective energy conservation actions;
- estimated energy cost savings, by type of energy source;
- frequencies of occurrence of each of the cost-effective energy conservation opportunities in the public housing stock;
and, for purposes of comparison,
- distributions of cost-effective payback periods associated with each of the energy conservation opportunities.

The results of the simulations are displayed in Exhibit 8-5, which shows the results of the simple payback analysis and of the four different simulations using the net present value approach. In. each of the cases, we assume that the projects have first gained energy-savings by fixing items needing repair (such as broken windows) and by implementing improved operating and maintenance practicies such as weatherstripping and,caulking (see Section 8.3). Once these repairs and maintenance items have been done, the simulations estimate the cost and savings due to making energy conservation capital improvements.

In the 15 -year simple payback analysis, all energy conservation opportunities (ECOs) are chosen that save more than their implementation costs in a 15 -year period. In this case, the implementation costs are calculated at $\$ 939$ million and the annual savings are estimated to be $\$ 211$ million, for an average payback period of $4 \frac{1}{2}$ years.

Using the net present value approach, the nominal case is based on standard assumptions about the rate of inflation in energy prices and the Federal government's discount rate (cost of borrowing money). The inflation rate estimates are taken from the 12 year average for the personal consumption deflator in the U.S. Long Term Review published by Data Resources Inc. The

Exhibtt 8-5

Variation in Energy Conservation Results by Inflation Parameter for Net Present Value Analysis

	Payback Analysis	Inflation Parameter			
		Low	Nominal	High	Zero
Annual Energy Cost Savings - per Dwelling Unit - National Estimate (millions)	$\$ 167$ $\$ 211$	$\$ 168$ $\$ 211$	$\$ 176$ $\$ 221$	$\$ 180$ $\$ 226$	$\begin{aligned} & \$ 175 \\ & \$ 219 \end{aligned}$
Implementation Cost - per Dwelling Unit - National Estımate (millions)	$\$ 746$ $\$ 939$	$\begin{aligned} & \$ 788 \\ & \$ 987 \end{aligned}$	$\$ 966$ $\$ 1,209$	$\$ 1,126$ $\$ 1,417$	$\$ 999$ $\$ 1,257$
Net Present Value of Cost Savings - per Dwelling Unit - National Estimate (millions)	--	$\$ 1,949$ $\$ 2,453$	$\$ 2,892$ $\$ 3,639$	$\$ 4,870$ $\$ 6,128$	$\$ 3,511$ $\$ 4,418$

Notes:

1. The inflation parameter ($n-r$) is evaluated at ± 0.03 around the nominal case, where $n=$ energy inflation $=0.0725$ Fuel O_{1}]

$$
\begin{aligned}
& 0.0380 \text { Electricıty } \\
& 0.0639 \text { Natural Gas }
\end{aligned}
$$

from the 12-year average for the personal consumption deflator from the Data Resources Inc. U.S. Long-Term Review, Fall 1986. The discount rate, r, is 0.07 , averaging Treasury Bills and 30-year Treasury Bonds.
2. The case $(n-r)=0$ results in the simplified net present value equation

$$
N P V=E_{0} L-C
$$

where E_{0} is first-year energy savings, L is lifetime in years of the energy conservation action, and C is the cost of implementation or $N P V=E_{0}(L-P)$ where P is the payback period, C/L.
inflation rates are fuel oil $=.0725$, electricity $=.0380$ and natural gas $=$.0639. The Federal discount rate is assumed to be .07.

In the nominal case, the implementation costs are $\$ 1,209$ million and the annual cost savings are $\$ 221$ million, just 6 percent more than the simple payback case. The net present value of the cost savings over the lifetime of the conservation measures is $\$ 3,639$ million.

Energy inflation estimates have been subject to several shocks over the past several years and it is possible or even likely that energy prices will undergo other shocks over the coming years. What if energy price inflation is 3 percentage points lower than expected while the discount rate remains the same? In the $10 w$ inflation simulation, implementation costs are estimated at $\$ 987$ million and annual cost savings are estimated at $\$ 211$ million. If energy prace inflation is 3 percent higher than the nominal case, the implementation cost rises to $\$ 1,417$ million and the net present value of cost savings increases to $\$ 6,128$ million. Thus, the estimates for energy cost savings based on the net present value method are sensitive to the assumed rates of energy inflation and government cost of money (discount rate).

The special case of energy inflation equal to the discount rate (inflation parameter equals zero) is also shown and gives results quite comparable to the nominal inflation case. Because it is a simple extension of payback analysis that takes into account the magnitude of annual savings and the lifetime of an energy conservation action, the zero inflation analysis has advantages over the simple payback analysis. The per dwelling unit energy cost savings and implementation costs are higher for both the zero inflation case and the nominal inflation case than for the simple payback analysis.

8.5 Energy Costs by Region

The statistical procedures used to allocate energy costs and savings to regions and field offices and detailed listings of the estimates are presented in Appendix I. The regional distribution of selected energy variables is summarized in Exhibit 8-6; per unit costs and savings by region are presented in Exhibit 8-7. Like other types of modernization, the allocation of Energy costs by region varies fairly widely relative to region size. In addition, however, the distribution of energy savings varies by region and it appears undertaking energy conservation actions is a particularly "good deal" in

- Exhibit 8-6

Energy Costs and Savings by Region

exhibit 8.7
Energy Costs and Savings
Per Dwelling Unit by Region
(Payback Method)

certain regions. From Exhibit 8-6, for example, a comparison of the net present value of savings to implementation costs suggests that in Regions I, V, VII, and VIII, the returns to energy conservation are well above the national average.

IX. ACCESSIBILITY FOR THE HANDICAPPED

9.1 SUMMARY OF THE STUDY OF COSTS OF ACCESSIBILITY FOR THE HANDICAPPED

The process of collecting the relevant data on modernization needs for handicapped accessibility resembles that used for the ADD requests. The PHA was the source of the data, providing information in the study's Project Characteristics form on the current provisions for handicapped accessibility at the sampled project as well as estimating present needs for that development. Data were requested in terms of wheelchair and non-wheelchair (sensory or other impairments) requirements.

The Project Characteristics forms were mailed out in advance to the sampled project and completed forms were picked up during the FIX inspection visit. Not all PHAs were successful in completing the forms in time for on site review by the inspectors. Some of these forms were subsequently mailed to Abt Associates; others were never received. As a consequence, handicapped accessibility information was obtained for 745 of the 1,000 developments sampled for inspection.

The national estimate for handicapped accessibility modernization requirements totals $\$ 232$ million. The 95 percent confidence interval is plus or minus $\$ 59$ million.

Exhibit 9-1 presents the regional distribution of handicapped accessibility costs. As shown in Appendix I, the distribution is made proportional to the share of public housing units.

9.2 ANALYSIS PROCEDURES FOR ACCESSIBILITY FOR THE HANDIGAPPED

This special analysis called for in the Modernization Study focusses on the extent and cost of needs associated with providing access for those with special needs, such as individuals confined to wheelchairs as well as those who are sensory impaired or have other limitations on their mobility. To accomplish this, each PHA in the main sample was asked for summary information on the prevalence of wheelchair and other mobility impaired households, the number and kind of existing facilities designed for these individuals and the PHA's view of how many additional dwelling units were required to deal with the needs of this special population. Exhibit 9-2 illustrates a page from the

Exhiblt 9-1

Handicapped Accessibility Costs by Region ${ }^{1}$

Region	(1) Handicapped Costs	(2) of Total
1	$\$ 13.7$	5.88
II	$\$ 54.4$	23.44
III	$\$ 27.2$	11.71
IV	$\$ 50.1$	21.55
V	$\$ 38.6$	16.64
VI	$\$ 23.1$	9.94
VII	7.7	3.31
VIII	3.0	1.29
IX	10.2	4.37
X	$\$ 232.3$	1.86
Nation		1008

[^11]
Exhibit 9-2

Illustrative Page from the Project Characteristics Form Addressing Issue of Accessibility
 ```SECTION D: ACCESSIBILITY```

Thas section discusses the accessibility of units in this development. Our definition of accessibllity distongushes wheelcharr accessibrlicy, including wheelchair accessibility to the kitchen and bathroom, and handicaps other than wheel chair handıcapped (such as sensory and moblity impaired persons). Please keep thas definition in mind when responding to the questions.

Wheelchair Accessibility

D1. How many households in this development have members who use wheelchairs? How many are in elderly households? Family households? (IF NONE, RECORD ZERO.)

* Households

Total households with
wheelchatr users........................
Elderly bouseholds.............. ${ }^{\text {E }}$ 25-27/
Family households............. . 痽___ 28-30/

D2. How many units in this development are accessible to wheelchair users? How many elderiy units? Family units? (IF NONE, RECORD ZERO.)

	韭Units
Total wheelchair accessible units.....	31-34/
Elderly unsts.........................	35-37/
Family units........................	38-40/

D3. What x the bedroom distribution of the wheelchair accessible unrs?

Project Characteristics form, which included a series of questions addressing the issues of accessibility. (Also, the ADDs form (see discussion above in Chapter 6) provided PHAs with the opportunity to indicate their needed additions, upgrades, and changes for handicapped accessibility.)

Based on the project data, and using the Redesign cost files to provide cost elements for differing interventions required for each type of handicap, cost estimates were developed in much the same manner as for the other components of the study. Under current HUD regulations (24 CFR Part 40) and the Handbook for the Public Housing Comprehensive Improvement Assistance Program (Handbook 7485.1 Rev-2), PHAs are expected to assess, on a PHA-wide basis, the needs of current tenants and applicants on the waiting list for units that are accessible for physically handicapped individuals. The PHA is given some flexibility to decide, in consultation with the HUD Field Office, whether to provide accessible units at a project being modernized, to provide accessible units through other means such as modernization of another project, or that there is no need to provide accessible units. Because the PHA performs its own self-assessment of its needs for accessible units, the assessment of the modernization needs to provide these units in the research study was also left to the PHAs. Thus, the estimate of the number of units to be made accessible was taken directly from the PHA's assesments and extrapolated to a national number. The costs per unit were estimated by architects and planners familiar with housing renovation for handicapped people, and these costs include estimate of the costs of renovating ramps, entrances and corridors to be accessible as well.

X. INDIAN HOUSING MODERNIZATION NEEDS

10.1 SUYMARY OF INDIAN HOUSING PROGRAM NEEDS

Architects with experience in designing Indian housing and in working with Indian Housing Authoritıes (IHAs) were designated to perform the Indian housing FIX/ADDs inspections. The inspections visited 354 units in 31 Indian housing projects. These projects were located in 20 IHAs scattered through HUD's six Indian housing regions. Both rental and homeownership developments were included in the sample. However, the emphasis was on rental housing because HUD contributes modernzation funds to rental units just as it does in non-Indian public housing, but funds only some types of modernization in the homeownership program.

The national estimates of modernization costs for the Indian housing stock are:

- Rental Indian stock EIX costs: $\$ 161$ million. The 95 percent confidence interval is plus or minus $\$ 42$ mallion.
- Homeownership Indian stock FIX costs: $\$ 223$ miliion. Only part of these costs are eligible for funding under the CIAP program. The 95 percent confidence interval is plus or minus $\$ 166$ million.
- Rental Indian scock ADDs that are rated by appropriateness by the study inspectors:

```
Required by Code or HUD Modernization Standards:
    (HIJD labels this category as "mandatory.")
    (ISO 1 and 2): $48.6 million. The 95 percent confidence
        interval is plus or minus $5l million.
    (ISO 3, 4 and 5): $4.9 million. The 95 percent confidence
        mnterval is plus or minus $8 million.
```


Project Specific:
(ISO 1 and 2): $\$ 234.9$ million. The 95 percent confidence interval is plus or minus $\$ 58$ million.
(ISO 3,4 and 5): $\$ 24.4$ million. The 95 percent
confidence interval is $\$ 19$ million.
Energy:
(ISO 1 and 2): $\$ 57.2$ mllion. The 95 percent confidence interval is $\$ 36$ million.
(ISO 3, 4 and 5): $\$ 3.7$ million. The 95 percent confidence interval is $\$ 2$ million.

- Rental Indian ADDs currently prohibited by HUD: $\$ 38$ million. The 95 percent confidence interval is $\$ 32$ million.

10.2 IADIAR HOUSING FIX DATA COLLECTION AND ESTIMATES

The Indian Housing Authority sample consisted of 27 rental developments and 4 homeownership developments in locations from Maine to Alaska. The Indian Housing stock primarily consists of single family homes or townhouses for families and townhouses or small low-rise developments for the elderly. Many developments have units scattered over a wide area, including remote sites. Unlike the public housing developments of the same vintage, few site amenities or community facilities exist as part of the IHA developments.

The same FIX forms used for public housing was used to inspect the 354 units and 322 buildings. On average, more interior and building inspections were conducted per development than were inspected in the public housing. Few sitewide or central mechanical and electric systems were observed.

Where available, the Project Characteristics and takeoff information were gathered by the staff of HUD's Office of Indian Programs in each region. The inspector assigned to the development supplemented this information while at the housing authority and, rhenever possible, worked with the IHA director in completing the ADDs form.

Once completed, the Indian housing inspection data were costed in essentially the same manner as the public housing inspection data in the main sample of 1,000 developments.

The national estimates of modernization costs for the Indian housing stock are as follows:

	National FIX Estimate	95\% Confidence Interval
Rental Units	(Plus or Minus)	
Homeownership Units	$\$ 161$ million	$\$ 42$ million
$\$ 223$ million		$\$ 166$ million

10.3 IRDIAN HOUSING NATIONAL ADDs ESTIMATE

ADDs costs by categories are presented below, based on evaluation at 22 of the 27 rental developments visited. The data presented below are for the national Indian rental program only. Insufficient data are available to develop a national ADDs estimate for homeownership developments. Like the FIX estimate, the national estimate was obtained by estimating costs for nonremote projects (the "restricted universe") and extrapolating to the entire population.

Because of time and cost restrictions, the study excluded especially remote projects from the sample. However, cost estimates are provided for the entire program including remote locations. We use the assumption that remote projects are in similar condition to non-remote projects, but that the cost of repairs and replacements is 10 pexcent greater per unit because of higher transportation costs.

Under the CIAP program, HUD contributes modernization funds for rental units just as it does for non-Indian rental public housing. For homeownership units, the homeowner family is responsible for normal repairs and replacements of worn-out components. HUD provides modernization funding only for emergency health and safety needs, the correction of design deficiencies, and energy conservation improvements. The portion of these needs that are eligible for CIAP funding depends on policy judgements of HUD and the Indian Housing Authorities and are not estimated here. Instead, based on a limited sample of

* ISO $=$ Inspector's second opinton. See Chapter 6 for an explanation.

11.1 SUMMARY OF THE LEAD-BASED PAINT ABATEMENT ESTIMATE

Regulations requiring the abatement of lead-based paint in the Public and Indian Housing Programs were published on Aurst 1, 1986. These regulations generally require that PHAs test for lead based paint in family units built before 1973 and abate such paint if it is either defective (peeling, blistering, etc.) or chewable (on protruding woodwork or corners). The threshold at which abatement is required is $1.0 \mathrm{mg} / \mathrm{cm}^{2}$ of lead in the paint. Testing and abatement usually occurs at the time of comprehensive modernization.

It is estimated that approximately 300,000 units of public housing require abatement for a total of $\$ 446 \mathrm{milli}$, or an average of about $\$ 1,450$ per dwelling unit abated, including testing, cleanup and relocation where needed. Exhibit $11-1$ presents the regional distribution of these costs. The estimate is only for abating those elements where the lead levels exceed the abatement threshold. The cost estimates are therefore lower than abatement costs obtained where the PHA abates all woodwork in the unit, even if the lead level for some components is beneath the $1.0 \mathrm{mg} / \mathrm{cm}^{2}$ threshold.

The data were collected during 1984-85 in family public housing projects by local lead poisoning prevention programs in 34 cities. The local programs used X-ray fluorescence analyzers to detect the amount of lead in the paint of 131 pub1ic housing projects. The detectors measure the amount of lead in paint surfaces in milligrams per square centimeter, expressed as $\mathrm{mg} / \mathrm{cm}^{2}$. Inspectors visited 262 units plus their associated common areas (such as halls and entries) and site wide facilities (such as day care centers). Using standard procedures and reporting forms, the inspectors reported whether lead was found in the paint, the location and amount of the lead, and the condition of the paint. These data were combined with estimates of abatement costs from a cost engineering firm and multiplied by the number of units in the whole nation to produce national abatement costs. Based on HUD regulations that require abatement when the lead level in defective paint or chewable surfaces exceeds $1.0 \mathrm{mg} / \mathrm{cm}^{2}$, we estimate national abatement costs at $\$ 446 \mathrm{million}$.

Exhibit 11.

Lead Paint Abatement Costs

 By HUD Region

Note Allocation based on pre-1973 family units abatcd at the 10 mg threshold

11.2 THE DETAILED STUDY FINDINGS

As expected from previous studies, more lead paint is found in old units than in new units. The figures reported below show the percentage of units that have defective lead-based paint anywhere in the unit or that have leaded paint over the threshold on the chewable surface (such as a window sill). Local lead poisoning prevention programs use a variety of different standards, generally ranging from 0.7 mg to $2.0 \mathrm{mg} / \mathrm{cm}^{2}$. HUD regulations published in 1986 use the threshold level of $1.0 \mathrm{mg} / \mathrm{cm}^{2}$. The percentage of units with lead paint is smaller as the threshold increases, as seen in Exhibit 1l-2.

Exhiblt 11-2

Construction Year		Percent of Units in Family Projects with Lead (mg/cm ${ }^{2}$) On Surfaces with Defective or Chewable Paint				
	Sample	0.5	0.7	1.0	1.5	2.0
1950 or before	99	86\%	79\%	69\%	50\%	43\%
1951 to 1959	96	72\%	60\%	48\%	30\%	24\%
1960 to 1977	52	61\%	52\%	41\%	11\%	9\%
1978 to 1983	15	33\%	13\%	7\%	0\%	0\%

Cost estimates were made for abating lead hazards in public housing at several potential standards. The text of the detailed report ${ }^{1}$ shows a cost for a variety of abatement strategies. The following figures give estimates for procedures that would remove leaded paint from surfaces that are chewable by children, and cover defective (chipped or peeling) paint on flat surfaces such as walls. Because HUD regulations forbade any further use of lead-based paint in Federally-assisted housing, the fundamental abatement cost estimate is for units built before 1973. However, the manufacture and sale of paint with significant amounts of lead became illegal in 1977 , so that estimates are also made in the report for abatement of units built before 1978. Estimates are for family units and buildings only. The figures give estimates for abatement work done alone. To the extent that the work was done in conjunction with other modernization work, abatement costs would be lower.

[^12]The estimates are for the current public housing stock. Abatement costs will decline to the extent that non-viable, older projects are removed from the inventory. However, the estimates are useful in showing the magnitude of the budget needed and the difference across potential abatement threshold standards.

National Cost Estimates Lead Paint Abatement of Units with Either Defective or Chewable Paint for Units Built Before 1973

Abatement Threshold Standard ($\mathrm{mg} / \mathrm{cm}^{2}$)	\% of Units Needing Abatement (Pre 1973)*	Abatement Cost (\$ million)	Additional Diagnostic Testing (5 million)
0.7	60	546	\$40
1.0	49	380	47
1.5	25	209	57
2.0	21	162	60

* Universe of family dwelling units (2 bedrcom or larger) is 629,000 .

The abatement cost column includes the cost of testing the abated units for lead paint to identify parts of the unit that need abatement. The column shown as Additional Diagnostic Testing refers to the additional costs of testing all unabated units to assure that they are lead-free. Note that administrative and relocation expenses also must be added. Based on the 1984 Department set-asides for lead paint hazard identification and abatement, administrative costs would add 3 percent of abatement costs and relocation expenses would add 2 percent of abatement costs.

According to these assumptions, the budget for abating lead paint hazards in family dwellings and associated buildings in the public housing stock built before 1973 would be

Abatement Threshold Standard ($\mathrm{mg} / \mathrm{cm}^{2}$)	Estimated Total Cost of Abatement Project (\$ million)	Number of Units Needing Abatement	Average Total Cost Per Unit
0.7	614	378,912	\$1,620
1.0	446	307,654	1,450
1.5	277	159,207	1,740
2.0	230	131,427	1,750

If the total budget for hazard abatement (including residential buildings and site-wide facilities) is divided by the number of family units to be abated, the average total cost per family dwelling unit ranges from $\$ 1,450$ to $\$ 1,750$ depending upon the abatement threshold standard.

11.3 Lead-based paint abatement inspection procedures

This substudy addressed the concern about lead paint hazards. in public housing, especially in projects where children would be exposed. It differs from the other substudies in that it was not related to the projects selected into the main sample of the Modernization Needs Study. Instead, data were obtained by staff from 34 Local Childhood Lead Poisoning Prevention Programs around the country. Public housing projects in the 34 areas were divided into four categories, based on the year of construction: (a) built before 1951, (b) built between 1951 and 1959, (c) built between 1960 and 1977, and (d) built 1978 or later. The sample was concentrated among older projects, where prior evidence indicated that lead hazard problems were more likely. Only projects having at least one-third of the dwelling units with two bedrooms or more were sampled, as a proxy for projects with children.

Using x-ray fluorescence analyzers to measure lead concentrations on painted surfaces, the Lead Paint Poisoning Prevention Program staff inspected a total of 262 dwelling units, 94 residential buildings, and 33 site-wide facilities. Exhibit ll-3 depicts the kinds of surfaces that were tested for the presence of lead-based paint. When in the dwelling units, the inspectors tested these various surfaces in the dining room, living room, kitchen, bath, bedrooms, hallways, and so on. In the common areas of the residential buildings and site-wide facilities, similar locations were tested (e.g., common area staircases, public restrooms, laundry rooms, community rooms, child care centers, recreation center locker rooms). The inspectors used speciallydeveloped recording forms, and Exhibit 11-4 shows the form used to indicate the results of testing surfaces in kitchens.

The observations permit presentation of the incidence of lead hazards by location, according to the level of lead concentration considered hazardous. Using data about all of public housing, weights were developed to project the study observations to the national stock of public housing--all family dwelling units (those of two-bedrooms or larger), residential buildings in

Exhibit 11-4

Illustrative Page from the Lead Paint Inspection Form

family projects (having at least a third of the dwelling units two-bedroom or larger), and family projects having site-wide facilities. The results are presented in four project-age categories--pre-1951, 1951-59, 1960-77, and 1978-83.

Cost files adapted from those developed using the R. S. Means Company construction cost data are used to develop estimates of costs of lead paint hazard abatement, including testing to identify hazardous elements, protecting surfaces from lead paint particles, and performing commercial vacuuming and wet-washing of the rooms or other areas treated. The typical abatement action is softening the pant with chemicals or heat, scraping off the lead-based paint, preparing and priming the surface, sanding, and applying a finish coat of paint. A sample of the dimensions recorded on the main study inspection forms is used to develop necessary dimensions, for example, for typical area of wall by type of room.

APPENDIX A

THE FIX COST ESTTMATING PROGESS

The main objective of the sample design was to produce HUD Field Office estimates of total FIX as well as the overall national FIX total. The process of developing a sample to accomplish this involved several design steps. ${ }^{1}$ It began with the selection of a sample of 954 PHAs stratified by Field office and PHA size. ${ }^{2}$ AIl extra-large, large, and medium PHAs were included in this sample with certainty. A sample of small and very small PHAs was also drawn from each Field Office. These sample PHAs were requested, in the Modernization Needs Survey questionnaire, to provide an estimate of the modernization need per unit for each of their developments, as well as to provide other development characteristics such as total dwelling units and total buildings. This information was then used to select a subsample of 277 PHAs which included all extra-large PHAs. Within each Field office the remaining PHAs were stratified by PHA size and PHA-estimated modernization need per unit. This made it possible to oversample high modernization need per unit PHAs using probability proportional to size (pps) sampling.

The next stage of constructing the FIX sample involved the selection of 1,000 sample developments that were inspected for FIX. The developments located in each of the 277 sample PHAs were stratified on the basis of the developments' modernization need per unit. The highest modernization need per unit developments in a PHA were selected with certainty and the remainder of the development sample from each PHA was selected using probability proportional to size sampling. The measure of size was the development's modernization need per unit. The distribution of the 1,000 sample developments by Field Office is shown in Exhıbit A-1.

The next two stages in the FIX sample design involved sampling residential buildings and dwelling units from each of the 1,000 developments. In

[^13]Exhobit A－1
Distribution of Sample Developments by Field Office

011
012
013
014
021
022
023
024
031
032
033
034
035
036
041
042
043
044
045
046
047
048
049
051
052
053
054
055
056
057
058
059
061
062
063
064
065
066
071
072
073
074
081
091
092
093
094
095
101
102
103

FIELD
OFFICE
NAME
BOSTON，MA
NUMBER OF DEVELOPMENTS

HARTFORD，CT 22
53
MANCHESTER，NH 12
PROVIDENCE，RI 15
BUFFALO，NY 8
SAN JUAN，PR 42
NEW YORK，NY 71
NEWARK，NJ 53
BALTIMORE，MD 15
PHILADELPHIA，PA 57
PITTSBURGH，PA 30
RICHMOND，VA 16
WASHINGTON，DC 22
CHARLESTON，WV 7
ATLANTA，GA 28
BIRMINGHAM，AL 19
COLUMBIA，SC 6
GREENSBORO，NC 40
JACKSON，MS 9
JACKSONVILLE，FL 17
KNOXVILLE，TN 17
LOUISVILLE，KY 12
NASHVILLE，TN 10
CHICAGO，IL 55
COLUMEUS，OH 5
DETROIT，MI 32
INDIANAPOLIS，IN 24
MILWAUKEE，WI 20
MINN／ST PAUL，MN 12
CINCINNAT：OH 10
CLEVELAND，OH 26
GRAND RAPIDS，MI ． 10
DALLAS，TX 7
LITTLE ROCK，AR 8
NEW ORLEANS，LA 15
OKLAHOMA CITY，OK 7
SAN ANTONIO，TX 15
HOUSTON，TX 7
KANSAS CITY，KS 11
OMAHA，NE 18
ST LOUIS，MO 16
DES MOINES， 10 9
DENVER，CO 10
HONOLULU，HI ． 10
LOS ANGELES，CA 14
SAN FRANCISCO，CA 22
PHOENIX，AZ 11
SACRAMENTO，CA 4
ANCHORAGE，AK 5
PORTLANO，OR 10
SEATTLE，WA 26
こモニニニ
1,000
selecting buildings a simple random sample was drawn if only one building type existed in a development. If a development had a mix of building types, then the building sample was generally selected based on a stratified random sample. In total, 3, 120 residential buildings were inspected. The sample of dwelling units was drawn from the residential burldings that had been selected. In all cases, simple random sampling or systematic random sampling was used to select the sample dwelling units from a building. The field staff of architects and engineers that conducted the FIX inspections was not allowed to arbitrarily decide which dwelling units would be inspected in a development. Simılarly, no PHA staff person was allowed to specify which building or dwelling units should be inspected. Random selection in accordance with the sample design was maintained throughout the field period. In total, 2,194 dwelling units were inspected.

In order to estimate total FIX cost for each Field Office it is necessary to first properly weight the inspected developments, buildings and dwelling units. ${ }^{1}$ This process involved first assigning a weight to each of the 1,000 developments that equaled the reciprocal of the product of the probabilities of selection of the PHA and the development within the PHA. For the 1,000 developments, each inspected building was assigned a weight equal to the reciprocal of the within-development selection probability of that building. The weight assigned to each dwelling unit equaled the reciprocal of the product of the building selection probability and, the within-building dwelling unit selection probability. The dwellang unit weights were then ratioadjusted on a development basis, so that the sum of the dwelling unit weights for the inspected dwelling units equaled the total dwelling unit count of that development.

Once the weight calculations had been completed, the Field Office and national estimates of total FIX were derived using a weighted mean cost per

[^14]unit type estimator because it was expected to result in estimates with reduced sampling error. ${ }^{1}$ The first step in the estimation process involved forming an intermediate development level FIX cost per unit estimate for each of the $\mathrm{j}=1$, . . ., 1,000 sample developments:
where
$\hat{c}_{j}=$ the intermediate development FIX cost per unit estimate for the j-th development.
$\mathrm{U}_{\mathrm{j}}=$ total dwelling units in the j -th development.
$s_{j}=$ FIX site cost for the j-th development.
$\mathrm{w}_{\mathrm{jk}}=$ the within development building weight associated with the $k-\mathrm{th}$ building in the j-th development.
$\mathrm{b}_{\mathrm{jk}}=$ the FIX building cost for the $\mathrm{k}-$ th building in the $\mathrm{j}^{-t h}$ development.
${ }^{\mathrm{w}} \mathrm{jkI}=$ the within-development dwelling unit weight associated with the 1 -th dwelling unit in the k-th building in the j-th development.
$d_{j k 1}=$ the FIX dwelling unit cost for the 1 -th dwelling unit in the k th building in the j-th development.

After deriving the \hat{c}_{j} estimates, a weighted mean value of \hat{c}_{j} was computed for each Field Office, i = 1, . . ., 51:

$$
\begin{aligned}
& \bar{c}_{i}=\underset{j}{\Sigma} \text { DEVWT4 }_{i j}\left(U_{j} \hat{c}_{j}\right) / \underset{j}{\Sigma} \text { DEVWT }_{i j} U_{j} \\
& =\operatorname{ToTCosT}_{i} / \hat{\mathrm{U}}_{i}
\end{aligned}
$$

where

[^15]```
DEVWT4ij = the previously discussed development weight assigned to the j-th
 development in the i-th Field Office,
 \mp@subsup{U}{i}{}}=\mathrm{ = the sample estimate of the number of dwelling units in the i-th
 Field Office, and
TOTCOST i = the simple expansion estimator of the total FIX cost of the i-th
 Field Office.
```

Designating $U_{i}$ as the total dwelling unit count for the i-th Field Office, the total FIX estimate for the $i-t h$ Field office was computed using the combined stratum ratio estimator:

$$
\hat{c}_{i}=\left(\frac{\mathrm{U}_{i}}{\hat{U}_{i}}\right) \operatorname{\operatorname {ToTcosr}_{i}}=\mathrm{U}_{i} \bar{c}_{i}
$$

The Field Office dweliing unit counts were provided by HUD and represent the most up-to-date dwelling unit counts available. The $U_{i}$ values are shown in Exhibit A -2.

The national FIX estimate was then derived as the sum of the Field office estimates:

$$
\hat{c}=\hat{i}_{i} \hat{c}_{i} .
$$

Data from complex sample designs such as this one require special consideration, with regard to standard error estimation, because of design components that include stratification, clustering, and unequal selection probabilities. Several methods for approximating standard errors, which incorporate the components of a complex sample design have been developed. The Taylor series linearization method was selected for this study because of accuracy of variance estimates, software availability and computing efficiency

Exhibit A-2

Number of Dwelling Units, by Field Office

| OBS | FIELO OFFICE NUMBER | FIELD OFFICE NAME | NUMBER OF DWELLING UNITS |
| :---: | :---: | :---: | :---: |
| 1 | 011 | BOSTON, MA | 35,172 |
| 2 | 012 | HARTFORD, CT | 19,148 |
| 3 | 013 | MANCHESTER, NH | 9,839 |
| 4 | 014 | PROVIDENCE, RI | 9,855 |
| 5 | 021 | BUFFALO, NY | 25,359 |
| 6 | 022 | SAN JUAN, PR | 62,770 |
| 7 | 023 | NEW YORK, NY | 159,289 |
| 8 | 024 | NEWARK, NJ | 47,575 |
| 9 | 031 | BALTIMORE, MD | 23,605 |
| 10 | 032 | PHILADELPHIA, PA | 49,890 |
| 11 | 033 | PITTSBURGH, PA | 31,288 |
| 12 | 034 | RICHMOND, VA | 20,302 |
| 13 | 035 | WASHINGTON, DC | 15,409 |
| 14 | 036 | CHARLESTON, WV | 6,825 |
| 15 | 041 | ATLANTA, GA | 56,158 |
| 16 | 042 | BIRMINGHAM, AL | 42,009 |
| 17 | 043 | COLUMBIA, SC | 15,633 |
| 18 | 044 | GREENSBORO, NC | 37,681 |
| 19 | 045 | JACKSON, MS | 12,365 |
| 20 | 046 | JACKSONVILLE, FL | 41,732 |
| 21 | 047 | KNOXVILLE, $\mathbb{N}$ | 15,671 |
| 22 | 048 | LOUISVILLE, KY | 24,985 |
| 23 | 049 | NASHVILLE, $T$ N | 24,994 |
| 24 | 051 | CHICAGO, IL | 76,876 |
| 25 | 052 | COLUMBUS, OH | 10,191 |
| 26 | 053 | DETROIT, MI | 19,518 |
| 27 | 054 | INDIANAPOLIS, IN | 17,183 |
| 28 | 055 | MILWALKEE, WI | 12,884 |
| 29 | 056 | MINN/ST PAUL, MN | 21,194 |
| 30 | 057 | Cincinnati, OH | 13,166 |
| 31 | 058 | CLEVELAND, OH | 29,603 |
| 32 | 059 | GRAND RAPIDS, MI | 8,786 |
| 33 | 061 | DALLAS, TX | 34,459 |
| 34 | 062 | LITEE ROCK, AR | 14,883 |
| 35 | 063 | NEW ORLEANS, LA | 30,985 |
| 36 | 064 | OKLAHOMA CITY, OK | 12,782 |
| 37 | 065 | SAN ANTONIO, TX | 23,126 |
| 38 | 066 | HOUSTON, TX | 8,822 |
| 39 | 071 | KANSAS CITY, KS | 15,418 |
| 40 | 072 | OMAHA, NE | 7,453 |
| 41 | 073 | ST LOUIS, MO | 14,575 |
| 42 | 074 | DES MOINES, 10 | 4,244 |
| 43 | 081 | DENVER, CO | 16,27! |
| 44 | 091 | HONOLUEU, HI | 5,718* |
| 45 | 092 | LOS ANGELES, CA | 18,456 |
| 46 | 093 | SAN FRANCISCO, CA | 21,885 |
| 47 | 094 | PHOENIX, AZ | 5,198 |
| 48 | 095 | SACRAMENTO, CA | 4,395 |
| 49 | 101 | ANCHORAGE, AK | 1,124 |
| 50 | 102 | PORTLAND, OR | 6,531 |
| 51 | 103 | SEATTLE, WA | 15,781 |
|  |  | - |  |
| total |  |  | 1,259,061 |

*The Guan PHA which was not included in the PHA sampling frame accounts for 595 of the 5,718 dwelling units in the Honolulu field office.
when compared with other methods. ${ }^{1}$ For the national FIX total estimate, the standard error and coefficient of variation was computed. These accompany the national FIX estimate presented in this report.

[^16]
## APPENDIX B <br> THE ADDs COST ESTIMATING PROCESS

The 1,000 developments inspected for FIX were intended to serve as the sample from which the Field Office and national ADDs totals were to be estimated. However, not all PHAs supplied the required information; in total, ADDs information was provided for 843 sample developments in 239 PHAs. (See Exhibit B-1 for the distribution of sample developments by Field Office.) To compensate for this reduction in sample size in the estjmation process it was necessary to ratio-adjust the development weight (DEVWT4) values of the 843 ADDs developments so that they summed to the total of DEVWT4 for all 1,000 FIX developments. This ratio-adjustment process was carried out within cells formed by the cross-classification of Field Office and four development size categories.

ADDs differed from FIX in one other major aspect. Rather than a single cost number, HUD requested that ADDs be disaggregated into 23 cost categories based on type of ADD and ISO (see Chapter 6). In other words, each ADDs item associated with the site, a sample building or a sample dwelling unit in a development was classified as belonging to one of 23 ADDs categories, as noted above. The process detailed above for the FIX estimator was then used for each of these 23 categories. The intermediate development level cost per unit estimates for these 23 categories were then sumned to form a total ADDs intermediate developments level estimate. In all other respects, the estımation of totals by Field Office and for the nation proceeded the same as for FIX. The Taylor series linearization method was also used to estrmate standard errors. Figure B. 1 presents these estimates.

Exhıbit B-1

Number of Developments in ADDs Analysis, by Field Office

| OBS | $\begin{aligned} & \text { F!ELD } \\ & \text { OFFICE } \\ & \text { NUMBER } \end{aligned}$ | $\begin{aligned} & \text { FIELD } \\ & \text { OFFICE } \\ & \text { NAME } \end{aligned}$ | NUMBER OF DEVELOPMENTS |
| :---: | :---: | :---: | :---: |
| 1 | 011 | BOSTON, MA | 45 |
| 2 | 012 | HARTFORD, CT | 19 |
| 3 | 013 | MANCHESTER, NH | 8 |
| 4 | 014 | PROVIDENCE, RI | 9 |
| 5 | 021 | QUIFFALO, NY | 8 |
| 6 | 022 | SAN JUAN, PR | 36 |
| 7 | 023 | NEW YORK, NY | 63 |
| 8 | 024 | NEWARK, NJ | 42 |
| 9 | 031 | BALTIMORE, MD | 7 |
| 10 | 032 | PHILADELPHIA, PA | 45 |
| 11 | 033 | PITTSBURGH, PA | 30 |
| 12 | 034 | RICHMOND, VA | 16 |
| 13 | 035 | WASHINGTON, DC | 18 |
| 14 | 036 | CHARLESTON, WV | 7 |
| 15 | 041 | ATLANTA, GA | 27 |
| 16 | 042 | BIRMINGHAM, AL | 11 |
| 17 | 043 | COLUMBIA, SC | 6 |
| 18 | 044 | GREENSBORO, NC | 33 |
| 19 | 045 | JACKSON, MS | 7 |
| 20 | 046 | JACKSONVILLE, FL | 7 |
| 21 | 047 | KNOXVILLE, TN | 16 |
| 22 | 048 | LOUISVILLE, KY | 10 |
| . 23 .; | 049 | NASHVILLE, TN | 4 |
| 24 | 051 | CHICAGO, IL | 37 |
| 25 | $\because 052$ | COLUMBUS, OH | 5 |
| 26 | 053 | DETROIT, MI | 30 |
| 27 | 054 | INDIANAPOLIS, IN | 21 |
| 28 | 055 | MIL WAUKEE, WI | 20 |
| 29 | 056 | MINN/ST PAUL, MN | 10 |
| 30 | 057 | CINCINNATI, OH | 9 |
| 31 | 058 | CLEVELAND, OH | 26 |
| 32 | 059 | GRAND RAPIDS, MI | 10 |
| 33 | 061 | DALLAS, TX | 3 |
| 34 | 062 | LITTLE ROCK, AR | 8 |
| 35 | 063 | NEW ORLEANS, LA | 14 |
| 36 | 064 | OKLAHOMA CITY, OK | 7 |
| 37 | 065 | SAN ANTONIO, TX | 10 |
| 38 | 066 | HOUSTON, TX | 7 |
| 39 | 071 | KANSAS CITY, KS | 9 |
| 40 | 072 | OMAHA, NE | 17 |
| 41 | 073 | ST LOUIS, MO | 16 |
| 42 | 074 | DES MOINES, 10 | 9 |
| 43 | 081 | DENVER, CO | 9 |
| 44 | 091 | HONOLULU, HS | 10 |
| 45 | 092 | LOS ANGELES, CA | 7 |
| 46 | 093 | SAN FRANCISCO, CA | 22 |
| 47 | 094 | PHOENIX, AZ | 11 |
| 48 | 095 | SACRAMENTO, CA | 4 |
| 49 | 101 | ANCHORAGE, AK | 2 |
| 50 | 102 | PORTLAND, OR | 9 |
| 51 | 103 | SEATTLE, WA | 26 |
|  |  |  | = = = |

## APPENDIX C <br> THE REDESIGN COST ESTIMATING PROCESS

The Modernization Needs Survey questionnaire allowed PHAs to indicate which of their developments were candidates for redesign. Redesign candidate developments falling in the 1,000 development FIX sample were then mailed a Redesign Questionnaire which requested additional details on the scope of the proposed redesign as well as an estimate of the redesign cost per unit. Developments requiring mechanical and electrical redesign only vere excluded from the redesign sampling frame because the redesign survey looked soley at architectural redesign. Mechanical and electrical redesign, where needed, is included in the FIX inspection results.

Four redesign strata were created -- three strata sorted the developments into 10 w , medum and high redesign cost per unit developments based on data from the Redesign Questionnaire. The fourth strata consisted of those developments that indicated a definite need for redesign in the Redesign Questionnaire but failed to provide a redesign cost per unit estimate.

Exhibit $C-1$ indicates the estimated total number of redesign developments in each of the four strata, as well as the total number of dwelling units by stratum. The sample size of redesign developments selected from each stratum is also shown in Exhibit 9. Within each stratum, developments were selected using simple random sampling. In total, 75 developments were inspected. PHAs proposed 143 of the 1,000 developments in the base sample for redesign.

The first step in estimating the national redesign total involved assigning a weight to each of the 75 developments. This weight equaled the product of DEVWT4 and reciprocal of the within-stratum selection probability. Designate this weight as REDESIGNWT ${ }_{h j}(h=1$, . . 4 strata; j references development within strata). For each development, an adjusted redesign cost per unit value was computed from

$$
\text { ADJcost/UNIT }_{\mathrm{hj}}=\frac{\text { TOTREDESIGNCOST }_{\mathrm{hj}}-\mathrm{FIX}_{\mathrm{hj}}}{\operatorname{TOTUNITS}_{\mathrm{hj}}}
$$

where

Exhibit C-1
The Redesign Population and Sample

| Redesign Stratum | ```Estimated Total Number of Redesign Developments = N N``` | $\begin{gathered} \text { Development } \\ \text { Sample } \\ \text { Size }=n_{h} \\ \hline \end{gathered}$ | Estimated Total Number of Dwelling Units $=U_{h}$ |
| :---: | :---: | :---: | :---: |
| Low Redesign |  |  |  |
| Cost Per Unit | 530 | 36 | 85,836 |
| Medium Redesign Cost Per Unit | 157 | 11 | 40,733 |
| High Redesign | 29 | 10 | 6,880 |
| Redesign Needed but Cost Estimate |  |  |  |
| Not Provided | 117 | 18 | 26,122 |
|  | 883* | 75 | 159,571 |

```
TOTREDESIGNCOST \(h_{j}=\) the gross redesign cost for the \(j\)-th development in
 the h -th redesign stratum
 \(\begin{aligned} \text { FIX }_{h j}= & \text { the FIX cost estimate for the } \mathbf{j} \text {-th development in the } \\ & h-t h \text { stratum. }\end{aligned}\)
\(\begin{aligned} \text { TOTUNITS } & \text { hj }= \\ & \text { the total number of dwelling units in the } j \text {-th devel- } \\ & \text { opment in the } h \text {-th stratum. }\end{aligned}\)
```

The national estimates of total redesign cost was then derived from:

$$
\text { TOTREDESIGN }=\underset{h=1}{4} \mathrm{U}_{\mathrm{h}}\left|\begin{array}{r}
\Sigma \\
\sum_{-}^{-} \\
\mathrm{ReDESIGNWT}_{\mathrm{hj}} \times \text { ADJCOST/UNIT }_{\mathrm{h} j} \\
j
\end{array}\right|
$$

where

$$
\begin{aligned}
\mathrm{U}_{\mathrm{h}}= & \text { the estimated total number of dwelling units in the } \\
& \text { h-th redesign stratum. }
\end{aligned}
$$

The standard error of TOTREDESIGN was approximated using the formula:

$$
\sqrt{\sum_{h=1}^{4} W_{h}^{2} U_{h}^{2}\left(s_{h}^{2} / n_{h}\right)\left(1-\frac{n_{h}}{N_{h}}\right)}
$$

were

$$
\begin{aligned}
W_{h}= & \text { the estimated proportion of total redesign developments in the } \\
& h \text {-th stratum. } \\
\mathrm{N}_{\mathrm{h}}= & \text { the estimated total number of redesign developments in the h-th } \\
& \text { stratum. } \\
\mathrm{n}_{\mathrm{h}}= & \text { the sample size of developments in the } \mathrm{h} \text {-th redesign stratum. } \\
\mathrm{s}_{\mathrm{h}}= & \text { the weighted stratum standard deviation of the ADJCOST/UNIT } \mathrm{T}_{\mathrm{hj}} \\
& \text { values. }
\end{aligned}
$$

This standard error approximation method ignores the clustering of the FIX development sample within PHAs and will therefore provide slight underestimates of the actual standard error.

## APPENDIX D <br> the energy conservation Improvements estimating process

The energy inspection sample was selected as a subsample of the 1,000 FTX developments. The 1,000 developments were first sorted into four estimated energy savings potential strata. To make this estimate, we used information about each development that PHAs had provided on the Modernization Needs survey questionnaire, particularly Section $E$ on energy conservation actions already taken, combined with results from the earlier study by Perkins and Will/The Ehrenkrantz Group (An Evaluation of the Physical Condrtion of the Public Housing Stock--Energy Conservation, Volume 4, H2850, March 1980). Annual energy cost per dwelling unit was estimated for each development based on Table 1.2 of PWE Volume 4, which takes into account climate zone, building type, and energy source for heat.

Potential energy cost savings for a series of energy conservation actions were estimated from Table 1.8 of PWE Volume 4, scaled by the extent of work in that category the PHA indicated on the Modernization Needs survey had already been performed. These savings were summed to provide a rough estimate of potential energy cost savings for each development, called ESCORE. The ESCORE value for each development was then divided by the development's total dwelling unit count to form an ESCORE per unit estimate. The distribution of the 1,000 FIX developments by the four strata is shown in Exhibit D-1. This exhibit also shows the sample size of inspected energy developments by stratun.

The next step in the design of the energy inspection sample involved the random selection of one free-standing site wide facılity (SWF) from each of the 124 energy developments with one or more SWFs. Because the energy use and potential savings differ across residential building types, within each of the developments drawn for the energy study, one of each residential building type appearing the the FIX sample was also drawn randomly from each of three categories:

High rise (multi-family buildings of 4 or more stories)
Low rise and Combination (multi-family buildings of 3 or fewer stories and buildings on a common foundation that fall into two or more categories)

## Exhibit D-1

## The Energy Sample Strata

| Stratum | Estimated <br> ESCORE/Unit* <br> Stratum Boundaries | Distribution <br> of 1,000 FIX <br> Developments | Distribution of <br> Energy Inspection <br> Sample Developments |
| :---: | :--- | :---: | :---: |
| 1 | $\$ 241$ or lower | 495 | 116 |
| 2 | $\$ 242$ to $\$ 327$ | 246 | 17 |
| 3 | $\$ 328$ to $\$ 521$ | 186 | 57 |
| 4 | $\$ 521$ or higher | 1,000 | 51 |

* Prior estimate of potential energy savings, based on questionnaire data.


## Single family (either attached or detached)

In total, 254 residential buildings received an energy inspection along with 92 SWFs.

The first step in the development of national estimates involved asslgning a weight, reflecting the reciprocal of the probability of selection, to each residential building and SWF. For the residential buildings we first multiplied the development weight (DEVWT4) from FIX times the ESCORE per unit stratum development sampling ratio. A within development selection probability was then computed for each inspected residential building. Its reciprocal was multiplied by the development's energy weight to form the weight, $W_{h i j}(h=E S C O R E / u n i t$ stratum, $i=$ development, $j=$ residential building), assigned to the inspected residential buildings. Assigning weights to the inspected SWFs first involved an accounting of the failure to inspect a SWF in 32 energy developments out of 124 that had one or more SWFs. This was accomplished by ratio-adjusting the development energy weights by ESCORE per unit stratum for the 92 developments with SWFs where one was inspected to compensate for the lack of data from the 32 developments. A within development SWF selection probability was then computed for each of the 92 developments. The product of the ratio-adjusted development energy weight and the reciprocal of the within development SWF selection probability formed the weight, $W_{h i k}$ (h = ESCORE/unit stratum, $i=$ development, $k=S W F$, assigned to the inspected SWFs.

National estimates were computed for eight key variables:

FIX-EXT Annual Energy Cost Savings from FIX Actıons
OMS-EXT Annual Energy Cost Savings from Operating and Maintenance (O\&M) Actions

OMS-COST Implementation Costs of Operating and Maintenance Actions

NPV-EXT Cost Effective Annual Energy Cost Savings Available after O\&M and FIX Actions

NPVALUE Net Present Value of Cost Effective Annual Energy Cost Savings Available after O\&M and FIX Actions (evaluated as a

|  | function of the energy and discount rate parameter, <br> INFLATE) |
| :--- | :--- |
| NPV-COST | Implementation Costs of Cost Effective Annual Energy Cost <br> Savings Available after O\&M and FIX Actions |
| PAY-EXT $\quad$Annual Energy Cost Savings from ECOs Justified by Payback <br> Griterion |  |
| PAY-COST $\quad$ Implementation Costs of ECOs Justified by Payback Criterion |  |

These national estimates were formed separately for residential buildings and SWFs. The national totals were then obtained by adding the two estimates together. For the residential building estimate, the estimation process involved dividing the value of each of the eight variables of interest by the number of dwelling units in the building. Using the $W_{h i j}$ weights, a weighted mean cost per unit was computed for each of the eight variables of interest for each of the four ESCORE per unit strata. An estimate of the total number of dwelling units in each stratum was obtained using the 1,000 development FIX sample. The stratum cost per unit means were multiplied by their corresponding dwelling.unit totals to form stratum total estimates for each of the eight variables of interest. By summing over the four strata, the national estimate for residential buildings was obtained. The standard error for each of these eight national totals was estimated by:

$$
\text { s.e. }\left(\hat{Y}_{\mathrm{RES}}\right)=\sqrt{\sum_{h=1}^{4} \mathrm{U}_{\mathrm{h}}^{2} W_{h}^{2}\left(s_{h}^{2} / n_{h}\right)\left(1-\frac{n_{h}}{N_{n}}\right)}
$$

where

| $\mathrm{U}_{\mathrm{h}}=$ | the total dwelling unit count for the $h-t h$ stratum |
| ---: | :--- |
| $W_{h}=$ | the proportion of the total residential buildings in the $h-t h$ |
|  | stratum |
| $n_{h}=$ | the stratum sample size of buildings |
| $N_{h}=$ the total number of residential buildings in the $h-t h$ stratum. |  |

The estimation process for SWFs followed the same exact lines as for residential buildings. However, because a SWF does not contain any dwelling units and serves an entire development, the value of each of the eight vari-
ables of interest were divided by the total number of dwelling units in the development.

As noted above, the national estimate, $\hat{Y}$, for each of the eight variables of interest was formed by adding the residential bullding national estimate, $\hat{\mathrm{Y}}_{\text {RES }}$, with the SWF national estimate, $\hat{\mathrm{Y}}_{\text {SWF }}$. The standard error of $\hat{Y}$ was obtained from:

$$
\text { s.e. }(\hat{Y})=\sqrt{\text { s.e. }\left(\hat{Y}_{\text {RES }}\right)^{2}+\operatorname{s.e.}\left(\hat{Y}_{S W F}\right)^{2}}
$$

This standard error approximation ignores the clustering of the FIX development sample within PHAs and will therefore provide slight under estimates of the actual standard errors.

## Net Present Value Method Formula

In calculating energy conservation capital improvements using the present value approach, the following formulas were used. The relationship between first-year annual savings ( $\mathrm{E}_{\mathrm{O}}$ ), expected lifetime of the action ( $L$ ), cost of implementation ( $C$ ), real energy inflation rate ( $n$ ) and real discount rate ( $r$ ), is, as shown in the Energy Analysis Plan,

Net Present Value of Energy Savings $=E_{0}\{\exp (n-r) L-1\} /(n-r)-C$.

For the special case $n=r$, this expression collapses to

Net Present Value of Energy Savings $=E_{0}\left(L-C / E_{0}\right)$,
where the term $C / E_{0}$ is just the payback period.

## APPENDIX E

ACCESSIBILITY FOR THE HANDICAPPED: THE COST ESTIMATING PROCESS

The 1,000 developments inspected for FIX were intended to serve as the sample from which the Field Office and national handicapped totals were to be estimated. However, not all PHAs supplied the required information (i.e., for some of the 1,000 developments the handicapped request section of the Project Characteristics form was not filled out or no form was ever submitted by the PHA). In total, handicapped request information was obtained for 745 sample developments in 228 PHAs (see Exhibıt E-1 for the distribution of sample developments by Field Office). To compensate for this reduction in sample size in the estimation process it was necessaxy to ratio-adjust the development werght (DEVWT4) values of the 745 developments so that they summed the total of DEVWT4 for all 1,000 FIX developments. This ratio-adjustment process was carried out within cells formed by the cross-classification of Field Office and four development size categories.

Handicapped cost estimation differed from that used for FIX in one other major respect. The PHAs provided handicapped requests for the entire development and not just the sample buildings and dwelling units that were inspected for FIX. Denoting these development level total costs by $H_{j}$ for the $j=1$, . . ., 745 developments, a cost per unit value was obtained from:

$$
H_{j} \text { per unit }=\frac{H_{j}}{U_{j}} \text {, }
$$

where
$\mathrm{U}_{\mathrm{j}}=$ total dwelling units in the j-th development.

After obtaining the $H_{j}$ per unit values, the estimation process proceeded in a way similar to the FIX estimation process in order to develop the Field Office and national handicapped cost totals. The Taylor series linearization method was also used to estimate standard errors. The standard error and coefficient of variation of the national handicapped total cost accompanies the estimate presented in this report.

## APPENDIX F <br> THE INDIAN HOUSING PROGRAM COST ESTIMATION PROCESS

## EIX Estimates -- Rental Developments

The population of Indian housing developments consists of rental and homeownership developments. The rental population contains 18,559 dwelling units, while the homeownership population consists of 30,884 dwelling units. The primary objective of this component of the study was to provide national estimates of FIX and ADD for the rental population. That is because only rental units are fully eligible for modernization in the CIAP program. For the homeownership population it was determined that a small sample of developments would be employed to provide a national FIX estimate subject to a fairly high sampling error. Less emphasis was put on homeownership developments since the homeowner occupants are responsible for the repair of normal wear and tear. HUD is responsible for modernization costs needed to repair design deficiencies, for emergency health and safety needs, and for costeffective energy conservation opportunities. (These restrictions on CIAP spending are identical for the Turnkey III Program, which is found in both IHAs and non-Indian PHAs.)

In order to proceed with the selection of both samples it was first necessary to create a sampling frame of IHAs that excluded distant and isolated Indian Housing Authorities (IHAs). Restricting the sampling frame and therefore the target population to IHAs located in relatively accessible areas of the country was necessary in order to conserve field data collection resources. Exhibit $\mathrm{F}-1$ compares the dwelling unit counts for the entire population with those for the restricted population that formed the sampling frame.

For each IHA in the target population an estimate of the modernization cost per unit was obtained from the Indian Field offices. This information was used to select a probability proportional to size sample of 20 IHAs containing rental developments. A total of 27 rental developments were selected from the sample IHAs using probability proportional to size sampling. For this second stage of sampling the measure of size was total dwelling units since an estimate of modernization need could not be obtained for rental developments. For each of the 27 rental developments, probability samples of

## Exhibit F-1

Popalation Dwelling Unit Counts
Entire Population Dwelling Unit Total 49,443 Rental Units 18,559 Homeownership Units 30,884

Restricted Target Population Dwelling Unit Total 19,541

Rental Units 7,884
Homeownership Units 11,657
residential buildings and dwelling units were drawn. In general, a simple random sample of buildings was drawn since most developments only had singlefamily detached buildings. For those developments with a mix of building types, stratified sampling was employed. In total, 322 sample buildings were inspected for FIX. The dwelling unit sample was drawn from the selected residential buildings. For single-family detached buildings there is a one-to-one correspondence between the building and dwelling unit and therefore no random selection is required. In buildings containing two or more dwelling units, the sample dwelling units were selected using simple random sampling. A total of 332 rental dwelling units were inspected for FIX.

The weighting of the Indian rental sample and the estimation of total Indian rental FIX for the nation proceeded in a way similar to the FIX estimation process for public housing. Two national FIX estimates, however, were produced. The first applied to the restricted target population of 7,884 dwelling units. The standard error of this total was also estimated using the Taylor series linearization method. In order to approximate the total FIX cost for the entire population, an estimate was also formed for the entire population of 18,559 rental dwelling units. The standard error of this estimate was also derived. This total and its standard error should be viewed as descriptive estimates since the rental sample actually excluded a portion of the entire population.

## ADDs Estimate -- Rental Developments

ADDs request forms were obtained from the IHAs for 22 of the 27 rental developments. It was therefore necessary to ratio-adjust the development weights for these 22 developments so that they summed to the total of the development weights for all 27 sample developments. This ratio adjustment process was carried out at the level of each Indian Housing Region. As with public housing ADDs, the Indian ADDs data were distributed across the 15 categories requested by HUD, as shown in Exhibit 8 for ADDs. The estimation process proceeded in a way similar to the estimation process for public housing ADDs. A national ADDs estimate for each ADDs category as well as the total was produced both for the entire population and the restricted target population. Standard errors were computed for both sets of estamates using
the Taylor series linearnzation method. As with the rental FIX estimates, the ADDs estimates for the entire population should be regarded as descriptive in nature.

FIX Estimate -- Homeownership Developments
The homeownership FIX sample consisted of four IHAs, four developments, 21 residential buildings, and $2 l$ dwelling units. The sample was not a true probability sample of all IHAs containing homeonnership developments for two reasons. First, isolated and remote IHAs were excluded. Second, the sampling frame of homeownership LHAs was limited to those with one or more rental developments. Thus, the four sample IHAs were IHAs that had been selected as part of the rental sample. In selecting developments, residential buildings and dweling units, probability sampling procedures were employed. Because the homeownership sample size is very small the standard error computed for the national FIX total is fairly large. As with the rental sample, an estimate of total FIX was also computed for the entire homeownership population. No estimate of ADDs was possible from the homeownership sample due to lack of data from the IHAs involved.

## APPENDIX G <br> THE LEAD PATNT ABATEMENT COST ESTIMATLON PROCESS

Because data collection was to be provided by Ch1ldhood Lead Poisoning Prevention Programs (CLPPPs), the universe from whach the sample of projects for this study was selected was limited to those in Public Housing Authorities located within CLPPP jurisdictions. In addition, because the study focuses on lead hazards for children, the projects sampled were to be family projects. Although HUD sometimes uses other designations, for purposes of this study a project was defined as "family" if more than a third of the dveliong units in the project are two-bedroom or larger. Most projects tend to be predominantly for elderly occupancy or for family occupancy, so this division provides a reasonable separation.

## Sample Assignment

Because lead paint is more likely to be found in older projects, the sample was stratified on project age. Using estimated lead incidence data at 1.5 milligram per square centimeter from Pittsburgh (Shier and Hal1, 1977) as reported in Billick and Gray (1978, Figure 6-1), a sample of 220 projects was distributed across age strata as follows:

| Year of Construction | Est. \% with Lead | Propect Sample |
| :---: | :---: | :---: |
| Pre 1951 | 56 | 77 |
| $1951-1959$ | 37 | 72 |
| $1960-1975$ | 21 | 46 |
| Post 1975 | 10 or lower | TOTAL |
|  |  | 220 |

Although the intention was to increase the project sample in each stratum to allow for some nonresponse, the project samples assigned actually were smaller by one project in each age stratum, for two reasons. First, the total number of CLPPPs was 55 , but only 34 were able to cooperate with the requested data collection, either for lack of operating equipment, available staff, or discontinuance of the program. Secondly, HUD had obtained agreement with the CLPPPs for their cooperation on the basis that no CLPPP would have to inspect
more than five projects. Some smaller PHAs (18) had fewer than five projects total, and all of those projects were sampled, 57 projects in total.

For each of the assigned projects, the CLPPP was asked to complete a Sample Control Booklet wath basic information on the distribution of units in the project according to number of bedrooms and on the calibration of the fluorescence instrument used for the lead tests. Each of the selected Public Housing Authorities was contacted to ascertain the composition of the project in terms of number of buildings, made a random selection of a residential building for inspection. Within the selected building, information was obtained on apartment numbering and made a random selection of two dwelling units plus two replacement units in the event the inspectors were unable to inspect the assigned dwelling units. The GLPPP then was asked to complete a Residential Building booklet and a Dwelling Unit booklet (containing space for entries on two dwellıng units). For single family detached buildings two Residential Building booklets were provided. CLPPPs also were asked to complete a Site-wide Facilities booklet for any such facilities associated with the project.

Of the 216 projects assigned to CLPPPs for inspection, inspection booklets were returned for a total of 94 buildings, representing a return rate of 44 percent. Dwelling Unit booklets for 262 dwelling units were returned, representing a return rate of 61 percent of the 432 assigned. A total of 33 Site-wide Facilities Booklets were returned.

Of the 216 Sample Control Booklets 100 were returned. For projects with no Sample Control Booklet returned, auxiliary data were used for the distribution of units over number of bedrooms in the unit--either the Modernization Needs Data Form collected from PHAs by Abt Associates in connection with the main study on modernization costs or from the HUD data file on public housing projects known as FORMS. When unit distribution data were available from no data source, a distribution was imputed to the sample project using first the PHA average, if available, then the HUD Region average, within the age stratum of the assigned project. Lacking calibration data on the fluorescence analyzers for these projects, the instruments were assumed to provide true readings as recorded in the inspection booklets.

## Sample Weights

In a strict sense no inference beyond the "family" developments in the cooperating CLPPP jurisdictions can be made for the sample of observations, because PHAs outside CLPPP jurisdictions had zero probabılity of being selected as did "non-family" developments. However, it is important to obtain some estimates of the occurrence and costs of abatement of lead hazards in the national public housing stock based on the observations from the inspections conducted for this study. The approach is to develop pseudo-weights as though the sample observations had been drawn from the national stock of public housing, assuming that the age (construction year) of the project is the only criterion determining the incidence of lead.

In designing this study we also were concerned about taking into account dwelling units that had already had abatement orders issued and, presumably, carried out. The sampling design was organized to obtain information from the CLPPPs and PHAs about abatement activities in the selected developments. The Sample Control Booklet provided space to record the number of units for which abatement had already been carried out in the selected buildings, and the inspectors were instructed to skip over any units drawn for the dwelling unit sample that already had been abated. As it turned out, none of the buildings selected for this study had had any known abatement activity, so no correction for previous abatement activity is made in the sample weights. Apparently the number of units on which specific abatement orders have been carried out is quite small. Some lead paint abatement activity may, of course, have taken place in the selected buildings or dwelling units in the course of redecorating or remodeling work, but we have no record of such activity and cannot attempt to correct for it in the sample weights.

In that observations were made only at projects within the jurisdiction of cooperating Childhood Lead Porsoning Prevention Programs, this assumption raises some caution. Not only were there no CLPPPs returning data from west of the Mississippi, but one can make arguments in opposing directions about the possible bias of selecting CLPPP jurisdictions. CLPPP jurisdictions may exist primarily in axeas in which lead incidence is high and the incidence may remain high in PHAs situated in those areas. Conversely, if lead abatement activities have been pursued aggressively by the CLPPP, the current incidence of lead may be much lower than it otherwise would have been. Thus, the esti-
mates reported here may be biased exther upward or downward. They are, however, the best estimates available under the circumstances.

The boundary between the two most recent age strata was moved for weighting purposes to $1977 / 1978$ because July 1977 is actually the date specified in HUD regulations after which lead-based paint was not to be used in HUD-related housing. The construction year of the projects in the sample was used to reallocate them to the redefined strata. As Federal rulemaking proceeded, HUD also requested a separate stratification for 1960 through 1972, the year in which HUD regulations forbade the use of lead-based paint in federally assisted housing. While the weighting and population tables in this appendix carry out this substratification, nelther the mann text or other appendices attempt to present the 1973-1977 substratum because it would rest on a sample of 6 dwelling units and 2 residential buildings.

A further caution about construction year must be made. This study used the project completion date recorded in HUD data files (the FORMS data base) as the estimate of construction year. However, when a number of projects in the most recent age stratum indicated presence of lead, individual telephone contacts were made with the PHAs for each of the projects in Stratum 4 (Post 1977), and it was discovered that some projects that were acquired as scattered sites or FHA-repossessions actually were constructed at an earlier year than the "completion date" kept in the HUD records. The result was to change the construction year to an earlier age stratum for 8 of the 16 Residential Buildıng inspections returned. Because of this signıficant change, projects in the next age stratum were checked if there was an indication that they were acquired property; the result was to change two of the four projects checked into an earlier age category.

Using data from the Modernization Needs Data Form and from the HUD FORMS data base, population totals have been computed within each age stratum for the three samples of lead paint inspections made--family dwelling units (twobedroom or larger) in all developments, residential buildings in family projects (having at least a third of the dwelling units two-bedroom or larger), and family projects having site-wide facilitres. Because neither of the data sources contains unit size distributions within buildings, all
buildings in a family project were designated family buildings. From the data sources used, the number of "family" projects is 6,811 out of a total of 11,430.

For site-wide facilities, no distinction was made for weighting purposes about the number or type of facilities present. A special follow-up telephone contact with PHAs having projects selected for the sample in the main study on modernization needs was used to determine the presence of site-wide facilities. The population of family projects with site-wide facilities was estimated within each age stratum using the development weights calculated for the primary inspection sample in the main study.

Exhibit G-1 presents the resulting weights as applied to the actual sample returns for dwelling units, residential buildings and site-wide facilities. No standard errors were computed for this component of the study because probability sampling procedures were not employed (i.e., a national probability sample of family developments was not drawn).

Exhibit G-1 WEIGHTS BY AGE STRATUM

Pre-1951 $1951-1959 \quad \underline{1960-1977} \quad \underline{1978-1983} \quad$| Special |
| :--- |
| Substraturn |
| $1960-1972$ |

FAMILY DWELLING UNITS IN PROJECTS OF ALL TYPES

| Returned Sample | 99 | 96 | 52 | 15 | 46 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Population | 118,479 | 233,088 | 352,236 | 70,337 | 277,437 |
| Population weight $\left(\frac{\text { Population }}{\text { Returned Sample }}\right)$ | $1,196.76$ | $2,428.0$ | $6,774.77$ | $4,689.13$ | $6,031.25$ |

RESIDENTIAL BUILDINGS IN FAMILY PROJECTS

| Returned Sample | 41 | 31 | 16 | 6 | 14 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Population | 18,433 | 40,082 | 102,438 | 20,578 | 79,529 |
| Population weight | 449.58 | $1,292.97$ | $6,402.38$ | $3,429.67$ | $5,680.64$ |
| $90 \%$ Confidence Interval Half-Width | $\pm 10 \%$ | $\pm 15 \%$ | $\pm 16 \%$ | $\pm 25 \%$ | $\pm 18 \%$ |

FAMILY PROJECTS WITH SITE-WIDE FACILITIES

| Returned Sample | 18 | 11 | 4 | 4 |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Popalation | 676 | 935 | 2,472 | 1830 |  |
| Population weight | 37.555 | 85.0 | 618.0 | No observation | 457.38 |

## APPENDIX H

SELECTION OF FIX AND ADDs ESTIMATOR

FIX and ADDs are the two types of modernization needs for which direct estimates for the 51 field offices were developed. One part of this process involved selecting an estimator to use. Another aspect involved reviewing the data for outliers. Each of these processes is described in turn.

The selection of an estimator for $F I X$ and $A D D$ s took three criteria into account. The magnitude of the standard error, the bias of the estimator and the need to select the single overall best estimator to be applied in all field offices. Although one estimator mıght not perform best in all 51 field offices for both FIX and ADDs, it was felt that it was important to be consistent in the choice of the estimator.

The following three field office estimators were examined in detail:

## Simple Unbiased Expansion

$$
\begin{array}{ll}
\sum_{j}^{\sum \operatorname{DEVWT}_{i j}} U_{j} \hat{c}_{j F} & \text { for FIX } \\
\sum_{j} \text { DEVWT }_{i j} U_{j} \hat{c}_{j A} & \text { for ADDs }
\end{array}
$$

Cost Per Unit Estimator

$$
\begin{aligned}
& U_{i} \frac{\sum \operatorname{DEVWT}_{i j} \hat{c}_{j F}}{\sum_{j} \text { DEVWT4 }_{i j}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { for ADDs }
\end{aligned}
$$

## Combined Stratum Ratio Estimator

$$
\mathrm{U}_{\mathrm{i}} \frac{\sum_{j}^{\Sigma \text { DEVWT4 }_{i j} \mathrm{U}_{\mathrm{j}} \hat{c}_{\mathrm{jF}}}}{\sum_{j} \text { DEVWT }_{i j} \mathrm{U}_{j}}
$$

for FIX

$$
U_{i} \frac{\sum_{j} \text { DEVWT5 }_{i j} U_{j} \hat{c}_{j A}}{\sum_{j}^{\text {DEVWT5 }_{i j} U_{j}}}
$$

for ADDs
where

| DEVWT4 $_{i j}=$ | the FIX development weight assigned to the $j$-th development in | | | |
|---|---|---|---|---|
| the i-th field office |  |$\quad$| DEVWTS $_{i j}$ | $=$ the ADDs development weight assigned to the $j$-th development |
| ---: | :--- |
| in the i-th field office, |  |

To address the issue of precision, we estimated the coefficient of variation for each of the three estimators for each field office for both FIX and ADDs. To examine the bias issue we reviewed the FIX and ADDs sample size of developments for each field office and examined the correlation between $\hat{c}_{j}$ F and $U_{j}, \hat{c}_{j A}$ and $U_{j}, U_{j} \hat{c}_{j F}$ and $U_{j}$ and $U_{j} \hat{c}_{j A}$ and $U_{j}$. We found that the cost per unit estimator and the ratio estimator displayed the lowest coefficient of variation in about the same number of the 51 field offices. However, there were a sufficient number of field offices that exhibited a high correlation between $\hat{c}_{j F}$ and $U_{j}$ and $\hat{c}_{j A}$ and $U_{j}$ (i.e., between cost per unit and development size) to cause a non-negligible bias when the cost per unit estimator was used. Furthermore, in those field offices where the cost per unit estimator had a lower coefficient of variation than the ratio estimator,
it was generally only slightly lower. The ratio estimator was therefore selected over the cost per unit estimator, and the simple unbiased expansion estimator, because it provided a lower coefficient of variation than the simple expansion in almost all of the field offices (due to the high positive correlation between total cost and development size). There are a small number of field offices with small development sample sizes where the ratio estimator may have a non-negligible bıas, however these field offices have low total FIX and ADDs costs in relation to other field offices. Taking into account the need to have a single estimator for both FIX and ADDs in all 51 field offices, the ratio estimator is clearly the best choice overall.

The second aspect of the process of producing field office estimates using the ratio estimator involved checking each of the 51 field offaces for outlier weight values. Three types of outliers were identified -- developments with a high development weight, reflecting a low cost per unnt estimate from the PHA in the Modernization Needs Survey, that had a high FIX development cost estimate; developments with a low development weight, reflecting a high cost per unit estimate from the PHA in the Modernization Needs Survey, that had a low FIX development cost estimate; and developments with a development size very different from the average of all other developments in their modernization cost per unit stratum.

The effect of the first type of outlier development is to cause the field office estimate from the sample to overestmate the true population value. The effect of the second type of outlier development is to cause the field office estimate from the sample to underestimate the true population value. For the third type of outlier development the sample can overestimate or underestimate the true population value depending on whether the developments' size is higher or lower than the average size and the relationship between the development's size and its FIX and ADDs intermediate estimates.

Outlier developments were located in 11 out of 51 field offices. To reduce/increase the influence of the effected developments, adjustments were made to the FIX and ADDs weights (DEVWT4 and DEVWT5, respective1y). The werght adjustment process involved using the DEVWT2 value, which equals the reciprocal of the development's selection probability prior to the poststratıfication adjustment by development size within field office, if the DEVWT2 value was lower than the DEVWT4 value. For those developments where
the DEVWT2 value was greater than or equal to the DEVWT4 value, a modernization cost per unit development stratum adjustment factor was developed by comparing the sample proportion of dwelling units accounted for by each modernization cost per unnt development stratum in the field office with the corresponding population proportion. All sample developments in the stratum that exhibited a high overrepresentation or high underrepresentation had their DEVWT4 values adjusted so that the sample proportion of dwelling units for the stratum agreed with the population proportion.

The new DEVWT4 values for all effected developments were also used as new DEVWTS values in the ADDs estimation process. We should also note that two very large F.H.A. scattered site developments in the Philadelphia field office had extremely high intermediate FIX development costs. These developments were selected with a high probability but were however not included with certainty. Because these developments are atypical of the public housing stock, we reduced their influence on the FIX estimate by reducing their DEVWT4 value to one so that they only represented themselves in the estimate. In no case were actual intermediate development costs ever adjusted or changed.

The weight adjustment process had a very smali effect on the overall national FIX estimate -- a 2.1 percent decline from $\$ 9,507$ millıon to $\$ 9,307$ million. The total national $A D D$ estimate increased to $\$ 12,947$ million from $\$ 10,072$ million, however most of this increase is due to the fact that the $\$ 10,072$ million total ADDs estimate in the draft final report failed to incorporate ADDs requests associated with dweliing units.

Exhibit H-1: Sampled Developments Ordered by Field Office

| OBS | Fieldoff | OFFNAME | PHANUM | PHANAME | PHASIZEX | SEQNUM | OLDPROJ | PROJNAME | TOTALDUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 19 | BOSTON, MA | 25001 | LOWELL HA | 4 | 03574 | MAOO100 1 | NORTH COMMON VILLAGE | 536 |
| 2 | 11 | BOSTON, MA' | 25001 | LOwELL HA | 4 | 03582 | MAOO1002 | G W FLANAGAN PROJ | 166 |
| 3 | 11 | BOSTON, MA | 25001 | LOWELL HA | 4 | 03599 | MAOO1003 | BISHOP MARKHAM PROJ | 366 |
| 4 | 11 | BOSTON. MA | 25001 | LOWEIL HA | 4 | 03606 | MAOO1004 | FAULKNER PRDU | 28 |
| 5 | 11 | BOSTON, MA | 25001 | LOWELL HA | 4 | 03644 | MAOO 1007 | HARTWELL PROJ | 25 |
| 6 | 11 | BOSTON, MA | 25001 | LOWELL HA | 4 | 03622 | MA001012 | SCATTERED SITES | 45 |
| 7 | 11 | BOSTON MA | 25002 | BOSTON HA | 5 | 03639 | MA002001 | CHARLESTOWN | 1149 |
| 9 | 11 | BOSTON, MA | 25002 | BOSTON HA | 5 | 03647 | MA002003 | MISSION HILL | 1023 |
| 9 | 11 | BOSTON, MA | 25002 | BOSTON HA | 5 | 03655 | MA002004 | LENOX ST | 304 |
| 10 | 11 | BOSTON, MA | 25002 | BOSTON HA | 5 | 03663 | MA002006 | SOUTH END | 508 |
| 11 | 11 | BOSTON, MA | 25002 | BOSTON HA | 5 | 03671 | MA002007 | HEATH ST | 327 |
| 12 | 11 | BOSTON. MA | 25002 | BOSTON HA | 5 | 03688 | MA002008 | MAVERICK | 414 |
| 13 | 11 | BOSTON, MA | 25002 | BESTON HA | 5 | 03696 | MA002009 | FRANKLIN HILL | 373 |
| 14 | 11 | BOSTON, MA | 25002 | BOSTON HA | 5 | 03703 | MA002013 | BEECH ST | 274 |
| 15 | 11 | BOSTON, MA | 25002 | BOSTON HA | 5 | 03711 | MAOO2014 | MISSION HILL EXT | 581 |
| 16 | 11 | BOSTON, MA | 25002 | gOSTON HA | 5 | 03728 | MAOO2019 | BROMLEY PARK | 730 |
| 17 | 11 | BOSTON, MA | 25002 | BOSTON HA | 5 | 03744 | MA002032 | GROVELAND ST | 64 |
| 18 | 11 | BOSTON, MA | 25002 | BOSTON HA | 5 | 03752 | MA002042 | WALNUT PARK | 168 |
| 19 | 11 | BOSTON, MA | 25002 | BOSTON HA | 5 | 03769 |  |  | 857 |
| 20 | 11 | BOSTON. MA | 25002 | BOSTON HA | 5 | 03777 |  |  | 1016 |
| 21 | 11 | BOSTON, MA | 25003 | CAMBRIDGE HA | 4 | 03785 | M4003001 | WASHINGTON ELMS | 324 |
| 22 | 11 | BOSTON, MA | 25003 | CAMBRIDGE HA | 4 | 03793 | MA003003 | PUTNAM GARDENS | 123 |
| 23 | 11 | BOSTON, MA | 25003 | CAMBRIDGE HA | 4 | 03809 | MA003004 | J F KENNEDY APTS | 88 |
| 24 | 11 | BOSTON, MA | 25003 | CAMERIDGE HA | 4 | 03817 | MA003005 | NEWTOWNE COURTS | 294 |
| 25 | 11 | BOSTON. MA | 25003 | CAMBRIDGE HA | 4 | 03825 | MA003006 | HARRY S TRUMAN APTS | 67 |
| 26 | 11 | BOSTON, MA | 25003 | CAMBRIDGE HA | 4 | 03833 | MA003007 | DANIEL E BURNS APTS | 199 |
| 27 | 1 | BOSTON. MA | 25003 | CAMBRIDGE HA | 4 | 03841 | MA003014 | UDIC | 26 |
| 28 | 11 | BOSTON, MA | 25005 | HOLYOKE HA | 3 | 03858 | M4005002 | JACKSON PARKWAY | 219 |
| 29 | 11 | BOSTON, MA | 25005 | HOLYOKE HA | 3 | 03866 | MAOOSOOG | FALCETYI TOWERS | 100 |
| 30 | 11 | BOSTON, MA | 25006 | FALL RIVER HA | 4 | 03874 | MA006001 | SUNSET HILL | 355 |
| 31 | 11 | BOSTION. MA | 25006 | FALL RIVER HA | 4 | 03882 | MA006002 | HAREOR TERRAGE | 223 |
| 32 | 11 | BOSTON, MA | 25006 | FALL RIVER HA | 4 | 03899 | MA006003 | HILLSIDE MANOR | 300 |
| 33 | 11 | BOSTON, MA | 25006 | FALL RIVER HA | 4 | 03906 | MA006007 | ARRUDA APTS | 140 |
| 34 | 11 | BOSTON, MA | 25005 | FALL RIVER HA | 4 | 03914 | MA006008 | HIGHLAND HEIGHTS APTS | 208 |
| 35 | 11 | BOSTON. MA | 25006 | FALL RIVER HA | 4 | 03922 | Ma006015 | JARABEK APTS | 36 |
| 36 | 11 | BOSTON, MA | 25012 | WORCESTER HA | 4 | 03939 | MAO12002 | ADDISON ST APT | 50 |
| 37 | 11 | BOSTON, MA | 25012 | WORCESTER HA | 4 | 03947 | MAO12003 | MILL. POND APT | 50 |
| 38 | 11 | BOSTON, MA | 25012 | WORCESTER HA | 4 | 03955 | MAO12004 | MAYSIDE APT | 50 |
| 39 | 11 | BOSTON, MA | 25012 | WORCESTER HA | 4 | 03963 | MaO12007 | MILL POND APT EXT | 24 |
| 40 | 11 | BOSTON. MA | 25012 | WORCESTER HA | 4 | 03971 | MAO 12008 | LINCOLN PARK TOWER APT | 199 |
| 41 | 11 | BOSTON, MA | 25012 | WORCESTER HA | 4 | 03988 | MAO12011 | HOOPER ST APT | 26 |
| 42 | 11 | BOSTON. MA | 25012 | WORCESTER HA | 4 | 03996 | MAO12014 | JACKSON APT | 60 |
| 43 | 11 | BOSTON. MA | 25012 | WORCESTER HA | 4 | 04002 | MAO12016 | PROVIDENCE NORTH ST AP | 29 |
| 44 | 11 | BOSTON, MA | 25020 | QUINCY HA | 3 | 04019 | MAO2000 | RIVERVIEW | 180 |
| 45 | 11 | BOSTON, MA | 25020 | QUINCY HA | 3 | 04027 |  |  | 275 |
| 46 | 11 | BOSTON, MA | 25022 | MALDEN HA | 3 | 04035 | MAO22001 | NEWLAND ST | 250 |
| 47 | 11 | BOSTON, MA | 25022 | MALDEN HA | 3 | 04043 | MA022006 | PLEASANT ST | 172 |
| 48 | 11 | EOSTON, MA | 25035 | SPRINGFIELD HA | 4 | 04076 | MA035003 | JDHN L SULLIVAN APT | 96 |
| 49 | 11 | BOSTON, MA | 25035 | SPRINGFIELD HA | 4 | 04084 | MA0350:0 | PENOLETON APT | 19 |

Exhibit H-I: Sampled Developments Ordered by Field Office (continued)

| 08S | FIELDOFF | OFFNAME | PHANUM | PHANAME | PHASI ZEX | SEQNUM OLDPROU |  | PROJNAME | TOTALOUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 11 | BOSTON, MA | 25035 | SPRINGFIELD HA | 4 | 040 | MA035011 | MARBLE APT | 48 |
| 51 | 11 | BOSTON, MA | 25035 | SPRINGFIELD HA | 4 | 04 | MA035013 | CENTRAL APT | 44 |
| 52 | 11 | BOSTON, MA | 25035 | SPRINGFIELD HA | 4 | 041 | MA035016 | UOHNNY APPLESEED APT | 60 |
| 53 | 11 | BOSTON. MA | 25043 | dracut ha | 1 | 041 | MAO4300 4 | CLUSTER GDN APT | 44 |
| OFFNAME <br> FIELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 13332 \\ & 13332 \end{aligned}$ |
|  |  |  | --- | FIELO OFFICE=12 | OFFICE NAME | = HARTF | CT |  |  |
| OBS | FIELDOFF | OFFNAME | PHANUM | Phaname | PHASIZEX | SEQNUM | OLDPROJ | PROJNAME | TOTALDUS |
| 54 | 12 | HARTFORD, CT | 09001 | BRIDGEPORT HA | 4 | 00885 | CTOO1001 | FATHER PANIK VILLAGE | 1082 |
| 55 | 12 | HARTFORD, CT | 09001 | BRIDGEPORT HA | 4 | 00893 | CT001005 | $P$ T BARNUM APTS | 482 |
| 56 | 12 | HARTFORD, CT | 09001 | BRIDGEPORT Ha | 4 | 00909 | cT001006 | CHARLES $F$ GREENE HOME | 280 |
| 57 | 12 | HARTFORD, CT | 09003 | HARTFORD HA | 4 | 00917 | CT003002 | DUTCH POINT COLONY | 222 |
| 58 | 12. | HARTFORD, CT | 09003 | HARTFORD HA | 4 | 00925 | cT003005 | STOWE VILLAGE | 598 |
| 59 | 12 | HARTFORD, CT | 09003 | HARTFORD HA | 4 | 00933 | C7003010 | REHAB HOUSING | 3 |
| 60 | 12 | HARTFORD. CT | 09004 | NEW HAVEN HA | 4 | 00941 | CT004003 | QUINNIPIAC TERRACE | 244 |
| 61 | 12 | HARTFORD, CT | 09004 | NEW HAVEN HA | 4 | 00958 | ст004006 | ROCKVIEW | 195 |
| 62 | 12 | HARTFORD, CT | 09004 | NEW HAVEN HA | 4 | 00966 | CT004007 | ELM HAVEN EXTENSION | 366 |
| 63 | 12 | HARTFORD, CT | 09004 | NEW HAVEN HA | 4 | 00974 | cT004009 | NEWHALL GARDENS | 36 |
| 64 | 12 | HARTFORD, CT | 09004 | NEW HAVEN HA | 4 | 00982 | CTOO4017 | ROBERT $T$ WOLFE APTS | 93 |
| 65 | 12 | HARTFORD, CT | 09004 | NEW HAVEN HA | 4 | 00999 | CTOO4026 | VALENTINA MACRI COURT | 18 |
| 66 | 12 | HARTFORD, CT | 09004 | NEW HAVEN HA | 4 | 01005 | CT004030 | HAVERLY TOWNHOUSES | 52 |
| 67 | 12 | HARTFORD. CT | 09004 | NEW HAVEN HA | 4 | 01013 | CT26P004035 | MCCONAUGHY TERRACE | 291 |
| 68 | 12 | HARTFORD, CT | 09006 | WATERBURY HA | 3 | 01021 | CT006001 | BERKLEY HEIGHTS | 344 |
| 69 | 12 | HARTFORD, CT | 09006 | WATEREURY HA | 3 | 01038 | CT006004 | OAK TERRACE | 54 |
| 70 | 12 | HARTFORD, CT | 09006 | WATERBURY HA | 3 | 01046 | cT006007 | TRUMAN APTS | 80 |
| 71 | 12 | HARTFORD. CT | 09013 | HARTFORD HA | 3 | 01054 | CTO13001 | HOCKANUM PARK | 100 |
| 72 | 12 | HARTFORD. CT | 09013 | HARTFORD HA | 3 | 01062 | GTO13004 | MEADOW HILL APTS | 120 |
| 73 | 12 | HARTFORD, GT | 09013 | HARTFORD HA | 3 | 01079 | CT013007 | MILLER GARDENS | 84 |
| 74 | 12 | HARTFORD, CT | 09029 | WEST HAVEN HA | 2 | 01095 | CTO29002 | SURFSIDE 200 | 200 |
| 75 | 12 | HARTFORD, CT | 09029 | WEST HAVEN HA | 2 | 01102 | CT26P029004 | WEST HAVEN | 9 |
| OFFNAME <br> FIELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 4953 \\ & 4953 \end{aligned}$ |

Exhibit H-1: Sampled Developments Ordered by Field Office (continued)


Exhibit H-1: Sampled Developments Ordered by Field Office (continued)

| OBS | FIELOOFF | OFFNAME | PHANUM | PHANAME | PHASIZEX | SEQNUM | QLDPROJ | PROJNAME | totaldus |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 103 | 21 | BUFFALD, NY | 36001 | SYRACUSE HA | 4 | 05948 | NYOO1001 | PIONEER HOMES | 632 |
| 104 | 21 | BUFFALO, NY | 36001 | SYRACUSE HA | 4 | 05956 | NYOO1002 | JAMES GEDDES | 331 |
| 105 | 21 | BUFFALD, NY | 36011 | NIAGARA FALLS HA | 3 | 06425 | NYO1 1004 | LASALLE CTS | 250 |
| 106 | 21 | BUFFALO, NY | 36028 | SCHENECTADY HA | 3 | 06466 | NYO28003 | MACGATHAN TDWNHOUSES | 50 |
| 107 | 21 | BUFFALO, NY | 36028 | SCHENECTADY HA | 3 | 06474 | NYO28007 | MARYVALE TOWNHOUSES | 8 |
| 108 | 21 | BUFFALO. NY | 36041 | ROCHESTER HA | 4 | 06482 | NYO4 1012 | CAPSULE DWELLING | 32 |
| 109 | 21 | gUFFALO, NY | 36041 | ROCHESTER HA | 4 | 06499 | NYO4 1018 | HUDSON RIDGE | 396 |
| 110 | 21 | BUFFALO. NY | 36068 | ONEONTA HA | 2 | 06744 | NY068001 | ALBERT NADER TOWERS | 112 |
| OFFNAME FIELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 1811 \\ & 1811 \end{aligned}$ |



Exhibit H-1: Sampled Developments Ordered by Field Office (continued)

| obs | fielodff | dffname |  | Phanum | phaname |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 143 | 22 | SAN JUAN, | PR | 72005 | PRURHC |
| 144 | 22 | SAN JUAN, | PR | 72005 | PRURHC |
| 145 | 22 | SAN JUAN. | PR | 72005 | PRURHC |
| 146 | 22 | SAN JUAN, | PR | 72005 | PRURHC |
| 147 | 22 | SAN JUAN, | PR | 78001 | VIHA |
| 148 | 22 | SAN JUAN. | PR | 78001 | VIHA |
| 149 | 22 | SAN JUAN. | PR | 78001 | VIHA |
| 150 | 22 | SAN JUAN. | PR | 78001 | VIHA |
| 151 | 22 | SAN JUAN, | PR | 78001 | VIHA |
| 152 | 22 | SAN JUAN. | PR | 78001 | VIHA |
| offname fieldopf |  |  |  |  |  |

OFFICE NAME = SAN JUAN.

| OBS | FiELDOFF | OFFNAME |  |  | PHANUM | Phaname |  |  | PHASIZEX | SEQNUM | OLDPROJ | PROUNAME | TOTALDUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 153 | 23 | NEW | YORK, | NY | 36003 | YONKERS | HA |  | 4 | 05964 | NYOO3001 | EMMETT BURKE GARDENS | 550 |
| 154 | 23 | NEW | YORK, | NY | 36003 | YONKERS | HA |  | 4 | 05972 | NY003002 | HALLS HOMES/LOEHR COUR | 156 |
| 155 | 23 | NEW | YORK, | NY | 36003 | YONKERS | HA |  | 4 | 05989 | NY003003 | WM A SCHLOBOHM | 411 |
| 156 | 23 | NEW | YORK, | NY | 36003 | YONKERS | Ha |  | 4 | 05997 | NY003004 | WM A WALSH HOMES | 300 |
| 157 | 23 | NEW | YORK, | NY | 36003 | YONKERS | HA |  | 4 | 06003 | NY003005 | ROSS CALCAGNO HOMES | 278 |
| 158 | 23 | NEW | YORK, | NY | 36003 | YONKERS | Ha |  | 4 | 06011 | NY003006 | CURRAN CT/KRISTENSEN | 218 |
| 159 | 23 | NEW | YORK. | NY | 36003 | YONKERS | HA |  | 4 | 06028 | NYOO3007 | JOHN E FLYNN MANOR | 140 |
| 160 | 23 | NEW | YORK. | NY | 36003 | YONKERS | Ha |  | 4 | 06036 | NY36P003009 | COTTAGE PLACE GARDENS | 256 |
| 161 | 23 | NEW | YORK. | NY | 36005 | NEW YORK | CITY | Ha | 5 | 06044 | NV005003 | VLADECK | 1531 |
| 162 | 23 | NEW | YORK, | NY | 36005 | NEW YORK | CITY | HA | 5 | 06052 | NY005004 | SOUTH JAMAICA I | 448 |
| 163 | 23 | NEW | YORK. | NY | 36005 | NEW YORK | CITY | HA | 5 | 06069 | NY005006 | KINGSBGROUGH | 1166 |
| 164 | 23 | NEW | YORK. | NY | 36005 | NEW YORK | CITY | HA | 5 | 06077 | NYOO5012 | BARUCH | 2194 |
| 165 | 23 | NEW | YORK, | NY | 36005 | NEW YORK | criy | HA | 5 | 06085 | Nrooso 13 | VAN DYKE I | 1603 |
| 166 | 23 | NEW | YORK, | NY | 36005 | NEW YORK | CITY | HA | 5 | 06093 | NrOO5015 | THROGGS NECK | 1185 |
| 167 | 23 | NEW | YORK, | NY | 36005 | NEW YORK | CITY | HA | 5 | 06109 | NY005017 | EREVODRT | 896 |
| 168 | 23 | NEW | YORK. | NY | 36005 | NEW YORK | CITY | HA | 5 | 06:17 | NYOO5018 | SOUTH JAMIACA II | 600 |
| 169 | 23 | NEW | YORK, | NY | 36005 | NEW YORK | CITY | HA | 5 | 06125 | NYOO5031 | MC KINLEY | 619 |
| 170 | 23 | NEW | YORK, | NY | 36005 | NEW YORK | CITY | HA | 5 | 06133 | NYOO5038 | BAISLEY PARK | 386 |
| 171 | 23 | NEW | YORK, | NY | 36005 | NEW YORK | CITY | ha | 5 | 06141 | NYO05040 | WEST ERIGHTON I \& II | 634 |
| 172 | 23 | NEW | YORK, | NY | 36005 | NEW YORK | CITY | HA | 5 | 06158 | NYOO5046 | TOMPKINS | 1046 |
| 173 | 23 | NEW | YORK, | NY | 36005 | NEW YORK | CITY | HA | 5 | 06166 | NYOO5047 | LAFAYETTE | 882 |
| 174 | 23 | NEW | YORK, | NY | 36005 | NEW YORK | CITY | HA | 5 | 06174 | NYO05051 | HARLEM RIVER II | $\pm 16$ |
| 175 | 23 | NEW | YORK, | NY | 36005 | NEW YORK | CITY | Ha | 5 | 06182 | NYOO5054 | ELEANOR ROOSEVELT I | 763 |
| 176 | 23 | NEW | YORK, | NY | 36005 | NEW YORK | CITY | Ha | 5 | 06199 | NVOO5055 | VAN DYKE II | 1 ¢ 2 |
| 177 | 23 | NEW | YORK, | NY | 36005 | NEW YORK | CITY | HA | 5 | 06206 | NYO05056 | UPPER WEST SIDE UR | 396 |
| 178 | 23 | NEW | YORK. | Nr | 36005 | NEW YORK | CITY | HA | 5 | 06214 | NY005084 | SEN ROBERT A TAFT | 1470 |
| 179 | 23 | NEW | YORK. | NY | 36005 | NEW YORK | CITY | HA | 5 | 06222 | NY005068 | 303 VERNON AVENUE | 234 |
| 180 | 23 | NEW | YORK, | NY | 36005 | NEW YORK | CITY | HA | 5 | 06239 | NYOO5074 | WYCKOFF GARDENS | 529 |
| 181 | 23 | NEW | YORK, | NY | 38005 | NEW YORK | CITY | HA | 5 | 06247 | NY005090 | 1010 E 178 ST | 220 |
| 182 | 23 | NEW | YORK, | NY | 36005 | NEW YORK | CITY | HA | 5 | 06255 | NY005093 | LATIMER GARDENS | 423 |



Exhibit H-1: Sampled Developments Ordered by Field Office (continued)

| OBS | FiELDOFF | OFFNAME | PHANUM | PHANAME | PHASIZEX | SEQNUM | OLDPROJ | PRGUNAME | totalous |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 224 | 24 | NEWARK. NJ | 34002 | NEWARK HA | 5 | 05389 | Nd002001 | SETH BOYOEN CT | 529 |
| 225 | 24 | NEWARK, NU | 34002 | NEWARK HA | 5 | 05397 | NJ002002 | PENNINGTON COURT | 234 |
| 226 | 24 | NEWARK, NJ | 34002 | NEWARK HA | 5 | 05404 | NJ002006 | STEPHEN CRANE | 354 |
| 227 | 24 | NEWARK, NJ | 34002 | NE WARK HA | 5 | 05412 | NJ002007 | HYATT COURT | 399 |
| 228 | 24 | NEWARK, NJ | 34002 | NEWARK HA | 5 | 05429 | NJ002008 | FELIX FULD | 296 |
| 229 | 24 | NEWARK, NJ | 34002 | NEWARK HA | 5 | 05437 | NuOO2009 | ROOSEVELT HOMES | 273 |
| 230 | 24 | NEWARK, NJ | 34002 | NEWARK HA | 5 | 05445 | $\mathrm{NJOO2O10}$ | KRETCHMER HDMES | 730 |
| 231 | 24 | NEWARK, NJ | 34002 | NEWARK HA | 5 | 05453 | NJOO2011 | WALSH HOMES | 628 |
| 232 | 24 | NEWARK, NJ | 34002 | NEWARK HA | 5 | 05478 | NJOO2O13 | columbus homes | 1453 |
| 233 | 24 | NEWARK, NJ | 34002 | NEWARK HA | 5 | 05486 | NJOO2015 | STELLA WRIGHT | 1204 |
| 234 | 24 | NEWARK. NJ | 34002 | NEWARK HA | 5 | 05494 | NJ002017 | KRETCHMER HOMES | 198 |
| 235 | 24 | NEWARK, NJ | 34002 | NEWARK HA | 5 | 05501 | NJOO2019 | SCUDDER HOMES | 1674 |
| 236 | 24 | NEWARK, NJ | 34002 | NEWARK HA | 5 | 05518 | Nu002030 | NEWARK HA | 360 |
| 237 | 24 | NEWARK, NJ | 34002 | NENARK HA | 5 | 05526 | NJ00203 1 | NEWARK HA | 200 |
| 238 | 24 | NEWARK, NJ | 34005 | TRENTON HA | 4 | 05534 | NJOO5001 | LINCOLN HMS | 118 |
| 239 | 24 | NEWARK. NJ | 34005 | TRENTON HA | 4 | 05542 | NJOO5002 | donnelly homes | 376 |
| 240 | 24 | NEWARK, NJ | 34005 | TRENTON HA | 4 | 05559 | NJ005003 | PROSPECT VILIAGE | 120 |
| 241 | 24 | NEW/ARK, NJ | 34005 | TRENTON HA | 4 | 05567 | NJ005004 | KERNEY HOMES | 101 |
| 242 | 24 | NEWARK, NJ | 34005 | TRENTON HA | 4 | 05575 | NJ005005 | CAMPBELL HMS | $8 \dagger$ |
| 243 | 24 | NEWARK, NJ | 34005 | TRENTON HA | 4 | 05583 | NJOO5006 | WILSON HMS | 219 |
| 244 | 24 | NEWARK. NJ | 34005 | TRENTON HA | 4 | 05591 | NJ005008 | HAVERSTICK HMS | 112 |
| 245 | 24 | NEWARK, NJ | 34005 | TRENTON HA | 4 | 05607 | NJ005010 | MILLER HOMES | 256 |
| 246 | 24 | NEWARK, NJ | 34005 | TRENTON HA | 4 | 05615 | NJOO5011 | UAMES $J$ ABBOTT | 108 |
| 247 | 24 | NEWARK, NJ | 34007 | ASBURY PARK HA | 3 | 05623 | NJ007002 | WASHINGTON VLG | 50 |
| 248 | 24 | NEWARK, NJ | 34007 | ASBURY PARK HA | 3 | 05631 | NJ007004 | LINCOLN VLG | 62 |
| 249 | 24 | NEWARK. NJ | 34007 | ASBURY PARK HA | 3 | 05648 | NJ007005 | COMSTACK CT | 50 |
| 250 | 24 | NEWARK, NJ | 34007 | ASEURY PARK HA | 3 | 05656 | $\mathrm{N}, 1007007$ | DR E A ROBINSON TWS | 110 |
| 251 | 24 | NEWARK. NJ | 34010 | CAMDEN HA | 4 | 05664 | NJO10001 | GRANCH VLGE | 279 |
| 252 | 24 | NEWARK, NJ | 34010 | CAMDEN HA | 4 | 05672 | NJO10002 | ABLETT VLG | 306 |
| 253 | 24 | NEWARK, NJ | 34010 | CAMDEN HA | 4 | 05689 | NJO10003 | RODSEVELT MANOR | 268 |
| 254 | 24 | NEWARK, NJ | 34010 | CAMDEN HA | 4 | 05697 | NJO10004 | MCGUTRE GRDNS ; | 367 |
| 255 | 24 | NEWARK. NJ | 34010 | CAMDEN HA | 4 | 05704 | NJO 10005 | CHELTON TERR | 200 |
| 256 | 24 | NEWARK. NJ | 34010 | CAMDEN HA | 4 | 05712 | NJO10006 | WESTFIELD ACRES | 514 |
| 257 | 24 | NEWARK, NJ | 34010 | CAMDEN HA | 4 | 05729 | NJO:0007 | KENNEDY TWRS | 99 |
| 258 | 24 | NEWARK, NJ | 34010 | CAMDEN HA | 4 | 05737 | NJO10011 | ROYAL CT TWHS | 93 |
| 259 | 24 | NEWARK, NJ | 34011 | LODI HA | 2 | 05745 | NJO11001 | DE VRIES PARK | 100 |
| 260 | 24 | NEWARK, NJ | 34011 | LODI HA | 2 | 05753 | NJO11004 | LODI. BORO HA | 40 |
| 261 | 24 | NEWARK, NJ | 34014 | atlantic City ha | 4 | 05764 | NJO1400: | JUHNATHAN PITNEY VLGE | 333 |
| 262 | 24 | NEWARK. NJ | 34014 | ATLANTIC CITY HA | 4 | 05778 | NJO14002 | HOLMES VLGE EXTENSION | 164 |
| 263 | 24 | NEWARK, NJ | 34014 | ATLANTIC CITY HA | 4 | 05786 | NJO14003 | BUZBY HOMES VLGE | 122 |
| 264 | 24 | NEWARK, NJ | 34014 | ATLANTIC CITY HA | 4 | 05794 | NJO14004 | Holmes vige | 279 |
| 265 | 24 | NEWARK, NJ | 34014 | ATLANTIC CITY HA | 4 | 05801 | NJO14005 | ALTMAN TERR/INLET TWR | 346 |
| 266 | 24 | NEWARK, NJ | 34014 | ATLANTIC CITY HA | 4 | 05818 | NJO14006 | SHDRE PARK \& SHORE TER | 404 |
| 267 | 24 | NEWARK, NJ | 34014 | ATLANTIC CITY HA | 4 | 05826 | NJO14007 | ATLANTIC CITY HA | 300 |
| 269 | 24 | NEWARK, NJ | 34015 | HOBOKEN HA | 4 | 05834 | NJO15001 | ANDREW JACKSON GRDNS | 598 |
| 269 | 24 | NEWARK, NJ | 34015 | HOBDKEN HA | 4 | 05842 | NJO15002 | C COLUMBUS GRDNS | 97 |
| 270 | 24 | NEWARK, NU | 34015 | HOBOKEN HA | 4 | 05859 | NJ015003 | HARRISON GRDNS | 208 |
| 271 | 24 | NEWARK, NJ | 34015 | HOBOKEN HA | 4 | 05867 | NJO15004 | MONROE \& ADAMS GRDNS | 250 |
| 272 | 24 | NEWARK, NJ | 34015 | HOBOKEN HA | 4 | 05875 | NJO15005 | FOX HILL GRDNS | 200 |

Exhibit H-1: Sampled Developments Oxdered by Field Office (continued)



Exhibit ${ }^{H-1: ~ S a m p l e d ~ D e v e l o p m e n t s ~ O r d e r e d ~ b y ~ F i e l d ~ O f f i c e ~(c o n t i n u e d) ~}$

| OBS | FIELDOFF | OfFNAME | PHANUM | PHANAME | PHASIZEX | SEQNUM | OLDPROJ | PROUNAME | TOTAL.OUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 304 | 32 | PHILADELPHIA | 42002 | PHILADELPHIA HSNG AUTH | 5 | 08289 | PAOO2013 | WILSON PARK | 743 |
| 305 | 32 | PHILADELPHIA | 42002 | PHILADELPHIA HSNG AUTH | 5 | 08297 | PAOO2018 | ARCH HOMES | 74 |
| 306 | 32 | PHILADELPHIA | 42002 | PHILADELPHIA HSNG AUTH | 5 | 08304 | PACO202 1 | SCHUYLKILL FALLS | 714 |
| 307 | 32 | PHI LADELPHIA | 42002 | PHILADELPHIA HSNG AUTH | 5 | 08312 | PAOO2045 | MANTUA HALL | 153 |
| 308 | 32 | PHILADELPHIA | 42002 | PHILADELPHIA HSNG AUTH | 5 | 08329 | PAOO2046 | HAVERFORD HOMES | 24 |
| 309 | 32 | PHILADELPHIA | 42002 | PHILADELPHIA HSNG AUTH | 5 | 08337 | PA002053 | SOUTHWARK PLAZA | 886 |
| 310 | 32 | PHILADELPHIA | 42002 | PHILADELSHIA HSNG AUTH | 5 | 08345 | PA002069 | SCATTERED SITES | 1456 |
| 311 | 32 | PHILADELPHIA | 42002 | PHILADELPHIA HSNG AUTH | 5 | 08353 | PA002081 | SGATTERED SITES | 945 |
| 312 | 32 | PHILAOELPHIA | 42002 | PHILADELPHIA HSNG AUTH | 5 | 08361 | PAOO2091 | SCATTERED SITES | 137 |
| 313 | 32 | PHYLADELPHIA | 42002 | PHILADELPHIA HSNG AUTH | 5 | 08378 |  |  | 298 |
| 314 | 32 | PHILADELPHIA | 42002 | PHILADELPHIA HSNG AUTH | 5 | 08386 |  |  | 148 |
| 315 | 32 | PHILADELPHIA | 42003 | SCRANTON HOUSING AUTH | 4 | 08394 | PAOO300 1 | VALLEY VIEW TERRACE | 240 |
| 316 | 32 | PHILADELPHIA | 42003 | SCRANTON HOUSING AUTH | 4 | 08401 | PA003002 | HILLTOP MANOR | 250 |
| 317 | 32 | PHILADELPHIA | 42003 | SCRANTON HOUSING AUTH | 4 | 08418 | PAOO3004 | ADAMS APARTMENTS | 64 |
| 318 | 32 | PHILADELPHIA | 42003 | SCRANTON HOUSING AUTH | 4 | 08426 | PA003006 | JACKSON HEIGHTS | 101 |
| 319 | 32 | PHILADELPHIA | 42003 | SCRANTON HOUSING AUTH | 4 | 08434 | PA003007 | WASHINGTON WEST APTS | 150 |
| 320 | 32 | PHILADELPHIA | 42003 | SCRANTON HOUSING AUTH | 4 | 08442 | PA003008 | RIVERSIDE APARTMENTS | 90 |
| 324 | 32 | PHILADELPHIA | 42003 | SCRANTON HOUSING AUTH | 4 | 08459 | PA003009 | WASHINGTON PLAZA APTS | 60 |
| 322 | 32 | PHILADELPHIA | 42007 | CHESTER HOUSING AUTH | , 4 | 08467 | PA007001 | LAMOKIN VILLAGE | 350 |
| 323 | 32 | PHILADELPHIA | 42007 | CHESTER HOUSING AUTH | 4 | 08475 | PA007002 | WILLIAM PENN HOMES | 278 |
| 324 | 32 | PHILADELPHIA | 42007 | CHESTER HOUSING AUTH | 4 | 08483 | PA007003 | MCCAFFERY VILLAGE | 350 |
| 325 | 32 | PHILADELPHIA | 42007 | CHESTER HOUSING AUTH | 4 | 08491 | PA007005 | RUTH L BENNETT HOMES | 390 |
| 326 | 32 | PHILADELPHIA | 42007 | CHESTER HOUSING AUTH | 4 | 08507 | PA007006 | CHESTER TOWERS | 300 |
| 327 | 32 | PHILADELPHIA | 42007 | CHESTER HOUSING AUTH | 4 | 08515 | PA007008 | SCATTERED SITES | 28 |
| 328 | 32 | PHILADELPHIA | 42008 | HARRISBURG HOUSING AUTH | 4 | 08523 | PAO08001 | W HOWARD DAY HOMES | 225 |
| 329 | 32 | PHILADELPHIA | 42008 | HARRISEURG HOUSING AUTH | 4 | 08531 | PAO08002 | GEO A HOVERTER HOMES | 236 |
| 330 | 32 | PHILADELPHIA | 42008 | HARRISBURG HOUSING AUTH | 4 | 08548 | PAOOBOO3 | JOHN A F HALL MANOR | 550 |
| 331 | 32 | PHILADELPHIA | 42008 | HARRISEURG HOUSING AUTH | 4 | 08556 | PAOOB004 | HILLSIDE VILLAGE | 70 |
| 332 | 32 | PHILADELPHIA | 42008 | HARRISEURG HOUSING AUTH | 4 | 08564 | PA008005 | M W SMITH HDMES | 80 |
| 333 | 32 | PHILADELPHIA | 42008 | HARRISBURG HOUSING AUTH | 4 | 08572 | PAOOBOO6 | JACKSON LICK APTS | 364 |
| 334 | 32 | PHILADELPHIA | 42008 | HARRISBURG HOUSING AUTH | 4 | 08589 | PA008007 | MORRISON TOWERS | 126 |
| 335 | 32 | PHILADELPHIA | 42022 | YORK HOUSING AUTH | 3 | 08759 | PAO22001 | CODORUS HOMES | 54 |
| 336 | 32 | PHILADELPHIA | 42022 | YORK HOUSING AUTH | 3 | 08767 | PAO2 2002 | WELLINGTON HOMES | 72 |
| 337 | 32 | PHILADELPHIA | 42022 | YORK HOUSING AUTH | 3 | 08775 | PAO22003 | PARKWAY HOMES | 188 |
| 338 | 32 | PHILAOELPHIA | 42022 | YORK HOUSING AUTH | 3 | 08783 | PAO22004 | PARKWAY - HOMES EXTENSIO | 86 |
| 339 | 32 | PHILAOELPHIA | 42030 | CARBONDALE HOUSING AUTH | 2 | 08807 | PAO30001 | RUSSELL PARK | 74 |
| 340 | 32 | PHILAOELPHIA | 42030 | CAREONDALE HOUSING AUTH | 2 | 08815 | PA030002 | CANAAN STREET | 72 |
| 341 | 32 | PHILADELPHIA | 42036 | LANCASTER MOUSING AUTH | 3 | 08848 | PAO36001 | SUSQUEHANMA COURT | 75 |
| 342 | 32 | PHILADELPHIA | 42036 | LANCASTER HOUSING AUTH | 3 | 08856 | PA036002 | FRANKILN TERRACE | 124 |
| 343 | 32 | PHILADELPHIA | 42036 | LANCASTER HOUSING AUTH | 3 | 08864 | PA036003 | CHURCH STREET TOWERS | 98 |
| 344 | 32 | PHILADELPHIA | 42036 | LANCASTER HOUSING AUTH | 3 | 08872 | PA036004 | FARNUM STREET EAST | 169 |
| 345 | 32 | PHILADELPHIA | 42036 | LANCASTER HOUSING AUTH | 3 | 08889 | PA036007 | REHAB PROJECT | 96 |
| 346 | 32 | PHILADELPHIA | 42038 | LACKAWANNA CO HSNG AUTH | 3 | 08897 | PAO38CO5 | FELL TWP HOUSING | 26 |
| 347 | 32 | PHILADELPHIA | 42038 | LACKAWANNA CO HSNG AUTH | 3 | 08904 | PA038008 | OLD FORGE HDUSING | 124 |
| 348 | 32 | PHILADELPHIA | 42038 | LAGKAWANNA CO HSNG AUTH | 3 | 08912 | PAO38010 | DICKSON CITY HOUSING | 69 |
| OFFNAME <br> FIELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 16606 \\ & 16606 \end{aligned}$ |

Exhibit E-1: Sampled Developments Ordered by Field Office (contioued)

| OBS | FIELDOFF | OFFNAME | PHANUM | PHANAME | PHASIZEX | SEONUM | OLDPRO | PROUNAME | TOTALDUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 349 | 33 | PITTSBURGH, | 42001 | PITTSBURGH HSNG AUTH | 5 | 08142 | PA001001 | ADDISON TERRACE | 802 |
| 350 | 33 | PITTSEURGH, | 42001 | Pittsburgh HSNG AUTH | 5 | 08159 | PAOO1003 | ALIQUIPPA TERRACE | 1851 |
| 351 | 33 | PITTSBURGH, | 42001 | PITTSBURGH HSNG AUTH | 5 | 08167 | PACO 1004 | ARLINGTON HEIGHTS | 588 |
| 352 | 33 | PITTSBURGH, | 42001 | PITTSBURGH HSNG AUTH | 5 | 08175 | P4001006 | gROAOHEAD MANOR | 448 |
| 353 | 33 | PITTSBURGH. | 42001 | PITTSEURGH HSNG AUTH | 5 | 08183 | PAOO1007 | St clair village | 969 |
| 354 | 33 | PITTSBURGH, | 42001 | PITTSBURGH HSNG AUTH | 5 | 08191 | PAOO1008 | BEDFORD DWEL'INGS | 460 |
| 355 | 33 | PITTSEURGH, | 42001 | PITTSEURGH HSNG AUTH | 5 | 08207 | PAOO1009 | NORTHVIEN HEIGHTS | 963 |
| 356 | 33 | PITTSEURGH. | 42001 | PITTSBURGH HSNG AUTH | 5 | 08215 | PAOO 1012 | GARFIELD HEIGHIS | 632 |
| 357 | 33 | PITTSBURGH. | 42001 | PITTSBURGH HSNG AUTH | 5 | 08223 | PAOO1014 | kelly street *apts | 165 |
| 358 | 33 | PITTSEURGH. | 42001 | PITTSEURGH HSNG AUTH | 5 | 08231 | PAOO1020 | HOMEWOOD NORTH | 135 |
| 359 | 33 | PITTSBURGH. | 42001 | PITTSEURGH HSNG AUTH | 5 | 08248 | PAOO1031 | MURRAY TOWERS | 70 |
| 360 | 33 | PITTSEURGH, | 42014 | BEAVER COUNTY HSNG AUTH | 4 | 08604 | PAO14004 | HARMONY DWELLINGS | 50 |
| 361 | 33 | PITTSBURGH. | 42014 | BEAVER COUNTY HSNG AUTH | 4 | 08612 | PAO14012 | JOHN F KENNEDY APTS | 62 |
| 362 | 33 | PITTSBURGH. | 42014 | BEAVER COUNTY HSNG AUTH | 4 | 08629 | PAO:4013 | JOSEPH S EDWARDS APTS | 56 |
| 363 | 33 | PITTSEURGH, | 42014 | BEAVER COUNTY HSNG AUJH | 4 | 08637 | PAO14018 | AMBRIDGE TOWERS | 100 |
| 364 | 33 | PITTSBURGH, | 42015 | FAYETTE COUNTY HSNG AUTH | 4 | 08645 | PAO15003 | GIBSON TERRACE | 150 |
| 365 | 33 | PITTSBURGH, | 42015 | FAYETTE COUNTY HSNG AUTH | 4 | 08653 | PAO15004 | LEMON WOOD ACRES | 150 |
| 366 | 33 | PITTSBURGH. | 42015 | FAYETTE COUNTY HSNG AUTH | 4 | 08661 | PAO15006 | FT MASON VILLAGE | 100 |
| 367 | 33 | PITTSEURGH. | 42015 | fayETte county hing auth | 4 | 08678 | PAO15007 | DUNLAP CREEK VILLAGE | 100 |
| 368 | 33 | PITTSEURGH. | 42015 | FAYETTE COUNTY HSNG AUTH | 4 | 08686 | PAO15012 | WHITE SWAN APTS | 78 |
| 369 | 33 | PITTSEURGH, | 42017 | WASHINGTDN CO HSNG AUTH | 3 | 08694 | PAO17001 | MAPLE TERRACE | 100 |
| 370 | 33 | PITTSBURGH, | 42017 | WASHINGTON CO HSNG AUTH | 3 | 08701 | PAO17004 | HIGHLAND TERRACE | 105 |
| 371 | 33 | PITTSBURGH, | 42018 | WESTMORELAND CO HSG AUTH | 4 | 08718 | PAO18001 | EAST KEN MANOR I | 126 |
| 372 | 33 | PITTSBURGH, | 42018 | WESTMORELAND CO HSG AUTH | 4 | 08726 | PAO18004 | KENSINGTON MANOR | 160 |
| 373 | 33 | PITTSEURGH, | 42018 | WESTMORELAND CO HSG AUTH | 4 | 08734 | PAO18009 | ARNOLD MANOR | 80 |
| 374 | 33 | PITTSBURGH, | 42018 | WESTMORELAND CO HSG AUTH | 4 | 08742 | PAO18016 | EAST KEN MANOR II | 52 |
| 375 | 33 | PITTSBURGH. | 42027 | HUNT INGDON CO HSNG AUTH | 2 | 08791 | PA027001 | CHESTNUT TERRACE | 100 |
| 376 | 33 | PITTSBURGH, | 42031 | ALTOONA HSNG AUTH | 3 | 08823 | PA031005 | EASt maple avenue | 30 |
| 377 | 33 | PITTSBURGH, | 42031 | ALTODNA HSNG AUTH | 3 | 08831 | PAO3 1006 |  | 12 |
| 378 | 33 | PITTSEURGH, | 42039 | ARMSTRDNG CO HSNG AUTH | 2 | O8929 | PA039007 | FRIENDSHIP APTS | 50 |
| offname <br> FIELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 8744 \\ & 8744 \end{aligned}$ |

FIELD OFFICE $=34$ OFFICE NAME=RICHMONO, VA

| OBS | FIELDOFF | OFFNAME |  |
| ---: | :---: | :--- | :--- |
|  |  | PHANUM |  |
| 379 | 34 | RICHMOND, VA | 51003 |
| 380 | 34 | RICHMOND, VA | 51003 |
| 381 | 34 | RICHMOND, VA | 51003 |
| 382 | 34 | RICHMOND, VA | 51003 |
| 383 | 34 | RICHMOND, VA | 51005 |
| 384 | 34 | RICHMOND, VA | 51005 |
| 385 | 34 | RICHMOND, VA | 51007 |
| 386 | 34 | RICHMOND, VA | 51007 |
| 387 | 34 | RICHMOND, VA | 51007 |
| 388 | 34 | RICHMOND, VA | 51007 |

NEWPORT NEWS RED \& HSNG
HOPEWELL RED \& HSNG AUTH
HOPEWELL RED \& HSNG AUTH
RICHMOND RED \& HSNG AUTH
PHASIZEX

OLD



Exhibit H-1: Sampled Developments Ordered by Field Office (continued)

| OBS | FIELDOFF | OFFNAME | PHANUM | phaname | PHASIZEX | SEQNUM | DLDPROJ | Prouname | TOTALDUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 389 | 34 | RICHMOND, VA | 51007 | RICHMOND RED \& HSNG AUTH | 4 | 10078 | VA007016 | USED HOUSE PRDGRAM | 60 |
| 390 | 34 | RICHMOND, VA | 51007 | RICHMOND RED \& HSNG AUTH | 4 | 10086 | VA007017 | OVERLOOK < MIMOSA | 10 |
| 391 | 34 | RICHMOND, VA | 51014 | HARRI SONBURG RED \& HSNG | 2 | 10094 | VAO14001 | FRANKLIN HEIGHTS | 60 |
| 392 | 34 | RICHMOND, VA | 51017 | HAMPTON REO \& HSNG AUTH | 3 | 10101 | VAO17002 | LINCOLN PARK | 300 |
| 393 | 34 | RICHMOND, VA | 51017 | HAMPTON RED \& HSNG AUTH | 3 | 10118 | VAO17003 | PINE CHAPEL | 450 |
| 394 | 34 | RICHMOND, VA | 51020 | PETERSBURG RED \& HSNG AU | 2 | 10126 | VA020001 | PECAN ACRES | 150 |
| OFFNAME <br> FIELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 3049 \\ & 3049 \end{aligned}$ |



Exhibit E-1: Sampled Developments Ordered by Field Office (continued)

## FIELD OFFICE=36 OFFICE NAME=CHARLESTON

| OBS | FIELDOFF | OFFNAME | Phanum | Phaname | PHASIZEX | SEQNUM | OLDPROU | PROUNAME | Totaldus |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 417 | 36 | CHARLESTON, | 54001 | CHARLESTON HOUSING AUTH | 4 | 10434 | WV001005 | JARRETT TERRACE | 102 |
| 418 | 36 | CHARLESTON, | 54001 | CHARLESTON HOUSING AUTH | 4 | 10442 | WVOO1007 | HILL CREST VILLAGE | 104 |
| 419 | 36 | CHARLESTON, | 54001 | CHARLESTON HOUSING AUTH | 4 | 10459 | WVOO1008 | SOUTH PARK VILLAGE | 84 |
| 420 | 36 | CHARLESTON, | 54004 | HUNTINGTON HOUSING AUTH | 3 | 10467 | WV004003 | MARCUM TERRACE | 284 |
| 421 | 36 | CHARLESTON, | 54004 | HUNTINGTON HOUSING AUTH | 3 | 10475 | WV004005 | RIVERVIEW EAST | 100 |
| 422 | 36 | CHARLESTON, | 54016 | WEIRTON HSNG AUTH | 2 | 10507 | WVO16001 | WYLES TERRACE | 130 |
| 423 | 36 | CHARLESTON, | 54018 | ELUEFIELD HOUSING AUTH | 2 | 10515 | WVO18003 | TIFFANY MANOR | 142 |
| OFFNAME <br> FIELDOFF |  |  |  |  |  |  |  |  | 946 946 |


| O8S | FIELDOFF | OfFNAME | PHANUM | PHANAME | PHASIZEX | SEQNUM | OLOPROU | PROUNAME | totalous |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 424 | 41 | ATLANTA, GA | 13002 | SAVANNAH HA | 4 | 01565 | G4002001 | FELLWODD HOMES | 176 |
| 425 | 41 | ATLANTA, GA | 13002 | SAVANNAH HA | 4 | 01573 | GAOO2002 | YAMACRAW VILLAGE | 480 |
| 426 | 41 | ATllanta, GA | 13002 | SAVANNAH HA | 4 | 01581 | GA002003 | GARDEN HMS EST | 314 |
| 427 | 41 | ATLANTA, GA | 13002 | SAVANNAH HA | 4 | 01598 | GAOO2004 | FRED WESSELS HMS | 250 |
| 428 | 41 | ATLANTA, GA | 13002 | SAVANNAH HA | 4 | 01605 | GA002006 | GARDEN HMS ANNEX | 66 |
| 429 | 41 | ATLANTA, GA | 13002 | SAVANNAH HA | 4 | 01613 | G4002007 | R M HITCH VILLAGE | 337 |
| 430 | 41 | ATLANTA, GA | 13002 | SAVANNAH HA | 4 | 01621 | GA002010 | H L KAYTON HMS | 164 |
| 431 | $4 \dagger$ | ATLANTA, GA | 13004 | columbus ha | 4 | 01638 | GA004002 | B T WASHINGTON APTS | 288 |
| 432 | 41 | ATLANTA, GA | 13004 | COLUMBUS HA | 4 | 01646 | GAOO4005 | WARREN WMS HDMES | 160 |
| 433 | 41 | ATLANTA, GA | 13004 | columbus ha | 4 | 01654 | GA004007 | L T CHASE HOMES | 108 |
| 434 | 41 | ATLANTA, GA | 13004 | COLUMEUS HA | 4 | 01662 | GA004009 | ELIZ F CANTY ADDIT | 116 |
| 435 | 41 | ATLANTA, GA | 13004 | columbus ha | 4 | 01679 | GA004011 | GEORGE RIVERS HMS | 24 |
| 436 | 41 | ATLANTA, GA | 13004 | columbus ha | 4 | 01687 |  |  | 192 |
| 437 | 41 | ATLANTA, GA | 13006 | atlanta ha | 5 | 01695 | GA006002 | JOHN HOPE | 606 |
| 438 | 41 | ATLANTA, GA | 13006 | atlanta ha | 5 | 01702 | GA006003 | CAPITOL HOMES | 815 |
| 439 | 41 | ATLANTA. GA | 13006 | ATLANTA HA | 5 | 01719 | GA006004 | GRADY HOMES | 616 |
| 440 | 41 | ATLANTA, GA | 13006 | ATLANTA HA | 5 | 01727 | GA006005R | JJ EAGAN/HEROON HMS | 520 |
| 441 | 41 | ATLANTA, GA | 13006 | ATLANTA HA | 5 | 01735 | GA006006 | CARVER HOMES | 990 |
| 442 | 41 | ATLANTA, GA | 13006 | atlanta ha | 5 | 01743 | GA006007 | harris homes | 510 |
| 443 | 41 | ATLANTA. GA | 13006 | ATLANTA HA | 5 | 01754 | GA006008 | PERRY HOMES | 944 |
| 444 | 41 | ATLANTA, GA | 13006 | ATLANTA HA | 5 | 01768 | GA006010 | UNIVERSITY HOMES | 675 |
| 445 | 41 | ATLANTA, GA | 13006 | ATLANTA HA | 5 | 01776 | GA006015. | PERRY ANNEX | 128 |
| 446 | 41 | ATLANTA, GA | 13006 | ATLANTA HA | 5 | 01784 | G4006032. | JONE SBORO NORTH | 100 |
| 447 | 41 | ATLANTA, GA | 13006 | atlanta ha | 5 | 01792 | GA006040 | PROJECT UNNAMED | 18 |
| 448 | 41 | ATLANTA, GA | 13006 | ATLANTA HA | 5 | 01808 | GA006056 | MARTIN STREET PLAZA | 60 |
| 449 | 41 | ATLANTA, GA | 13124 | BUCHANAN HA | 1 | 01673 | GA 124001 | BUCHANAN HA | 10 |
| 450 | 41 | ATLANTA, GA | 13124 | BUCHANAN HA | 1 | 01881 | GA 124002 | BUCHANAN HA | 36 |
| 451 | 41 | ATLANTA. GA | 13231 | WOODLAND HA | 1 | 01898 | GA231001 | WOODLAND HA | 16 |
| OFFNAME <br> FIELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 8719 \\ & 8719 \end{aligned}$ |

Exhibit H-l: Sampled Developments Ordered by Field Office (continued)

| OBS | FIELDOFF | OFFNAME | PHANUM | Phaname | PHASIZEX | SEQNUM | OLDPRDU P | PROJNAME | totaldus |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 452 | 42 | BIRMINGHAM, | 01001 | BIRMINGHAM HA | 5 | O0017 | AL001001 E | ELYTON VILLAGE | 860 |
| 453 | 42 | BIRMINGHAM, | 01001 | BIRMINGHAM HA | 5 | 00025 | AL001006 C | CHARLES P MARKS VILLAG | 500 |
| 454 | 42 | BIRMINGHAM, | 0100 | BIRMINGHAM HA | 5 | 00033 | AL001007 J | JOSEPH H LOVEMAN VILLA | 500 |
| 455 | 42 | BIRMINGHAM, | 01001 | BIRMINGHAM HA | 5 | 00041 | ALOO1010 T | TOM BROWN VILLAGE | 250 |
| 456 | 42 | BI RMI NGHAM, | 01001 | BIRMINGHAM HA | 5 | 00058 | ALOO1013 C | collegeville center | 550 |
| 457 | 42 | B I RMINGHAM, | 01001 | BIRMINGHAM HA | 5 | 00066 | ALOO1045 E | ESSEX HOUSE | 136 |
| 458 | 42 | BIRMINGHAM. | 01001 | BIRMINGHAM HA | 5 | 00074 | ALOO1018 R | RALPH KIMEROUGH HOMES | 230 |
| 459 | 42 | BIRMINGHAM. | 01004 | ANNISTON HA | 3 | 00082 | ALOO4002 C | CODPER HOMES | 102 |
| 460 | 42 | BIRMINGHAM, | 01004 | ANNISTON HA | 3 | 00099 | AL004003 N | NORWODD HOMES | 101 |
| 461 | 42 | 6IRMINGHAM. | 01004 | ANNISTON HA | 3 | 00106 | AL004005 B | BaRBER TERRACE HOMES | 60 |
| 462 | 42 | BIRMINGHAM, | 01006 | MONTGOMERY HA | 4 | 00114 | AL006003 V | VICTOR-TULANE CT | 216 |
| 463 | 42 | BIRMINGHAM, | 01006 | MONTGOMERY HA | 4 | 00122 | AL006008 P | PATERSON COURT | 156 |
| 464 | 42 | BIRMINGHAM, | 01006 | MONTGOMERY HA | 4 | 00139 | AL006009 V | VICTOR-TULANE CT | 248 |
| 465 | 42 | B I RMI NGHAM, | 01006 | MONTGOMERY HA | 4 | 00147 | AL006012 G | GIBES VILLAGE | 500 |
| 466 | 42 | BIRMINGHAM. | 01006 | MONTGOMERY HA | 4 | 00155 | AL006013 S | Smiley court | 374 |
| 467 | 42 | BIRMINGHAM, | 01054 | FLORENCE HA | 3 | 00163 | AL054003 H | HANDY HOMES | 50 |
| 468 | 42 | BIRMINGHAM, | 01066 | REFORM HA | 4 | 00'171 | AL066002 R | REFORM | 40 |
| 469 | 42 | BI RMI NGHAM, | 01094 | GEORGIANA HA | 2 | 00188 | AL094002 S | SEDGEFIELD | 20 |
| 470 | 42 | BIRM I NGHAM, | 01143 | Slocomb ha | 1 | 01196 | AL143001 S | SLOCOMB HA | 14 |
| OFFNAME <br> FIELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 4907 \\ & 4907 \end{aligned}$ |
|  |  |  | $\rightarrow$ F | ELD DFFICE=43 | OFFICE NAME | $=$ COLUMBIA | SC |  |  |
| OBS | FIELODFF | OFFNAME | PHANUM | PHANAME | PHASIZEX | SEQNUM | OLDPROU | PROUNAME | totalous |
| 471 | 43 | columbia, SC | 45002 | collumbia ha | 4 | 09122 | SC002001 | GONZALES GARDENS | 280 |
| 472 | 43 | COLUMBIA, SC | 45002 | COLUMEIA HA | 4 | 09139 | 5C002003 | HENDLEY HOMES | 300 |
| 473 | 43 | COLUMBIA, SC | 45002 | columbia ha | 4 | 09147 | Sc002008 | OAK READ APTS | 111 |
| 474 | 43 | COLUMBIA, SC | 45004 | GREENVILLE HA | 3 | 09155 | Sc00400 | MOUNTAIN VIEW HOMES | 88 |
| 475 | 43 | COLUMEIA, SC | 45004 | GREENVILLE HA | 3 | 09163 | $5 \mathrm{SCOO40O2}$ | WOODLAND HOMES | 252 |
| 476 | 43 | COLUMBIA, SC | 45021 | MARION HA | 2 | 09171 | SC16P02 1006 | - LAKE VIEW | 5 |
| GFFNAME <br> FIELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 1036 \\ & 1036 \end{aligned}$ |

Exhibit H-l: Sampled Developments Ordered by Field Office (continued)

| OBS | FIELDOFF | OFFNAME | PHANUM | phaname | PHASIZEX | SEONUM | OLDPROJ | PROUNAME | totalous |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 477 | 44 | GREENSBORO.N | 37001 | WILMINGTON HA | 4 | 06871 | NC001003 | PROJECT UNNAMED | 250 |
| 478 | 44 | GREENSBORO.N | 37001 | WILMINGTON HA | 4 | 06888 | NC001004 | PROJECT UNNAME'O | 150 |
| 479 | 44 | GREENSBORO, N | 37001 | WILMINGTON HA | 4 | 06896 | NCOO 1005 | PL849 - ${ }^{\text {P }}$ | 216 |
| 480 | 44 | GREENSBORO.N | 37001 | WILMINGTON HA | 4 | 06903 | NCOO1007 | PROUECT UNNAMED | 151 |
| 481 | 44 | GREENSBORO, N | 37002 | RALEIGH HA | 4 | 06911 | NCOO200: | PL412 | 230 |
| 482 | 44 | GREENSBORO, N | 37002 | RALEIGH HA | 4 | 06928 | NC002003 | PROJECT UNNAMED | 64 |
| 483 | 44 | GREENSBORD.N | 37002 | RALEIGH HA | 4 | 06936 | NCOO2005 | PROJECT UNNAMED | 298 |
| 484 | 44 | GREENSBORO, | 37002 | RALEIGH HA | 4 | 06944 | NCOO2O13 | PROJECT UNAAMED | 42 |
| 485 | 44 | GREENSEORO, N | 37003 | CHARLOTTE HA | 4 | 06952 | NCOO3001 | PL4 12 | 368 |
| 486 | 44 | GREENSBORD, | 37003 | charlotte ha | 4 | 06969 | NC003002 | PL412 | 468 |
| 487 | 44 | GREENSBORO, N | 37003 | CHARLOTTE HA | 4 | 06977 | NCOO3007 | PROUECT UNNAMED | 318 |
| 488 | 44 | GREENSBORO, N | 37003 | CHARLOTTE HA | 4 | 06985 | NCOO3011 | PROUECT UNNAMED | 300 |
| 489 | 44 | GREENSBORO, N | 37006 | HIGH POINT HA | 4 | 06993 | NC006001 | PROJECT UNNAMED | 150 |
| 490 | 44 | GREENSBORO, | 37006 | HIGH POINT HA | 4. | 07008 | NCOO6002 | PROUECT UNNAMED | 200 |
| 491 | 44 | GREENSBORD, N | 37006 | High point ha | 4 | 07016 | NC006004 | PROJECT UNNAMED | 160 |
| 492 | 44 | GREENSBORO, N | 37006 | HIGH POINT HA | 4 | 07024 | NC0060 11 | CITY OF HIGH POINT HA | 198 |
| 493 | 44 | GREENSBIRD, N | 37007 | ASHEVILLE HA | 4 | 07032 | NCOO7004 | HILL CREST | 234 |
| 494 | 44 | GREENSBORO, N | 37007 | ASHEVILLE HA | 4 | 07049 | NC007006 | ASTON-PARK TOWERS | 160 |
| 495 | 44 | GREENSBORO.N | 37007 | ASHEVILLE HA | 4 | 07057 | NCOO7011 | EASTVIEW | 50 |
| 496 | 44 | GREENSBORO, | 37007 | ASHEVILLE HA | 4 | 07065 | NCOO7012 | KLONDYKE | 154 |
| 497 | 44 | GREENSBORO, N | 37010 | EASTERN CAROLINA REG HA | 3 | 07073 | NGO10003 | E CAROLINA HA | 40 |
| 498 | 44 | GREENSBORO.N | 37010 | EASTERN CAROLINA REG HA | 3 | 07081 | NCO10007 | E CAROLINA HA | 35 |
| 499 | 44 | GREENSEORO.N | 37014 | LUMEERTON H A | 3 | 07243 | NCO14003 | PROJECT UNNAMED | 150 |
| 500 | 44 | GREENSBORO, N | 37014 | LUMEERTON H A | 3 | 07251 | NCO14004 | PROJECT UNNAMED | 150 |
| 501 | 44 | GREENSBORO.N | 37019 | ROCKY MOUNT | 3 | 07268 | NCO1900 1 | PROJECT UNNAMED | 110 |
| 502 | 44 | GREENS8ORO.N | 37019 | ROCKY MOUNT | 3 | 07276 | NCO19002 | PROJECT UNNAMED | 210 |
| 503 | 44 | GREENSEORO, N | 37019 | ROCKY MOUNT | 3 | 07284 | NCO19003 | PROJECT UNNAMED | 100 |
| 504 | 44 | GREENSBORO, N | 37019 | ROCKY MOUNT | 3 | 07292 | NCO19005 | PROJECT UNNAMED | 200 |
| 505 | 44 | GREENSBORO,N | 37020 | WILSON HA | 3 | 07308 | NCO20001 | PROUECT UNNAMED | 90 |
| 506 | 44 | GREENSBORO, N | 37020 | WILSON HA | 3 | 07316 | NCO20002 | PROJECT UNNAMED | 143 |
| 507 | 44 | GREENSBORO, N | 37020 | WILSON HA | 3 | 07324 | NCO20003 | PROJECT UNNAMED | 24 |
| 508 | 44 | GREENSBORO,N | 37020 | WILSON HA | 3 | 07332 | NCO20004 | PROJECT UNNAMED | 71 |
| 509 | 44 | GREENSEORO, N | 37022 | GREENVILLE HA | 3 | 07349 | NCO22001 | PROJECT UNNAMED | 65 |
| 510 | 44 | GREENSEORA, | 37022 | GREENVILLE HA | 3 | 07357 | NCO22003 | PROJECT UNNAMED | 188 |
| 511 | 44 | GREENSBORO, N | 37022 | GREENVILLE HA | 3 | 07365 | NCO22004 | PROJECT UNNAMED | 40 |
| 512 | 44 | GREENSBORO, N | 37022 | GREENVILLE HA | 3 | 07373 | NCO22006 | PROJECT UNNAMED | 78 |
| 513 | 44 | GREENSBORO, N | 37032 | WASHINGTON HA | 2 | 07384 | NCO32001 | EASTERN VILLAGE | 50 |
| 514 | 44 | GREENSBORO, N | 37032 | WASHINGTON HA | 2 | 07398 | NCO32004 | OLD FORT | 82 |
| 515 | 44 | GREENSBORO, | 37054 | MADISON HA | 1 | 07421 | NCOS4001 | PROJECT UNNAMED | 50 |
| 516 | 44 | GREENSBORO, N | 37064 | KINGS MOUNTAIN HA | 2 | 07438 | NCO64003 | KINGS MOUNTAINHA | 90 |
| FNAME ELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 6127 \\ & 6127 \end{aligned}$ |

Exhibit H-1: Sampled Developments Ordered by Field Office (continued)

| OBS | FIELDOFF | OFFNAME | PHANUM | PHANAME | PHASIZEX | SEONUM | OLDPROU | PROUNAME | TOTALDUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 45 |  | 28002 | LAUREL HA | 3 | 04708 | MSOO2001 | BEACON HOMES | $150$ |
| 517 518 | 45 | JACKSON, MS | 280002 | LAUREL HA | 3 | 04716 | MSOO2003 | BEACON HOMES ADDN | $174$ |
| 519 | 45 | JACKSON, MS | 28040 | MS REG HA VIII | 4 | 04724 | MSO40002 | LEWIS/BROOK HOMES | 30 |
| 520 | 45 | JACKSON, MS | 28040 | MS REG HA VIII | 4 | 04732 | MSO40003 | HYDE/GLENWILD HOMES FITZP/RANOOLPH HNS | 28 |
| 521 | 45 | JACKSON, MS | 28040 | MS REG HA VIII | 4 | 04749 | MSO40005 | FITZP/RANOOLPH HMS HILLCREST/NSIDE HOMES | 28 |
| 522 | 45 | JACKSON, MS | 28040 | MS REG HA VIII | 4 | 04757 | MSO40010 | PECAN CIRCLE HOMES | 72 |
| 523 | 45 | JACKSON, MS | 28040 | MS REG HA VIII | 4 | 04765 04773 | $\begin{aligned} & \text { MSO40026 } \\ & \text { MS059004 } \end{aligned}$ | DARLAY COURTS | 26 |
| 524 | 45 | JACKSON, MS JACKSON, MS | 28059 | WEST POINT H A WEST POINT H A | 2 | 04773 | MSO59005 | NORRIS COURT | 60 |
| 525 | 45 | JACKSON, MS | 28059 | WEST POTNT H A |  |  |  |  | -- |
| OFFNAME <br> FIELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 608 \\ & 608 \end{aligned}$ |
|  |  |  | ----- | ELD OFFICE $=46$ | ICE NAME | CKSONVI |  |  |  |
| OBS | FIELDOFF | OFFNAME | PHANUM | Phaname | PHASIZEX | SEQNUM | QLOPROJ | PROJNAME | TOTALDUS |
| 526 | 46 | JACKSONVILLE | 12001 | JACKSONVILLE HA | 4 | 01338 | FL001002 | JOSEPH H BLODGETT HOME | 548 |
| 527 | 46 | JACKSDNVILLE | 12001 | JACKSONVILLE HA | 4 | 01346 | FLOO1004 | DURKEEVILLE COMPLEX | 63 200 |
| 528 | 46 | JACKSONVILLE | 12001 | JACKSONVILLE HA | 4 | 01362 01419 | FLOO1014 | RAMONA PARK PARKSIOE | 206 |
| 529 | 46 | JACKSONVILLE | 12005 | DADE CO HA | 5 | 01419 01427 | FL005058 | COCDANUT GRUVE | 124 |
| 530 | 46 | JACKSONVILLE | 12005 | OADE CO HA | 5 5 | 14427 01435 | FL005007 | VICTORY HOMES | 166 |
| 531 | 46 | JACKSONVILLE | 12005 | DADE CO HA | 5 | 01443 | FL005009 | JoLlivette plaza | 66 |
| 532 | 46 | JACKSONVILLE | 12005 12005 | DADE CO HA | 5 | 01451 | FLo05014 | ANNIE COLEMAN-GAROENS | 245 |
| 533 534 | 46 | Jacksonvilele | 12005 | DADE CO HA | 5 | 01468 | FL005076 | NAME UNKNOWN | 74 |
| 535 | 46 | JACKSONVILLE | 12005 | DADE CO HA | 5 | O1476 | FL005005 | LIEERTY SQUARE ADDN | 133 |
| 536 | 46 | JACKSONVILLE | 12005 | DADE CO HA | 5 | 01484 |  |  | 316 |
| 537 | 46 | JACKSONVILLE | 12005 | DADE CO HA | 5 | O1492 |  | ATTUCK COURT ADOITION | 52 |
| 598 | 46 | JACKSONVILLE | 12006 | PENSACOLA HA | 3 | -01508 | FLO21004 | FREMD VILLAGE | 75 |
| 539 | 46 | JACKSONVILLE | 12021 | PAHOKEE HA | 3 | 01524 <br> 01532 | FLO21004 | fremb village | 200 |
| 540 | 46 | JACKSONVILLE | 12021 | PAHOKEE HA LIVE OAK HA | 3 | $\begin{aligned} & 01532 \\ & 01549 \end{aligned}$ |  | HARMONY TRIANGLE | 28 |
| 541 | 46 | JACKSONVILLE | 12027 +2064 | LIVE OAK HA | 1 | 01557 | FLO64001 | GROVE TERRACE | 50 |
| 542 | 46 | JACKSONVILLE | 12064 | venice ha |  |  |  |  |  |
| DFFNAME |  |  |  |  |  |  |  |  | 2636 |
| DFFNAME <br> FIELDOFF |  |  |  |  |  |  |  |  | 2636 |

Exhibit H-1: Sampled Developments Ordered by Field Office (continued)

| 085 | FIELDOFF | OFFNAME | PHANUM | Phaname |  | PHASIZEX | SEQNUM | DLOPROU | PRGUNAME | TOTALDUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 543 | 47 | KNOXVILLE, $T$ | 47002 | JOHNSON CITY HA |  | 3 | 09244 | TNOO200 | george W'carver apts | 74 |
| 544 | 47 | KNOXVILLE, T | 47002 | JOHNSON CITY HA |  | 3 | 09252 | TNOO2OO3 | DUNBAR APARTMENTS | 30 |
| 545 | 47 | KNOXVILLE, T | 47002 | JOHNSON CITY HA |  | 3 | 09269 | TNOO2006 | MEMORIAL PARK APTS | 125 |
| 546 | 47 | KNOXVILLE, T | 47004 | CHATTANOOGA HSG | AUTH | 4 | 09341 | TNOO4001 | COLLEGE HILL | 497 |
| 547 | 47 | KNOXVILLE. T | 47004 | CHATTANOOGA HSG | AUTH | 4 | 09358 | TNOO4003 | BOLNE-HYSINGER HOMES | 50 |
| 548 | 47 | KNOXVILLE, T | 47004 | CHATTANOOGA HSG | AUTH | 4 | 09366 | TNOO4008 | EMMA WHEELER HOMES | 340 |
| 549 | 47 | KNOXVILLE, T | 47004 | CHATTANOOGA HSG | AUTH | 4 | 09374 | TNOO4016 | EDWARD F STEINER APTS | 50 |
| 550 | 47 | KNOXVILLE, T | 47004 | CHATTANOOGA HSG | AUTH | 4 | 09382 | TNOO4018 | REV H J JOHNSON APTS | 31 |
| 551 | 47 | KNOXVILLE, T | 47004 | CHATTANOOGA HSG | AUTH | 4 | 09399 | +NOO4O19 | CHATTANOOGA HA | 76 |
| 552 | 47 | KNOXVILLE, $T$ | 47004 | CHATTANOOGA HSG | AUTH | 4 | 09406 | +004019 | chartanooca ha | 437 |
| 553 | 47 | KNOXVILLE. T | 47012 | LAFOLLETTE HA |  | 3 | 09447 | TNO 12002 | ALEXANDER HGTS AODN | 6 |
| 554 | 47 | KNOXVILLE, T | 47012 | Lafollette ha |  | 3 | 09455 | TNO 12003 | WORTHAM PARK | 30 |
| 555 | 47 | KNOXVILLE, T | 47012 | LAFOLLETTE HA |  | 3 | 09463 | TNO12007 | WORTHAM PARK | 50 |
| 556 | 47 | KNOXVILLE, T | 47038 | MORRISTOWN HA |  | 3 | 09511 | TN038001 | G FRANK DAVIS HOMES | 146 |
| 557 | 47 | KNOXVILLE, $T$ | 47038 | MORRI STOWN HA |  | 3 | 09528 | TN038005 | MORRISTOWN HA | 200 |
| 558 | 47 | KNOXVILLE, T | 47038 | MORRISTOWN HA |  | 3 | 09536 |  |  | 70 |
| 559 | 47 | KNOXVILLE, T | 47081 | ERWIN HA |  | 1 | 09544 | TNO8 1001 | ERWIN HA | 70 |
| OFFNAME <br> FIELDDFF |  |  |  |  |  |  |  |  |  | $\begin{aligned} & 2282 \\ & 2282 \end{aligned}$ |

FIELD OFFICE=48 OFFICE NAME=LOUISVILLE.

| OBS | FIELDOFF | OFFNAME | PHANUA | PHANAME | PHASIZEX | SEQNUM | OLPPROJ | PROJNAME | rotalous |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 560 | 48 | LOUISVILLE. | 21001 | LOUISVILLE HA | 4 | 02967 | KYOO1004 | SHEPHARD SQ | 422 |
| 561 | 48 | LOUISVILLE, | 29001 | LOUISVILLE HA | 4 | 02975 | KY001008 | COLLEGE CT | 124 |
| 562 | 48 | LOUISVILEE, | 21001 | LOUISVILLE HA | 4 | 02983 | KYOO1012 | DOSKER MANOR | 200 |
| 563 | 48 | LOUISVILLE, | 21002 | GOVINGTON HA | 3 | 02991 | KY002001 | LATONIA TERRAGE | 235 |
| 564 | 48 | LOUISVILLE, | $2 \ddagger 002$ | COVINGTON HA | 3 | 03006 | KY002003 | IDA SPENCE HDMES | 400 |
| 565 | 48 | LOUISVILLE, | 2\%004 | LEXINGTON HA | 4 | 03014 | KY004005 | CHARLOTTE CTS ADDITION | 150 |
| 566 | 48 | LOUISVILLE. | 21004 | LEXINGTON HA | 4 | 03022 | KY004006 | CONNIE R GRIFFITH MANO | 197 |
| 567 | 48 | LOUISVILLE, | 21008 | SOMERSET HA | 2 | 03039 | KYOOBOO2 | CLIFTY HOMES | 7 |
| 568 | 48 | LOUISVILLE, | 21034 | NICHOLASVILLE HA | 1 | 03047 | KY034001 | STATTON-GROVES | 50 |
| 569 | 48 | LOUISVILLE, | 21063 | BOWLING GREEN HA | 3 | 03055 | KY063001 | SUMMIT VIEW HOMES | 190 |
| 570 | 48 | LOUISVILLE, | 21063 | BOWLING GREEN HA | 3 | 03063 | KY063002 | GORLON AVE | 150 |
| 571 | 48 | LOUISVILLE. | 21098 | OWENTON HA | 1 | 03071 | KY098001 | gaines village | 32 |
| OFFNAME <br> FIELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 2157 \\ & 2157 \end{aligned}$ |

Exhibit H-1: Sampled Deveiopments Ordered by Field Office (continued)

FIELD DFFICE=49 OFFICE NAME=NASHVILLE,

$\qquad$

| OBS | FIELDOFF | OFFNAME | PHANUM | PHANAME | PHASIZEX | SEQNUM | OLDPROJ | PROUNAME | totalous |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 572 | 49 | NASHVILLE, T | 47001 | MEMPHIS HSG AUTH | 5 | 09188 | TNOO 1001 | Lamar terrace | 478 |
| 573 | 49 | NASHVILLE, T | 47001 | MEMPHIS HSG AUTH | 5 | 09196 | TNOO1009 | DIXIE HOMES | 607 |
| 574 | 49 | NASHVILLE. T | 47001 | MEMPHIS HSG AUTH | 5 | 09203 | TNOO1011 | CLEABORN HOMES | 79 |
| 575 | 49 | NASHVILLE, $T$ | 47001 | MEMPHIS HSG AUTH | 5 | 09211 | TNOO1012 | FOWLER HOMES | 320 |
| 576 | 49 | NASHVILLE, T | 47001 | MEMPHIS HSG AUTH | 5 | 09228 | TNOO 1013 | BARRY HOMES | 198 |
| 577 | 49 | NASHVILLE, $T$ | 47001 | MEMPHIS HSG AUTH | 5 | 09236 | TNOO1015 | GRAVES MANOR | 300 |
| 578 | 49 | NASHVILLE. T | 47005 | METRO DEV HSG AGENCY | 4 | 09414 | TNOO5003 | EDGEHILL HOMES | 200 |
| 579 | 49 | NASHVILLE, $T$ | 47005 | METRO DEV HSG AGENCY | 4 | 09422 | TNOO5008 | PRESTON TAYLOR HOMES | 550 |
| 580 | 49 | NASHVILLE, T | 47010 | CLARKSVILLE HSG AUTH | 3 | 09439 | TNO 10005 | LINCOLN HOMES | 70 |
| 581 | 49 | NASHVILLE, $T$ | 47030 | WAVERLY HSG AUTH | $\pm$ | 09471 | TNO3OOO 4 | BROOKSIDE | 38 |
| OFFNAME FIELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 2840 \\ & 2840 \end{aligned}$ |

FIELO OFFICE=51
OFFICE NAME=CHICAGO

| OBS | FIELDOFF | OFFNAME | PHANUM | PHANAME |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 582 | 51 | CHicago | 17001 | ROCK ISLAND | COUNTY |
| 583 | 51 | CHICAGO | 17001 | ROCK ISLAND | county |
| 584 | 51 | CHICAGO | 17001 | ROCK ISLAND | county |
| 585 | 51 | CHICAGO | 17001 | ROCK ISLAND | COUNTY |
| 586 | 51 | CHICAGO | 17001 | ROCK ISLAND | COUNTY |
| 587 | 51 | CHICAGO | 17001 | ROCK ISLAND | COUNTY |
| 588 | 51 | CHICAGO | 17001 | ROCK ISLAND | COUNTY |
| 589 | 51 | CHICAGO | 17001 | ROCK ISLAND | COUNTY |
| 590 | 51 | CHICAGO | 17001 | ROCK ISLAND | COUNTY |
| 591 | 51 | CHICAGO | 17002 | CHICAGO HSG | AUTH |
| 592 | 51 | CHICAGO | 17002 | CHICAGO RSG | AUTH |
| 593 | 51 | CHICAGO | 17002 | CHICAGO HSG | AUTH |
| 594 | 51 | CHICAGO | 17002 | CHICAGO HSG | AUTH |
| 595 | 51 | CHICAGO | 17002 | CHICAGO HSG | AUTH |
| 596 | 51 | chicago | 17002 | CHICAGO HSG | AUTH |
| 597 | 51 | chicago | 17002 | CHICAGO HSG | AUTH |
| 598 | 51 | CHICAGO | 17002 | CHICAGO HSG | AUTH |
| 599 | 51 | CHICAGO | 17002 | CHICAGO HSG | AUTH |
| 600 | 51 | CHICAGO | 17002 | CHICAGO HSG | AUTH |
| 601 | 51 | CHICAGO | 17002 | CHICAGO HSG | AUTH |
| 602 | $5 \dagger$ | CHICAGO | 17002 | CHICAGO HSG | AUTH |
| 603 | 51 | CHICAGO | 17002 | CHICAGO HSG | AUTH |
| 604 | 51 | CHICAGD | 17003 | PEORIA HOUSI | NG AUTHORITY |
| 605 | 51 | CHICAGO | 17003 | PEORIA HOUSI | ING AUTHORITY |
| 606 | 51 | CHICAGO | 17003 | PEORIA HOUSI | NG AUTHORITY |
| 607 | 51 | CHICAGO | 17003 | PEORIA HOUSI | ING AUTHORITY |
| 608 | 51 | CHICAGO | 17003 | PEORIA HOUSI | NG AUTHORITY |
| 609 | 51 | CHI CAGO | 17003 | PEORIA HOUS? | ING AUTHORITY |
| 610 | 51 | CHicago | 17003 | PEORIA HOUSI | NG AUTHDRITY |
| 611 | 51 | CHICAGO | 17003 | PEORIA HOUSI | NG AUTHORITY |


| PHASIZEX | SEQNUM | OLDPRD | PROJNAME | TOTALDUS |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 02018 |  |  | 136 |
| 4 | 02026 | IL010005 | WILLIAM YOUNG HOMES | 192 |
| 4 | 02034 | I L. 010003 | JOSEPH FULTON HOME | 72 |
| 4 | 02042 | ILO10001 | OAK GROVE | 29 |
| 4 | 02059 |  |  | 264 |
| 4 | 02067 |  |  | 300 |
| 4 | 02075 |  |  | 300 |
| 4 | 02083 |  |  | 100 |
| 4 | 02091 |  |  | 592 |
| 5 | 02107 |  |  | 51 |
| 5 | 02115 |  | - | 15 |
| 5 | 02123 |  |  | 1096 |
| 5 | 02131 |  |  | 53 |
| 5 | 02148 |  |  | 985 |
| 5 | 02156 | IL002024 | JULIA LATHROP | 916 |
| 5 | O2164 |  |  | \$896 |
| 5 | 02172 |  |  | 128 |
| 5 | 02189 |  |  | 1199 |
| 5 | 02197 |  | - - . | 442 |
| 5 | 02204 |  |  | 6 |
| 5 | 02212 |  |  | 1004 |
| 5 | 02229 |  |  | 446 |
| 4 | 02237 |  |  | 36 |
| 4 | 02245 |  |  | 95 |
| 4 | 02253 |  |  | 200 |
| 4 | 02261 |  |  | 461 |
| 4 | 02278 |  |  | 353 |
| 4 | 02286 |  |  | 418 |
| 4 | 02294 |  |  | 154 |
| 4 | 02301 |  |  | 213 |

Exhibit H-1: Sampled Developments Ordered by Field Office (continued)


Exhibit H-1: Sampled Developments Ordered by Field Office (continued)

| O8S | FIELDOFF | Offname | PHANUM | Phaname | PHASIZEX | SEQNUM | OLPPRRO | PROUNAME | TOTALDUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 642 | 53 | DETROIT, MI | 26001 | DETROIT HOUSING U゚EPT | 5 | 04132 | MIOO1001 |  | 240 |
| 643 | 53 | DETROIT,MI | 26001 | DETROIT HOUSING DEPT | 5 | 04149 | MIOO1002 | PARKSIDE HOMES | 349 |
| 644 | 53 | DETROIT.ME | 26001 | DETROIT HOUSING DEPT | 5 | 04157 | MI001005 | CHARLES TERRACE | 42B |
| 645 | 53 | DETROIT, MI | 26001 | DETROIT HOUSING DEPT | 5 | 04165 | MI001008 | BREWSTER-DOUGLASS | 1006 |
| 646 | 53 | DETROIT,MI | 26001 | DETROIT HOUSING DEPT | 5 | 04173 | MI001011 | GARDEN VIEW TERRACE | 258 |
| 647 | 53 | DETROIT, MI | 26001 | DETROIT HOUSING DEPT | 5 | 04181 | MICO1013 | BREWSTER | 712 |
| 648 | 53 | DETROIT, MI | 26001 | DETROIT HOUSING DEPT | 5 | 04198 | Mr001014 | PARKSIDE ADDITION | 1051 |
| 649 | 53 | DETROIT, MI | 26001 | OETROIT HOUSING DEPT | 5 | 04205 | MI001015 | SOJOURNER TRUTH | 120 |
| 650 | 53 | DETROIT, MI | 26001 | DETROIT HOUSING DEPT | 5 | 04213 | MIOO1026 |  | 2\%1 |
| 651 | 53 | DETROIT, MI | 26001 | DETROIT HOUSING DEPT | 5 | 04221 | M1001031 | TEMPLE TOWERS | 64 |
| 652 | 53 | DETROIT, MI | 26001 | DETROIT HOUSING DEPT | 5 | 04238 | MIOO1032 | LEE PLAZA | 220 |
| 653 | 53 | DETROIT, MI | $2600{ }^{4}$ | DETROIT HOUSING DEPT | 5 | 04246 | MIOO1033 | WOODLAND | 44 |
| 654 | 53 | DETROIT.MI | 26001 | DETROIT HOUSING OEPT | 5 | 04254 | MIOO1034 | WOLVERINE | 235 |
| 655 | 53 | DETROIT,MI | 26001 | DETROIT HOUSING DEPT | 5 | 04262 | M1001037 |  | 93 |
| 656 | 53 | OETROIT, MI | 26005 | PONTIAC | 3 | 04279 | M1005001 | LAKESIDE HOMES | 364 |
| 657 | 53 | DETROIT,MI | 26005 | PONTIAC | 3 | 04287 | MIOOSOO2 | CARRIAGE CIRCLE APTS | 234 |
| 658 | 53 | DETROIT,MI | 26005 | PONTIAC | 3 | 04295 | M1005003 | WOODLAND HGTS APTS | 197 |
| 659 | 53 | DETROIT, MI | 26006 | SAGINAW HSG COMM | 3 | 04302 | M1006003 | MAPLEWOOD MANOR | 98 |
| 660 | 53 | DETROIT.MI | 26006 | SAGINAW HSG COMM | 3 | 04319 | M1006007 | PINEWOOD MANOR | 95 |
| 661 | 53 | DETROIT, MI | 26006 | SAGINAW HSG COMM | 3 | 04327 | MIOOG008 | SCATTERED SITES | 49 |
| 662 | 53 | DETROIT, MI | 26009 | FLINT HOUSING COMM | 3 | 04335 | MIO09002 | HOWARD ESTATES | 96 |
| 663 | 53 | DETROIT, MI | 26009 | FLINT HOUSING COMM | 3 | 04343 | M1009004 | GARLAND CENTRAL | 44 |
| 664 | 53 | DETROIT, MI | 26009 | FLINT HOUSING COMM | 3 | 04351 | M1009005 | RIVER PARK | 180 |
| 665 | 53 | DETROIT, MI | 26024 | BAY CITY HSG COMM | 2 | 04368 | M1024004 | SCATTERED HOUSING | 127 |
| 666 | 53 | DETROIT,MI | 26027 | INKSTER HOUSING COMMISSI | 3 | 04376 | MIO27002 |  | 100 |
| 667 | 53 | DETROIT, MI | 26027 | INKSTER HOUSING COMMISSI | 3 | 04384 | M1027003 | DEMEY TERRACES | 200 |
| 668 | 53 | DETROIT, MI | 26027 | INKSTER HOUSING COMMISSI | 3 | 04392 | Mr027004 | TWIN TOWERS | 200 |
| 669 | 53 | DETROIT, MI | 26033 | ROYAL OAK TOWNSHIP | 2 | 04408 | MIO33001 | PROJECT UNNAMED | 80 |
| 670 | 53 | DETROIT, MI | 26039 | PORT HURON HSG COMM | 2 | 04457 | MIO39002 | DESMOND-PERU VIlleages | 202 |
| 671 | 53 | DETROIT,MI | 26039 | PORT HURON HSG COMM | 2 | 04465 | MIO39003 | DULHUT VILEAGE | 120 |
| 672 | 53 | DETROIT, MI | 26064 | ANN ARBOR HOUSING COMMIS | 2 | 04538 | MI064003 | SCATTERED SITES | 53 |
| 673 | 53 | DETROIT, MI | 26064 | ANN ARBOR HOUSING COMMIS | 2 | 04546 | M1064005 |  | 105 |
| OFFNAME FIELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 7575 \\ & 7575 \end{aligned}$ |

FIELD OFFICE=54
OFFICE NAME=INDEANAPOLIS

| FIELDOFF | DFFNAME | PHANUM | PHANAME |
| :---: | :--- | :--- | :--- |
|  |  |  |  |
| 54 | INDIANAPOLIS | 18003 | FORT WAYNE HA |
| 54 | INDIANAPOLIS | 18003 | FORT WAYNE HA |
| 54 | INDIANAPOLIS | 18003 | FORT WAYNE HA |
| 54 | INDIANAPOLIS | 18004 | OELAWARE CO HA |
| 54 | INDIANAPOLIS | 18007 | KOKOMO HA |
| 54 | INDIANAPOLIS | 18007 | KOKOMO HA |
| 54 | INDIANAPOLIS | 18011 | GARY HA |
| 54 | INDIANAPOLIS | 18011 | GARY HA |


| PHASIZEX | SEQNUM | OLDPROJ |
| :---: | :--- | :--- |
|  |  |  |
| 3 | 02578 | INOO3OO5 |
| 3 | 02586 | INOO3007 |
| 3 | 02594 | INOO3008 |
| 2 | 02601 | INOO4001 |
| 2 | 02618 | INOO7OO1 |
| 2 | 02626 | INOO7003 |
| 4 | 02634 | INO11001 |
| 4 | $O 2642$ | INO19003 |


| PROUNAME | TOTALDUS |
| :--- | :---: |
|  |  |
| BEACON HEIGHTS | 100 |
| BROOKMILL COURT | 108 |
|  | 105 |
| MIDDLETOWN GAROENS | 113 |
| GATEWAY GARDENS | 176 |
| TERRACE TOWER | 105 |
| DELANNEY COMMUNITY | 297 |
| DUNELAND VILL | 163 |

Exhibit H-1: Sampled Developments Ordered by Field Office (continued)


Exhibit H-1: Sampled Developments Ordered by Eield Office (continued)

FIELD OFFICE=56 OFFICE NAME=MINN/ST PAUL

| OBS | FIELOOFF | OFFNAME |  | PHANUM | PHANAME | PHASIZEX | SEQNUM | OLDPRO」 | PROJNAME | TOTALDUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 718 | 56 | MINN/ST | PAUL | 27001 | ST PAUL | 4 | 04579 | MNOO1001 | ST PAUL PHA | 484 |
| 719 | 56 | MINN/ST | PAUL | 27001 | ST PAUL | 4 | 04587 | MNOO1013 | ST PAUL PHA | 148 |
| 720 | 56 | MINN/ST | PAUL | 27001 | ST PAUL | 4 | 04595 | M NOO1020 | ST PAUL PHA | 34 |
| 721 | 56 | MINN/ST | PAUL | 27001 | ST PAUL | 4 | 04602 | MN46P001030 | ST PAUL PHA | 25 |
| 722 | 56 | MINN/ST | PAUL | 27002 | MINNEAPOLIS MRA | 5 | 04619 | MNOO2008 | MCDA | 174 |
| 723 | 56 | MINN/ST | PaUl | 27002 | MINNEAPOLIS HRA | 5 | 04627 | MNOO2O13 | MCDA | 213 |
| 724 | 56 | MINN/ST | PAUL | 27002 | MINNEAPOLIS HRA | 5 | 04635 | MNOO20 77 | MCDA | 151 |
| 725 | 56 | MINN/ST | PAUL | 27002 | MINNEAPOLIS HRA | 5 | 04643 | MN002018 | MCDA | 76 |
| 726 | 56 | MINN/ST | PAUL | 27002 | MINNEAPOLIS HRA | 5 | 04651 | MNOO2O22 | MCDA | 28 |
| 727 | 56 | MINN/ST | PaUl | 27002 | MINNEAPDLIS HRA | 5 | 04668 | MNOO2036 | MCDA | 110 |
| 728 | 56 | MINN/ST | PAUL | 27003 | OULUTH HRA | 3 | 04676 | MN003001 | DULUTH HRA | 200 |
| 729 | 56 | MINN/ST | PAUL | 27003 | OULUTH HRA | 3 | 04684 | MN003002 | DULUTH HRA | 100 |
| OFFNAME <br> FIELDOFF |  |  |  |  |  |  |  |  |  | 1743 1743 |




Exhibit H-1: Sampled Developments Ordered by Field Office (continued)

| OSS | FIELDOFF | Of FNAME | PHANUM | phaname | PHASIZEX | SEQNUM | OLDPROU | PROUNAME | TOTALDUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 749 | 58 | Cleveland, o | 39003 | CUYAhoga metro hig auth | 5 | 07624 |  |  | 54 |
| 750 | 58 | CLEVELAND, O | 39006 | LUCAS METRO HSG AUTH | 4 | 07713 | 04006002 | BRAND WHITLDCK EXT | 111 |
| 751 | 58 | CLEVELAND, 0 | 39006 | LUCAS METRO HSG AUTH | 4 | 07721 | 0H006005 | PQRT LAWRENCE HOMES | 196 |
| 752 | 58 | CLEVELAND, 0 | 39006 | LUCAS METRO HSG AUTH | 4 | 07738 | 0H006006 | BIRMINGHAM TERRACE | 138 |
| 753 | 58 | CLEVELAND. 0 | 39006 | LUCAS METRO HSG AUTH | 4 | 07746 |  |  | 386 |
| 754 | 58 | CLEVELANO. 0 | 39006 | LUCAS METRO HSG AUTH | 4 | 07754 |  |  | 47 |
| 755 | 58 | CLEVELAND, 0 | 39007 | AKRON METRO HSG AUTH | 4 | 07762 | $0 \mathrm{HOO7OO2}$ | NORTON HOMES | 219 |
| 756 | 58 | CLEVELAND, 0 | 39007 | AKRON METRO HSG AUTH | 4 | 07779 | $0 \mathrm{HOO7008}$ | SCATTERED II | 186 |
| 757 | 58 | CLEVELANO. 0 | 39007 | AKRON METRO HSG AUTH | 4 | 07787 | 0H007014 | SCATTERED IV | 362 |
| 758 | 58 | CLEVELAND, 0 | 39007 A | AKRON METRO HSG AUTH | 4 | 07795 | 0H007019 | SATERSTEIN TOWERS 2 | 210 |
| 759 | 58 | Cleveland, 0 | 39007 | AKRON METRO HSG AUTH | 4 | 07802 | 0H007028 |  | 268 |
| 760 | 58 | CLEVELAND. 0 | 39007 | AKRON METRO HSG AUTH | 4 | 07819 | 0H007030 | COLONIAL HILLS | 150 |
| 761 | 58 | CLEVELAND. 0 | 39012 | LORAIN METRO HSG AUTH | 4 | 07827 | OHO 12003 | WILKES-VILLA | 192 |
| 762 | 58 | CLEVELAND, 0 | 39012 | LORAIN METRO HSG AUTH | 4 | 07835 | OHO12011 | ALBRIGHT TERRACE | 50 |
| 763 | 58 | CLEVELAND. 0 | 39012 | LORAIN METRO HSG AUTH | 4 | 07843 | OHO 12012 | WESTGATE APTS | 12 |
| . 764 | 58 | ClEVELAND. 0 | 39012 | LORAIN METRO HSG AUTH | 4 | 07851 | 0HO12013 | SOUTH SIDE GRDNS I | 50 |
| '765 | 58 | CLEVELANO, 0 | 39036 | WAYNE M H A | 2 | 07924 | OHO36001 | MADISON HEIGHTS | 15 |
| OFFNAME <br> FIELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 7136 \\ & 7136 \end{aligned}$ |
|  |  |  | - FI | IELD OFFICE=59 OFFICE | NAME=GRAND | RAPIDS |  |  |  |
| OBS | FIELDOFF | OFFNAME | PHANUM | PHIANAME | PHASIZEX | SEQNUM | OLDPROU | PROUNAME | totaldus |
| 766 | 59 | GRAND RAPIDS | 26038 | JACKSON HSG COMM | 3 | 04416 | Mi038001 | CHALET TERRACE | 100 |
| 767 | 59 | GRANO RAPIDS | 26038 | JACKSON HSG COMM | 3 | 04424 | MiO38002 | REED MANOR | 23 |
| 768 | 59 | GRAND RAPIDS | 26038 | JACKSON HSG COMM | 3 | 04432 | MI038003 | REED MANOR | 145 |
| 769 | 59 | GRAND RAPIDS | 26038 | UACKSON HSG COMM | 3 | 04449 | M1038004 | REED MANOR | 127 |
| 770 | 59 | GRAND RAPIDS | 26044 | 8IG RAPIDS HSG COM | 2 | 04473 | MIO4 $\ddagger 002$ | PARKVIEW VILLAGE | 75 |
| 771 | 59 | GRAND RAPIDS | 26058 | LANSING HSG COM | 3 | 04498 | M1058005 | LANSING PUB HSG | 54 |
| 772 | 59 | GRAND RAPIDS | 26058 | LANSING HSG Com | 3 | 04505 | MI058006 | OLIVER TOWERS | 101 |
| 773 | 59 | GRAND RAPIDS | 26058 | LANSING HSG COM | 3 | 04513 | MI058007 | LA ROY FROH TNHSE | 100 |
| 774 | 59 | GRAND RAPIDS | 26058 | LANSING HSG COM | 3 | 04521 | MI058009 | LANSING PUB HSG | 28 |
| 775 | 59 | GRAND RAPIDS | 26087 | MENOMINEE HSG COM | 2 | 04562 | MIO87002 | WOODHAVEN CIRCLE | 24 |
| OFFNAME FIELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 777 \\ & 777 \end{aligned}$ |

Exhibit H-1: Sampled Developments Ordered by Field office (continued)

| OBS | FIELDOFF | OFFNAME | PHANUM | PHANAME | PHASIZEX | SEQNUM | OLDPROJ | PRDUNAME | totaldus |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 776 | 61 | DALLAS, TX | 48003 | EL PASO Ha | 4 | 09625 | T×003028 | ALEX GONZALES APTS | 36 |
| 777 | 61 | DALLAS, TX | 48003 | EL PASO HA | 4 | 09633 | TX003036 | RAYMOND TELEES | 68 |
| 778 | 61 | DALLAS, TX | 48009 | DALLAS HA | 5 | 09811 | T×009002 | Little mexico village | 102 |
| 779 | 61 | DALLAS, TX | 48009 | DALLAS HA | 5 | 09828 | TX009008 | TURNER COURTS | 294 |
| 780 | 61 | DALLAS, TX | 48009 | dallas ha | 5 | 09836 | Tx0090¢9 | RHOADS TERRACE | 426 |
| 781 | 61 | DALLAS, TX | 48009 | dallas ha | 5 | 09844 | TX00901t | GEORGE LOVING PLACE | 3374 |
| 782 | 61 | DALEAS, TX | 48014 | TEXARKANA HA | 3 | 09877 | TXO14005 |  | 50 |
| OFFNAME <br> FIELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 4350 \\ & 4350 \end{aligned}$ |


| OBS | FIELDOFF | OF FNAME | PHANUM | PHANAME | PhASIzEX | SEQNUM | OLDPROU | PROUNAME | TOTALDUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 783 | 62 | LITTLE ROCK, | 05002 | NORTH LITTLE ROCK HA | 3 | 00382 | AR002002 |  | 92 |
| 784 | 62 | LITTLE POCK, | 05002 | NORTH LITTLE ROCK HA | 3 | 00399 | AR002003 |  | 200 |
| 785 | 62 | LITTLE ROCK. | 05004 | little rock ha | 4 | 00406 | AR004001 |  | 74 |
| 786 | 62 | LITTLE ROCK, | 05004 | LITTLE ROCK HA | 4 | 00414 | AROO4003 |  | 100 |
| 787 | 62 | LITTLE ROCK, | 05004 | LITTLE ROCK HA | 4 | 00422 | AROO4008 |  | 136 |
| 788 | 62 | LITTLE ROCK, | 05004 | LITTLE ROCK HA | 4 | 00439 | AR004010 | CUMGERLAND TOWERS | 180 |
| 789 | 62 | LITTLE ROCK, | 05073 | SPARKMAN HA | 1 | 00447 | AR07300t |  | 18 |
| 790 | 62 | LITTLE ROCK, | 05094 | MALVERN HA | 2 | 00455 | ARO94001 |  | 125 |
| OFFNAME FIELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 925 \\ & 925 \end{aligned}$ |


| OBS | FIELDOFF | OFFNAME | PHANUM | PHANAME |  | PHASIZEX | SEQNLM | OLDPROJ | PROUNAME | TOTALDUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 791 | 63 | NEW ORLEANS, | 22001 | NEW ORLEANS LHA |  | 5 | 03088 | LAOO1010 |  | 680 |
| 792 | 63 | NEW ORLEANS. | 22001 | NEW ORLEANS LHA |  | 5 | 03096 | LAOO1014 |  | 1840 |
| 793 | 63 | NEW ORLEANS. | 22001 | NEW ORLEANS LHA |  | 5 | 03103 | LAJO102 1 |  | 6 |
| 794 | 63 | NEW ORLEANS. | 22001 | NEW ORLEANS LHA |  | 5 | 03111 | LA001025 | - - | 415 |
| 795 | 63 | NEW ORLEANS, | 22001 | NEW ORLEANS LHA |  | 5 | 03128 | LAOO1027 |  | 19 |
| 796 | 63 | NEW ORLEANS, | 22001 | NEW ORLEANS LHA |  | 5 | 03136 | LA001039 |  | 200 |
| 797 | 63 | NEW ORLEANS, | 22002 | SHREVEPORT LHA |  | 3 | 03144 | LA002003 | HOLLYWOOD HEIGHTS | 131 |
| 798 | 63 | NEW ORLEANS. | 22002 | SHREVEPART LHA |  | 3 | 03152 |  |  | 184 |
| 799 | 63 | NEW ORLEANS, | 22003 | EAST BATON ROUGE | PH LHA | 4 | 03169 | LA003004 |  | 200 |
| 800 | 63 | NEW ORLEANS. | 22003 | EAST BATON ROUGE | PH LHA | 4 | 03177 | LA003005 |  | 250 |
| 801 | 63 | NEW ORLEANS. | 22003 | EAST BATON ROUGE | PH LHA | 4 | 03185 | LA003013 | PARISH HSG AUTH | 50 |
| 8 O 2 | 63 | NEW ORLEANS. | 22003 | EAST BATON ROUGE | PH LHA | 4 | 03193 | LA003014 | PARISH HSG AUTH | 42 |
| 803 | 63 | NEW ORLEANS. | 22003 | EAST BATON ROUGE | PH LHA | 4 | 03209 | LA003015 | PARISH HSG AUTH | 78 |
| 804 | 63 | NEW ORLEANS. | 22075 | PONCHATOULA LHA |  | 1 | 03233 | LA075002 | LAKESIDE CIRCLE | 50 |
| 805 | 63 | NEW ORLEANS. | 22094 | ST CHARLES PARISH | 1 LHA | 2 | 03241 | LA094001 | BOUTTE-DES ALLEMANDS | 128 |

Exhibit H-1: Sampled Developments Ordered by Field Office (continued)


Exhibit H-1: Sampled Developments Ordered by Field Office (continued)

| OBS | Figldoff | OFFNAME | PHANUM | PHANAME | PHASIZEX | SEQNUM | OLDPREU | PROJNAME | TOTALDUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 828 | 66 | HOUSTON, TX | 48005 | HOUSTON H A | 4 | 0964 | TX005000 |  | 204 |
| 829 | 66 | HOUSTON, TX | 48005 | HOUSTON H A | 4 | 09658 | TX005004 |  | 508 |
| 830 | 66 | HOUSTON, TX | 48005 | HOUSTON H A | 4 | 09666 | TX005006 |  | 339 |
| 831 | 66 | HOUSTON, TX | 48005 | HOUSTON H A | 4 | 09574 |  |  | 264 |
| 832 | 66 | HOUSTON, TX | 48023 | BEAUMONT H A | 3 | 09885 | Tx023001 |  | 150 |
| 833 | 66 | HOUSTON, TX | 48023 | BEAUMONT H A | 3 | 09993 | TX023004 |  | 56 |
| 834 | 66 | HOUSTON, TX | 48340 | FRANKLIN H A | 1 | 09933 | TX340001 |  | 36 |
| OFFNAME <br> FIELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 1557 \\ & 4557 \end{aligned}$ |


| 085 | FIELDOFF | OFFNAME | PHANLM | PHANAME | PHASIZEX | SEQNLM | OLDPROS | PROUNAME | totacdus |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 835 | 71 | KANSAS CITY, | . 20001 | KANSAS CITY KS PHA | 4 | 02901 | Ks001009 | SCATTERED SITES | 30 |
| 836 | 71 | KANSAS CITY. | 20003 | KANSAS CITY KS PHA | 4 | 02918 | KS00t012 | CHALET MANOR | 66 |
| 837 | 71 | KANSAS CITY, | 20001 | KANSAS CITY KS PHA | 4 | 02926 | KS001017 | GLANVILLE MANOR | 108 |
| 838 | 71 | KANSAS CITY, | 20002 | TOPEKA PHA | 3 | 02934 | K5002001 | PINE RIDGE MANOR | 210 |
| 839 | 71 | KANSAS CITY, | 20002 | TOPEKA PHA | 3 | 02942 | KS002006 | NORTHLAND MANOR | 100 |
| 840 | 71 | KANSAS CITY, | 20054 | LHA DF SABETHA | 1 | 02959 | KSO54001 | SABETHA PHA | 26 |
| 841 | 71 | KANSAS CITY. | 29002 | KANSAS CITY MO PHA | 4 | 04895 | M0002002 | TB WATKINS | 300 |
| 842 | 71 | KANSAS CITY, | 29002 | KANSAS CITY MO PHA | 4 | 04902 | M0002010 | PENNWAY PLAZA | 222 |
| 843 | 71 | KANSAS CITY, | 29002 | KANSAS CITY MO Pha | 4 | 04919 | M0002014 | DUNBAR | 65 |
| 844 | 71 | KANSAS CITY. | 29075 | HA OF BROOKFIELD | 1 | 05015 | M0075001 | JOYCE PLACE | 90 |
| 845 | 71 | KANSAS CITY. | 29079 | LEBANON PHA | 2 | 05023 | M0079002 | maple VIllage | 62 |
| OFFNAME FIELDOFF |  |  |  |  |  |  |  |  | $\begin{aligned} & 1279 \\ & 1279 \end{aligned}$ |


| OES | FIELDOFF | OFFNAME | PHANUM | PHANAME | PHASIZEX | SEQNUM | OLDPROJ | PROUNAME | TOTALDUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 846 | 72 | OMAHA, NE | 31001 | OMAHA HA | 4 | 05064 | NE001001 | SOUTHSIDE TERRACE HOME | 388 |
| 847 | 72 | OMAHA, NE | 31001 | OMAHA HA | 4 | 05072 | NEOO1002 | LOGAN FONTENELLE ADDIT | 494 |
| 848 | 72 | OMAYA. NE | 31001 | OMAHA HA | 4 | 05089 | NE001003 | HILLTOP HOMES | 225 |
| 849 | 72 | OMAHA, NE | 31001 | OMAHA HA | 4 | 05097 | NE001005 | PLEASANT VIEW HOMES | 300 |
| 850 | 72 | OMAHA, NE | 31001 | omaha ha | 4 | 05104 | NE00 1006 | LOGAN FONTENELLE HOMES | 194 |
| 851 | 72 | DMAFA, NE | 31001 | OMAHA HA | 4 | 05112 | NEOO 1009 | TWD SITES | 288 |
| 852 | 72 | OMAHA, NE | 31001 | OMAHA HA | 4 | 05129 | NEOO1011 | JACKSON TOWER | 208 |
| 853 | 72 | GMAHA, NE | 31001 | OMAHA HA | 4 | 05137 | NEOO1012 | UNDERWOOD TOWER | 105 |
| B54 | 72 | OMAHA, NE | 31001 | OMAHA HA | 4 | 05145 | NEOO1016 | OMAHA HSG | 72 |
| 855 | 72 | OMAHA, NE | 31017 | STROMSEURG HSG AUTH | 1 | 05178 | NEO17001 | SWEDE HAVEN | 36 |
| 856 | 72 | OMAHA, NE | 31018 | WYMORE HSG AUTH. | 1 | 05186 | NEO1800 | PARK LODGE | 30 |
| 857 | 72 | OMAHA, NE | 31019 | CEAY CENTER HSG AUth | 1 | 05194 | NE01900t | GOLDEN ROD HOUSING | 30 |
| 858 | 72 | OMAHA, NE | 31040 | ALBION HSG AUTH | $t$ | 05201 | NEO4000t | HARMONY HOMES | 40 |

Exhibit H-1: Sampled Developments Ordered by Field Office (continued)


FIELD OFFICE=74 OFFICE NAMEROES MOINES,


Exhibit H-1: Sampled Developments Ordered by Field Office (continued)



Exhibit H-1: Sampled Developments Oxdexed by Field Office (continued)

## FIELD OFFICE=94 OFFICE NAME=PHOENIX OFFI




## Exhibit H-l: Sampled Developments Ordered by Field Office (continued)

| OBS | Fieldoff | OFFNAME | PHANUM | PHANAME | phasizex | SEQNUM | OLDPROJ | Proundame | totalous |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | 236859 |

Exhibit $\mathrm{H}-2$

Twenty-one Developments in Elevea Field Offices Effected by Weight Adjustment Process

| Field Office | Field <br> Office <br> Number | Development I. 0. Number | New DEVWT 4 Value | New DEVWT5 Value | Original DEVWT4 Value | Original DEVWTS Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sacramento | 95 | 00739 | 3.0340 | 3.0340 | 26.427 | 26.427 |
| Hartford | 12 | 01013 | 2.9830 | 2.9830 | 11.744 | 12.541 |
| Hartford | 12 | 01079 | 8.1930 | 8.1930 | 32.255 | 33.158 |
| Hartford | 12 | 01095 | 5.9910 | 5.9910 | 23.587 | 23.587 |
| Jacksonville | 46 | 01338 | 9.8212 | 9.8212 | 22.833 | 34.957 |
| Chicago | 51 | 02212 | 12.2940 | 12.2940 | 29.065 | 29.808 |
| Chicago | 51 | 02318 | 2.3890 | 2.3890 | 5.649 | 6.127 |
| Chicago | 51 | 02431 | 39.6160 | 39.6160 | 93.656 | 101.581 |
| New Orleans | 63 | 03233 | 54.2148 | 54.2148 | 145.000 | 145.000 |
| Grand Rapıds | 59 | 04473 | 45.7731 | 46.7731 | 80.278 | 80.278 |
| Kansas City | 71 | 05023 | 74.1229 | 74.1229 | 91.228 | 101.359 |
| Buffato | 21 | 06425 | 9.9810 | 9.9810 | 5.352 | 5.352 |
| Buffalo | 21 | 05466 | 47.4530 | 47.4530 | 25.444 | 25.444 |
| Philadelphia | 32 | 08264 | 1.0000 | 1.0000 | 2.418 | 2.418 |
| Philadelphia | 32 | 08345 | 1.0000 | 1.0000 | 2.418 | 2.418 |
| Philadelphia | 32 | 08353 | 1.0000 | 1.0000 | 2.418 | 2.418 |
| San Antonio | 65 | 09917 | 81.8923 | 81.8923 | 145,000 | 152.845 |
| Milwaukee | 55 | 10653 | 1.8720 | 1.8720 | 4170 | 4.170 |
| Milwaukee | 55 | 10678 | 2.0150 | 2.0150 | 4.487 | 4.487 |
| Milwaukee | 55 | 10686 | 16.7170 | 16.7170 | 37.231 | 37.231 |
| Milwaukee | 55 | 10701 | 32.6750 | 32.6750 | 72.773 | 72.773 |

## APPENDIX I <br> FYELD OFFICE AND HUD REGION ESTIMATES

The mann study sample is designed to provide estimates of FIX and ADDs costs at the $H U D$ region and individual faeld office level. Energy, redesıgn, accessibility, Indıan housing and lead paint abatement are all based on samples that are too small to provide direct regional and field office estimates. For these study components, the national cost estimate was allocated to the regional and field office level using indirect estimation methods. Consequently, no standard errors and 95 -percent confidence intervals are presented for these allocated estimates.

## FIX

The FIX estimates, standard errors, and 95 -percent confidence interval for each of the 51 field offices are presented in Exhibit I-1. The coefficient of variation which equals the standard error divided by the FIX estimate is also included in this exhibit. Exhibit I-2 shows the assocıated estimates for the 10 HUD regions.

Exhibit r-1: FIX Cost, by Region and Field Office


Exhibit I-I: FIX Cost, by Region and Field Office (continued)

| OBS | FIELD <br> OFFIGE <br> NUMBER | FIELD OFFICE NAME | $\begin{aligned} & \text { TOYAL } \\ & \text { FIX } \\ & \cos T \end{aligned}$ | $\begin{gathered} \text { PERCENT } \\ \text { OF } \\ \text { TOTAL } \end{gathered}$ | STANDARD ERROR OF TOTAL | COEFFICIENT OF VARIATION | 95 PERCENT CONFIDENCE INTERVAL | FIX COST PER DWELLING UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 041 | ATLANTA, GA | \$334, 878,052 | 360 | 108,924, 310 | 033 | 213,491,648 | 596314 |
| 16 | 042 | BIRMINGHAM, | \$173,144, 200 | + 86 | 63,356,368 | 037 | 124,178,482 | 412160 |
| 17 | 043 | COLUMBIA, SC | \$92,861,026 | 100 | 59,487,136 | 084 | 116,594,786 | 594006 |
| 18 | 044 | GREENSBORO, N | \$101, 874, 185 | 109 | 20.033, 126 | 020 | 39,264,928 | 270360 |
| 19 | 045 | JACKSON, MS | \$66,254,822 | $\bigcirc 71$ | 13,798.207 | $\bigcirc 21$ | 27,044,487 | 535825 |
| 20 | 046 | UACKSONVILLE | \$234, 620,309 | 252 | 62,758,549 | $\bigcirc 27$ | 123,006,756 | 562207 |
| 21 | 047 | KNOXVILLE, T | \$52,355,634 | - 56 | 13,971.165 | $\bigcirc 27$ | 27,383.484 | 334092 |
| 22 | 048 | LOUISVILLE. | \$229,904, 349 | 247 | 71,817,687 | 031 | 140,762.667 | 920169 |
| 23 | 049 | NASHVILLE, T | \$90,544,299 | 097 | 20,705,158 | $\bigcirc 23$ | $40,582,1$ to | 362264 |
| SUBTOTAL |  |  | \$1,376,436,877 | 1479 |  |  |  |  |

REGIDN=5 $\qquad$

| OBS | $\begin{aligned} & \text { FIELD } \\ & \text { OFFICE } \\ & \text { NUMEER } \end{aligned}$ | FIELD OFFICE NAME | $\begin{aligned} & \text { TOTAL } \\ & \text { FIX } \\ & \text { COST } \end{aligned}$ | $\begin{gathered} \text { PERCENT } \\ \text { OF } \\ \text { TOTAL } \end{gathered}$ | STANDARD ERROR OF TOTAL | COEFFICIENT OF VARIATION | 95 PERCENT CONFIDENCE INTERVAL | FIX COST PER DWELLING UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24 | 051 | CHICAGO | \$447, 390, 776 | 481 | 130,553,989 | 029 | 255,885,817 | 581964 |
| 25 | 052 | COLUMBUS, OH | \$21,988,806 | -24 | 2,222,561 | 010 | 4,356,219 | 215767 |
| 26 | 053 | DETROIT, MI | \$162,042,388 | 174 | 24,728,802 | 015 | 48,468.451 | 8302 20 |
| 27 | 054 | INDIANAPOLIS | \$75,820, 362 | $\bigcirc 81$ | 7.000.016 | 009 | 13,720.031 | 441252 |
| 28 | 055 | MILWAUKEE, W | \$60,018,796 | 064 | 1\%,665,543 | $\bigcirc 19$ | 22,864,464 | 465840 |
| 29 | 056 | MINN/ST PAUL | \$167,513,819 | 180 | 27,301,949 | - 16 | 53,511.821 | 790383 |
| 30 | 057 | CINCINNATI, | \$128,870, 214 | 1 38 | 15,620,638 | $\bigcirc 12$ | 30.616 .451 | 978811 |
| 31 | 058 | CLEVELAND, 0 | \$321.328,434 | 345 | 70,961,471 | $\bigcirc 22$ | 139,084,482 | 1085459 |
| 32 | 059 | GRAND RAPIDS | \$32,865,752 | - 35 | 13,871,316 | $\bigcirc 42$ | 27,187,779 | 374070 |



Exhibit I-1: FIX Cost, by Region and Field Office (continued)


Exhibit I-2: Total FIX Cost by Region

| 08S | REGION | TOTAL FIX $\cos T$ |
| :---: | :---: | :---: |
| 1 | 1 | \$495,576,218 |
| 2 | 2 | \$2,440,226,797 |
| 3 | 3 | \$1,689,116,981 |
| 4 | 4 | \$1,376,436,877 |
| 5 | 5 | \$1,417,839,347 |
| 6 | 6 | \$693,505,023 |
| 7 | 7 | \$285,524,860 |
| 8 | 8 | \$134,598,811 |
| 9 | 9 | \$653,240,410 |
| 10 | 10 | \$120,856,380 |
|  |  | \$9,306,921,704 |

PERCENT
OF
TOTAL

5.32
26.22
18.15
14.79
15.23
7.45
3.07
1.45
7.02
1.30
$=====2$
100.00

## STANDARD <br> ERROR OF TOTAL

| COEFFICIENT | 95 PERCENT |
| ---: | ---: |
| OF | CONFIDENCE |
| VARIATION | INTERVAL |
|  |  |
| 0.09 | $+/-89,421,613$ |
| 008 | $+/-372,796,692$ |
| 009 | $+/-303,481,739$ |
| 0.13 | $+/-337,946,764$ |
| 011 | $+/-304,041,597$ |
| 011 | $+/-143,122,983$ |
| 0.11 | $+/-63,733,616$ |
| 0.15 | $+/-40,581,735$ |
| 0.10 | $+/-134,385,660$ |
| 016 | $+/-38,493,625$ |

FIX COST PER DWELLING UNIT

6,696
8,272
11,466
11,466
5,075
5,075
6,771
6,771
5,546
6,849
8, 272
11,738
5,157

ADDs
The 23 ADDs estimates, their standard errors, coefficients of variation and 95 -percent confidence units for each field office are shown in Exhibit I-3. The associated estimates for the 10 HUD regions are provided in Exhibit I-4. No standard errors were computed for $\$ 0$ estimates.

| FIELD NUMBER | OFFICE NAME | CATEGORY COST | PERCENT OF TOTAL | STANDARD ERROR OF TOTAL | $\begin{aligned} & \text { COEFFICIENT OF } \\ & \text { VARIATION } \end{aligned}$ | 95 PERCENT CONFI DENCE INTERVAL | COST PER UNIT | $H$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 011 | BOSTON. MA | \$17,213,355 | 220 | 4,470.692 | O26 | 8.762556 | 48941 |  |
| 012 | HARTFORD. CT | \$8,711,743 | 112 | 4,914,367 | 056 | 9,632,159 | 45497 |  |
| 043 | MANCHESTER, | \$7,822,996 | 100 | 3,522,561 | 045 | 6,904,219 | 79510 |  |
| 014 | PRDV | \$ $10,534,806$ | 135 | 2,039,810 | 019 | 3.998.028 | 106898 |  |
| 021 | BUFFALO, NY | \$29,776,207 | 381 | 6,221,531 | 021 | 12,194,200 | 117419 |  |
| 022 | SAN JUAN, PR | \$5,286,904 | -6B | 3,594,197 | -68 | 7.044 .627 | 8423 |  |
| 023 | NEW YORK, NY | \$136, 945, 233 | 1754 | 31,518.975 | 023 | 61.777.191 | 85973 |  |
| 024 | NEWARK, NJ ${ }^{\text {N* }}$ | \$28,089,740 | 360 | 5,772,509 | 021 | 11, 3¢4,118 | 59043 |  |
| 031 | BALTIMORE, $M$ | \$8,604,185 | 110 | 4,041,475 | 047 | 7.921 .291 | 36451 |  |
| 032 | PHILADELPHIA. | \$25.113.028 | 322 | 14, 176,544 | - 56 | 27.786.027 | 50337 |  |
| 033 | PITTSBURGH. | \$42, 206,449 | 541 | 12,170,741 | 029 | 23,854,653 | 134897 |  |
| 034 | RICHMOND, VA | \$15,691,373 | 201 | 7,583,002 | $\bigcirc 48$ | 14,862,583 | 77290 |  |
| 035 | WASHINGTON, | \$9,499,082 | 122 | 4,905,841 | 052 | 9.615,448 | 61546 |  |
| 036 | CHARLESTON, | \$3,229,130 | $\bigcirc 41$ | 1,805,461 | 056 | 3,538,703 | 47313 |  |
| 041 | ATLANTA, GA | \$42,409,940 | 543 | 16,749,866 | 039 | 32,829,737 | 75519 |  |
| 042 | BIRMINGHAM, | \$5,349,003 | 069 | 2,468,631 | - 46 | 4,838,516 | 12733 |  |
| 043 | COLUMBIA, SC | \$8,850.801 | 113 | 6,638,651 | 075 | 13,011.756 | 56616 |  |
| 044 | GREENSBORD, N | \$10,488,620 | 134 | 4,687,532 | 045 | 9,187,563 | 27835 |  |
| 045 | UACKSON, MS | \$0 | - 00 | , 687.5 |  | -197, 563 | 000 |  |
| 046 | JACKSONVILLE | \$4.685.331 | 060 | 3,698,745 | $\bigcirc 79$ | 7,249,540 | 11227 |  |
| 047 | KNDXVILLE, $T$ | \$44,633 | 001 | 48,954 | 110 | 95.949 | 285 |  |
| 048 | LOUISVILLE, | \$15,671,859 | 201 | 11,118,251 | 071 | 21,791,772 | 62725 |  |
| 049 | NASHVILLE, $T$ | $\$ 0$ | 000 |  |  |  | 000 |  |
| 051 | CHICAGO | \$62,041,324 | 795 | 17.558,509 | 028 | 34,414.679 | 80703 |  |
| 052 | COLUMBUS, OH | \$3,836 | 000 | 6,128 | 160 | 12.012 | - 38 |  |
| 053 | DETROIT, MI | \$11.545.400 | 148 | Э.563,660 | 031 | 6,984.773 | 59153 |  |
| 054 | INDI ANAPOLIS | \$34,494,844 | 442 | 11,382, 151 | - 33 | 22,309,016 | 200750 |  |
| 055 | MILWAUKEE, W | \$1,055,449 | $\bigcirc 14$ | 354,030 | 036 | 752.699 | 8192 |  |
| 056 | MINN/ST PAUL | \$18,060,506 | 231 | 17,878, 187 | 099 | 35.041 .247 | 85215 |  |
| 057 | CINCINNATI, | \$13,584, 885 | 174 | 10.245,150 | $\bigcirc 75$ | 20.080 .494 | 103182 |  |
| 058 | CLEVELAND. ${ }^{\text {d }}$ | \$45,224,042 | 579 | 28,935.224 | 064 | 56.713.040 | 152768 |  |
| 059 | GRAND RAPIDS | \$2,178,581 | $\bigcirc 2 B$ | 1.094,003 | - 50 | 2,144,246 | 24796 |  |
| 061 | DALLAS, TX | \$0 | 000 |  |  |  | 000 |  |
| 062 | LITTLE ROCK, | \$1.043, 840 | 013 | 986,467 | $\bigcirc 95$ | 1,933.476 | 7014 |  |
| 063 | NEW ORLEANS, | \$10, 176,003 | 130 | 6,870,439 | $\bigcirc 68$ | 13,466,060 | 32842 |  |
| 064 | OKLAHOMA CIT | \$25,698, 057 | 329 | 19,993,412 | $\bigcirc 78$ | 39,187.088 | 201049 |  |
| 065 | SAN ANTONIO, | \$1,134,387 | - 15 | 1.460.167 | 129 | 2,861.927 | $49 \quad 05$ |  |
| 066 | HOUSTON, TX | \$3.994, 549 | 051 | 3,187.373 | - 80 | 6,247.251 | 45279 |  |
| 071 | KANSAS CITY. | \$5,992,580 | $\bigcirc 77$ | 3,597.947 | 060 | 7,051,977 | 38867 |  |
| 072 | OMAHA, NE | \$8,828, 192 | 113 | 1,595,742 | 018 | 3,127,655 | $118452$ |  |
| 073 | ST LOUIS, MO | \$15,985,739 | 205 | 4,533.999 | 028 | 8,886,639 | 109679 |  |
| 074 | DES MOINES, | \$132,439 | 002 | 133, 141 | 101 | 260,956 | 3121 |  |
| 081 | OENVER, CO | \$16, 534, 266 | 212 | 3,526, 187 | 021 | 6.911.326 | 1016,18 |  |
| 091 | HONOLULU OFF | \$15.457 | $\bigcirc 00$ | 16.155 | 105 | 121.664 | 302 |  |
| 092 | LOS ANGELES | \$5,644,845 | 072 | 6.163.074 | 109 | 12.079 .624 | 30569 |  |
| 093 | SAN FRANCISC | \$35.532, 144 | 455 | 10,389,140 | - 29 | 20,362, 714 | 162358 | $\square$ |
| 094 | PHOENIX OFFI | \$4,577,934 | - 59 | 2,196,214 | $\bigcirc 48$ | 4,304,580 | 88071 | ¢ |
| 095 | SACRAMENTO O | \$6,400,746 | 082 | 5,932,580 |  | 11,627,856 | 145637 | N00 |
| 101 | ANCHGRAGE, A | \$2, 378, 310 | - 30 | 751.114 | - 32 | 1,472,184 | 211593 |  |
| 102 | PORTLAND. OR | \$7,423,842 | 095 | 2,454.949 | 033 | 4,811.699 | 113671 | $\stackrel{\square}{0}$ |
| 103 | SEATTLE WA | \$4,853,552 | 062 | 1.770,794 | 036 | 3,470,756 | 30756 | $\stackrel{0}{6}$ |
| TOTALS |  | \$780, 757, 167 | 10000 |  |  |  |  |  |

Exhibit I-3: Estimated ADDs Cost, by Category and Field Office (continued)



Exhibit I-3: Estimated ADDs Cost, by Category and Field office (continued)

| FIELD <br> NUMBER | DFFICE NAME | $\begin{aligned} & \text { CATEGORY } \\ & \text { COST } \end{aligned}$ | PERCENT OF TOTAL. | STANDARD ERROR OF TOTAL | COEFFICIENT <br> VARIATION |  | 95 PERCENT CONFI OENCE INTERVAL | COST PER UNIT | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 011 | BOSTON, MA | \$0 | 000 |  |  |  |  | $0 \infty$ |  |
| 012 | HARTFORD, CT | \$0 | 000 |  |  |  |  | 000 |  |
| 013 | MANCHESTER, | \$0 | - 00 |  |  |  |  | 000 |  |
| O+4 | PROY | \$50.072 | - 30 | 52,679 | 1 | 05 | 103. 251 | 508 |  |
| 021 | BUFFALO, NY | \$439,703 | 259 | 445,748 | 10 | 01 | 873,666 | 17.34 |  |
| 022 | SAN JUAN, PR | \$7,633,010 | 4502 | 5,346,946 | 07 |  | 10,479.955 | 12160 |  |
| 023 | NEW YORK, NY | \$772.940 | 456 | 750,624 | $\bigcirc 9$ | 97 | 1,471,223 | 485 |  |
| 024 | NEWARK, NJ | \$0 | 000 |  |  |  |  | 000 |  |
| 031 | BALTIMORE. M | \$0 | 000 |  |  |  |  | 000 |  |
| 032 | PHILADELPHIA | \$101,646 | - 60 | 45,587 | $\bigcirc 1$ |  | 30.551 | 204 |  |
| 033 | PITTSBURGH, | \$0 | 000 |  |  |  |  | 000 |  |
| 034 | RICHMOND, VA | \$0 | 000 |  |  |  |  | 000 |  |
| 035 | WASHINGTON, | \$253,593 | 150 | 181,406 | 07 | 72 | 355,556 | 1646 |  |
| 036 | CHARLESTON, | \$0 | 000 |  |  |  |  | 000 |  |
| 041 | ATLANTA, GA | \$0 |  |  |  |  |  | 0.00 |  |
| 042 | BIRMINGHAM, | \$214, 222 | 126 | 135,194 | 0 |  | 264,980 | 510 |  |
| 043 | COLUMEIA, SC | \$0 | 000 |  |  |  |  | 000 |  |
| 044 | GREENSBORO, N | \$0 | 000 |  |  |  |  | 000 |  |
| 045 | JACKSON, MS | \$0 | 000 |  |  |  |  | 000 |  |
| 046 | JACKSONVILLE | \$0 | 000 |  |  |  |  | 000 |  |
| 047 | KNOXVILLE, T | \$0 | 000 |  |  |  |  | 000 |  |
| 048 | LOUISVILLE, | \$0 | 000 |  |  |  |  | 000 |  |
| 049 | NASHVILLE, T | \$0 | 000 |  |  |  |  | 000 |  |
| 051 | CHICAGO. | \$2 11,954 |  | 193,427 | 09 |  | 379,117 |  |  |
| 052 | COLUMBUS, OH | \$0 | 000 |  |  |  |  | - 00 |  |
| 053 | DETROIT, MI | \$1,562,966 | 922 | 608,859 | $\bigcirc 3$ |  | 1.193.363 | 8008 |  |
| 054 | INDIANAPOLIS | \$72,028 | - 42 | 69,796 | 09 | 97 | 136,800 | 419 |  |
| 055 | MILWAUKEE, W | \$203,692 | 120 | 158,230 | 07 |  | 310,131 | 1581 |  |
| 056 | MINN/ST PAUL | \$4.745,948 | 2799 | 2,786,226 | $\bigcirc 5$ |  | 5.461,004 | 22393 |  |
| 057 | CINCINNATI. | \$0 | 000 |  |  |  | 5,461,004 | 000 |  |
| 058 | CLEVELAND, 0 | \$2,292 | 001 | 2,021 | 08 | 88 | 3.96† | 008 |  |
| 059 | GRANO RAPIDS | \$0 | 000 |  |  |  |  | 000 |  |
| 061 | LDALLAS, TX | \$0 |  |  |  |  |  | 000 |  |
| 062 | LITTLE ROCK, | \$80, 169 | 047 | 53,850 | 06 |  | 105.546 | 539 |  |
| 063 | NEW ORLEANS, | \$0 | 000 |  |  |  |  | 000 |  |
| 064 | OKLAHOMA CIT | \$0 | 000 |  |  |  |  | 000 |  |
| 065 | SAN ANTONIO. | \$0 | 000 |  |  |  |  | 000 |  |
| 066 | HOUSTON, TX | \$0 | 000 |  |  |  |  | 000 |  |
| 071 | KANSAS CITY, | \$0 | 000 |  |  |  | $\cdots$ + ${ }^{+}$ | 000 |  |
| 072 | OMAHA, NE | \$12,864 | - 08 | 7.885 | 06 |  | 15,454 | 173 |  |
| 073 | ST LOUIS, MO | \$0 | 000 |  |  |  |  | 000 |  |
| 074 | OES MOINES, | \$0 | 000 |  |  |  |  | 000 |  |
| 081 | OENVER, CO | \$0 | 000 |  |  |  |  | 000 |  |
| 091 | HONDLULU OFF | \$666 | - 00 | 897 |  | 05 | 1.365 | 013 |  |
| 092 | LOS ANGELES | \$0 | 000 |  |  |  |  | 000 | 0 |
| 093 | SAN FRANCISC | \$0 | 000 |  |  |  |  | 000 | 00 |
| 094 | PHOENIX OFFI | \$0 | 000 |  |  |  |  | 000 | 0 |
| 095 | SACRAMENTO O | \$0 | $\bigcirc 00$ |  |  |  |  | 000 |  |
| 101 | ANCHORAGE, A | \$0 | 000 |  |  |  |  | 000 | $\ldots$ |
| 102 | PORTLAND, OR | \$597,544 | 352 | 794,537 | 13 | 33 | 1.557 .292 | 9149 | - |
| 103 | SEATTLE WA | \$0 | 000 |  |  |  |  | 000 | $\checkmark$ |
| TOTALS |  | \$16,955,309 | 10000 |  |  |  |  |  |  |




Exhibit I-3: Estimated $A D D_{s}$ Cost, by Category and Field Office (continued)

| FIELD NUMBER | OFFICE NAME | CATEGORY cost | PERCENT <br> OF TOTAL | STANDARD ERROR OF TOTAL | COEFFYCIENT OF VARIATION | 95 PERCENT CONFIDENCE INTERVAL | COST PER UNIT | $t$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 011 | BOSTON, MA | \$88,975,383 | 318 | 22,641,947 | 0.25 | 44,378, 216 | 252972 |  |
| O12 | HARTFORD, CT | \$13.541,860 | 048 | 5,874,468 | 043 | 11.513,958 | 70722 |  |
| 013 | MANCHESTER, | \$58,277,862 | 208 | 36.368,798 | -62 | 71,282.844 | 592315 |  |
| 014 | PROV | \$37,068, 366 | 133 | 9,222,217 | 025 | 18.075,545 | 3761 3B |  |
| 021 | BUFFALO, NY | \$33,071,473 | 118 | 17.958,253 | $\bigcirc 54$ | 35,198,175 | 130413 |  |
| 022 | SAN JUAN, PR | \$259,560,030 | 928 | 55.773,719 | 021 | 109, 316.489 | 413510 |  |
| 023 | NEW YORK, NY | \$446,051,576 | 1596 | 81,145,258 | - 18 | 159,.044,705 | 280027 |  |
| 024 | NEWARK, NU. | \$55,703,403 | 199 | 9,835,439 | - 18 | 19,277,460 | 117085 |  |
| 031 | BALTIMORE, ${ }^{\text {M }}$ M | \$43,616,876 | 156 | 23,074,757 | 053 | 45,226,523 | 184778 |  |
| 032 | PHI LADELPHIA | \$52, 197, 671 | 187 | 27, 116,172 | $\bigcirc 52$ | 53,147 697 | 104626 |  |
| 033 | PITTSBURGH, | \$43, 429, 238 | 155 | 8.556.739 | - 20 | 16,771,209 | 138805 |  |
| 034 | RICHMOND, VA | \$26,584, 726 | 095 | 10,141,769 | 0.38 | $\dagger 9.877867$ | 130946 |  |
| 035 | WASHINGTON, | \$24,640,581 | 088 | 9,060,152 | 037 | 17.640. 297 | 159910 |  |
| 036 | CHARLESTON,: | \$4,792,369 | $\bigcirc 17$ | 2,378,320 | $\bigcirc 50$ | 4,661.507 | 702 18 |  |
| 041 | ATLANTA, GA | \$87,664,516 | 314 | 38,403,216 | $\bigcirc 44$ | 75,270,303 | 156103 |  |
| 042 | B IRMINGHAM, | \$115,864,486 | 414 | 62,465,498 | 054 | 122,432.375 | 275809 |  |
| 043 | COLUMEIA, SC | \$20,617,347 | 074 | 13,327,359 | 065 | 26.121,624 | 131883 |  |
| 044 | GREENSBORO, N | \$88,907.169 | 318 | 22, 228, 813 | - 25 | 43,568,473 | 235947 |  |
| 045 | JACKSON, MS | \$4.379.587 | 016 | 1.055,359 | 024 | 2.068.503 | 35419 |  |
| 046 | JACKSONVILLE | \$40.192.043 | 144 | 24,360,774 | $\bigcirc 61$ | 47,747, 116 | 96310 |  |
| 047 | KNOXVILLE, $T$ | \$42.586,578 | 152 | 19.787.720 | $\bigcirc 46$ | 38,783.931 | 271754 |  |
| 048 | LOUISVILLE, | ' \$65.290.569 | 234 | 24,649, 344 | $\bigcirc 38$ | 48,312,715 | 261319 |  |
| 049 | , NASHVILLE, T | \$23,646,162 | - 85 | 11.034,210 | 047 | 21,627,052 | $946 \quad 07$ |  |
| 051 | CHICAGO | \$244,324,855 | 874 | 59,546,454 | - 24 | 116, 711.050 | 317817 |  |
| 052 | COLUMEUS, OH | \$7,584,924 | 027 | 10.518.077 | 139 | 20.645,431 | 74428 |  |
| 053 | DETROIT, MI | \$68,424,362 | 245 | 14,155,403 | 021 | 27.744.590 | 350571 |  |
| 054 | INDIANAPOLIS | \$68,698,401 | 246 | 22,468,40t | 033 | 44,038,065 | 399804 |  |
| 055 | MILWAUKEE, W | \$50,446,421 | 180 | 11,304,862 | - 22 | 22,157,529 | 391543 |  |
| 056 | MINN/ST PAUL | \$71,957,436 | 257 | 29,820,389 | $\bigcirc 41$ | 58,447.962 | 339518 |  |
| 057 | GINCINNATI, | \$23.838.413 | 085 | 9,838,407 | 041 | 19,283,279 | 181060 |  |
| 058 | CLEVELAND, 0 | \$15,036,270 | $\bigcirc 54$ | 5,021,136 | 033 | 9,841,427 | 50793 |  |
| 059 | GRAND RAPIDS | \$11,178,707 | 040 | 2,160,835 | 019 | 4.235.237 | 127233 |  |
| 061 | OALLAS, TX | \$8.424, 219 | O 30 | 3,401,030 | $\bigcirc 40$ | 6.666.018 | 24447 |  |
| 062 | LITTLE ROCK. | \$3,795,172 | - 14 | 2,798,709 | $\bigcirc 74$ | 5,485.470 | 25500 |  |
| 063 | NEW ORLEANS, | \$100,102.991 | 358 | 32,312,764 | $\bigcirc 32$ | 63,333.017 | 323069 |  |
| 064 | OKLAHOMA CIT | \$27,901,957 | 100 | 18,758.421 | 067 | 36.766.505 | 218291 |  |
| 065 | SAN ANTONIO. | \$62,196,462 | 222 | 24.601.431 | 040 | 48.218.804 | 268946 |  |
| 066 | HOUSTON, TX | \$50,368,473 | 180 | 9,707,709 | 019 | 19,027, 111 | 570942 |  |
| 071 | KANSAS CITY, | \$33,070,944 | 118 | 11,550,856 | - 35 | 22,639,678 | 214496 |  |
| 072 | OMAHA, NE | \$16,479,910 | $\bigcirc 59$ | 2,486,380 | $\bigcirc 15$ | 4,873,306 | 221118 |  |
| 073 | ST LOUIS, MO | \$25,908,690 | 093 | 10.131, 269 | 039 | 19.857,288 | 177761 |  |
| 074 | DES MOINES. | \$766,405 | 003 | 650,509 | - 85 | 1,274,997 | 180.59 |  |
| 081 | DENVER, CD | \$79,438,254 | 284 | 21, 175,342 | $\bigcirc 27$ | 41,503.669 | 488220 |  |
| 091 | HONDLULU OFF | \$10,861,453 | - 39 | 5,702,099 | $\bigcirc 52$ | 11,176.114 | 2120,14 |  |
| 092 | LOS ANGELES | \$3,230,746 | $\bigcirc 29$ | 4,751.190 | $\bigcirc 58$ | 9,312,333 | 44597 |  |
| 093 | SAN FRANCISC | \$76.620,639 | 274 | 19,716,712 | - 26 | 38,644.755 | 350106 |  |
| 094 | PHOENIX OFFI | \$2,835,426 | 010 | 995,346 | 035 | 1,950.878 | 54548 | 0 |
| 095 | SACRAMENTO D | \$14.708,636 | 053 | 9,659,871 | - 66 | 18,933,347 | 334667 | 10 |
| 101 | ANCHORAGE, A | \$2,016,605 | 007 | 1,229,948 | 061 | 2.410.698 | 179413 |  |
| 102 | PORTLAND, OR | \$6,175,864 | 022 | 2.066.492 | $\bigcirc 33$ | 4,050,324 | 94562 |  |
| 103 | SEATTLE WA | \$27,581,362 | 099 | 5,990,608 | - 22 | 11,741,591 | 1747.76 | O |
| TOTALS |  | 2,795,633,869 | 10000 |  |  |  |  |  |

Exhibit I-3: Estimated ADDs Cost, by Category and Field office (continued)

| FIELD NUMBER | OFFICE NAME | CATEGORY COST | PERCENT OF TOTAL | STANDARD ERROR OF TOTAL | COEFFICIENT OF VARIATION | g5 PERCENT CONFIDENCE INTERVAL | COST PER UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 011 | BOSTON, MA | \$0 | 000 |  |  |  | 000 |
| 012 | HARTFORD, CT | \$31,326 | 008 | 26,322 | 084 | 51.591 | 464 |
| 013 | MANCHESTER, | \$0 | 000 |  |  |  | 000 |
| 014 | PROV | \$1,530,906 | 406 | 1,376,841 | 090 | 2,698.608 | 15534 |
| 021 | BUFFALO, NY | \$0 | 000 |  |  |  | - 00 |
| 022 | SAN JUAN, PR | \$2,691 | 001 | 2,539 | 094 | 4,976 | 004 |
| 023 | NEW YORK, NY | \$0 | 000 |  |  |  | 000 |
| 024 | NEWARK, NJ | \$1,526,905 | 405 | 786.809 | 052 | 1,542,145 | 3209 |
| 031 | BALTIMORE, M | \$0 | 000 |  |  |  | - 00 |
| 032 | PHILADELPHIA | \$0 | 000 |  |  |  | 000 |
| 033 | PITTSBURGH, | \$0 | 000 |  |  |  | 000 |
| 034 | RICHMOND, VA | $\$ 0$ | $\bigcirc 00$ |  |  |  | 000 |
| 035 | WASHINGTON, | \$4,471.109 | 1185 | 4,522,469 | 101 | B.864.040 | 29016 |
| 036 | CHARLESTON, | \$0 | 000 |  |  |  | 000 |
| 041 | ATLANTA, GA | \$0 | $\bigcirc 00$ |  |  |  | 000 |
| 042 | BIRMINGHAM, | \$9,803,999 | 2599 | 10.320 .527 | 105 | 20,228,232 | 23338 |
| 043 | COLUMBIA, SC | \$0 | 000 |  |  |  | 000 |
| 044 | GREENSBORO,N | \$0 | $\bigcirc 00$ |  |  |  | - 00 |
| 045 | JACKSDN, MS | \$0 | $0 \infty$ |  |  | . | 000 |
| 046 | JACKSONVILLE | \$0 | 000 |  |  |  | 000 |
| 047 | KNOXVILLE, T | \$0 | 000 |  |  | . | 000 |
| 048 | LOUISVILLE. | \$0 | 000 |  |  |  | $0 \infty$ |
| 049 | NASHVILLE, $T$ | \$0 | 000 |  |  |  | 000 |
| 051 | CHICAGO | \$5,617, 210 | 1489 | 5.139 .239 | 091 | 10,072,908 | $7307$ |
| 052 | COLUMBUS, OH | $\$ 0$ | 000 |  |  |  | $\bigcirc 00$ |
| 053 | DETROIT, MI | \$276, 710 | 073 | 115,282 | $\bigcirc 42$ | 225.954 | 1418 |
| 054 | INDIANAPOLIS | \$0 | 000 |  |  |  | 000 |
| 055 | MILWAUKEE, W | \$0 | 000 |  |  |  | 000 |
| 056 | MINN/ST PAUL | \$13.350.881 | 3539 | 7,280,681 | 055 | 14,270,135 | 62994 |
| 057 | CINCINNATI, | \$0 | 000 |  |  |  | 000 |
| 058 | CLEVELAND, 0 | \$35,897 | $\bigcirc 10$ | 31,654 | - 88 | 62,043 | 121 |
| 059 | GRAND RAPIDS | \$809,005 | 214 | 502,294 | $\bigcirc 62$ | 984,497 | 9208 |
| 061 | DALLAS, TX | \$0 | $\bigcirc 00$ |  |  |  | 000 |
| 062 | LITTLE ROCK, | \$0 | 000 |  |  |  | 000 |
| 063 | NEW ORLEANS, | \$0 | 000 |  |  |  | $\bigcirc 00$ |
| 064 | OKLAHOMA CIT | \$0 | 000 |  |  |  | 000 |
| 065 | SAN ANTONIO, | \$0 | 000 |  |  |  | 000 |
| 066 | HOUSTON, TX | \$0 | 000 |  |  |  | 000 |
| 071 | KANSAS CITY, | \$0 | 000 |  |  |  | 000 |
| 072 | OMAHA, NE | \$0 | - 0 |  |  |  | $\bigcirc 00$ |
| 073 | ST LOUIS, MO | $\$ 0$ | 000 |  |  |  | $\bigcirc 00$ |
| 074 | DES MOINES, | \$0 | 000 |  |  |  | - 00 |
| OB1 | DENVER, CO | \$0 | 000 |  |  |  | 000 |
| 091 | HONOLULU DFF | \$0 | 000 |  |  |  | 000 |
| 092 | LOS ANGELES | \$0 | 000 |  |  |  | 000 |
| 093 | SAN FRANCISC | \$0 | 000 |  |  |  | 000 |
| 094 | PHOENIX OFFI | \$0 | 000 |  |  |  | 000 |
| 095 | SACRAMENTO O | \$0 | 000 |  |  |  | 000 |
| 101 | ANCHDRAGE, A | \$0 | 000 |  |  |  | 000 |
| 102 | PORTLAND, OR | \$0 | $\bigcirc 00$ |  |  |  | $\bigcirc$ |
| 103 | SEATTLE WA | \$272,015 | 072 | 119,629 | $\bigcirc 44$ | 234,472 | 1724 |
| TOTALS |  | \$37,728.653 | 10000 |  |  |  |  |



OFFICE

BOSTON, MA HARTFORO, CT MANCHESTER, PROV
BUFFALO, NY
SAN JUAN, PR
NEW YORK, NY
NEWARK, NU
BALTIMORE
PITTADELPHIA
RICHMOND, VA WASHINGTÓN, CHARLESTON, ATLANTA GA BIRMINGHAM, COLUMBIA, SC GREENSBDRO N JACKSON. MS JACKSONVILLE KNOXVILLE, T NOXVILE: NASHVILLE, T CHICAGO
COLUMBUS, OH
INDI ANAPOL
MIL WAUKEE IS
MINN/ST PAUL
MNCINNATE
CIVEI AND
GRAND RAPIDS
GALLAS TX
LITTLE ROCK,
NEW ORLEANS,
OKLAHOMA CIT
SAN ANTONID,
HOUSTON, TX
KANSAS CITY.
STAHA, NE
SES MOIS, MO
OES MaINES.
HONOLULU OFF
HONOLULU OFF
LOS ANGELES
SAN FRANCISC
PHCENIX OFFI
SAGRAMENTO O
ANCHORAGE, A
PORTLAND, OR
SEATTLE WA

CATEGORY COST \$45,807,636 $\$ 16,586,239$ \$21,777,045 \$12,203,386 $\$ 110,220,514$
$\$ 128,678,251$ $\$ 27.084 .620$ $\$ 37,618,536$ \$76,432,850 \$46,746,517 \$57,540,090 $\$ 11,520,880$ $\$ 11,520,880$
$\$ 6,123,567$ $\$ 6,123,567$ $\$ 75,238,048$ $\$ 75,238,048$ \$1,788,401 $\$ 27,648,861$
$\$ 52,167,299$ $\$ 52,167,299$
$\$ 27,415,353$ $\$ 27,415,353$ $\$ 22,810,288$
$\$ 46,288,693$ $6,288,693$
$\$ 843,725$ \$132,949, 832 $132,949,832$
$\$ 3,986,856$ \$3,986,856 134, 154, 133 \$26, 203,495
\$289,568,208 $\$ 45,392.790$ 495,728,910 \$2,925,349 \$6,968,194 \$56,968,513 58,401.621 $88,061,591$ $\$ 43,917,416$ 4, 51, 41 $\$ 20,549,368$ $\$ 23.361 .519$ 13.900.915
$\$ 790.927$
$\$ 3.576,242$
$\$ 1,924,438$ $\$ 3,393,307$ \$33,024,384 \$11,125,739 \$3,093,105 $\$ 1.431 .743$ \$19.083,506 $\$ 10,336,036$
\$2.028.060.802

PERCENT STANDARO ERROR
OF TOTAL
OF TOTAL
11.160.680
$30.985,590$
$4,362,982$
8,932,165
$8,932,165$
$6,799,128$
31,502,758
34,862,025
7,530.226
8,633.100
41,421,767
12,952,237
$22,206,297$
$5,610.010$
$5,610,010$
$3,188,005$
10.769,950 26.029,586

1,932,012
7.712. 354

17,961.399
21,312,122
13, 197.672
20,440, 13
746,352
54.228.673
16.647,394
$16,647,394$
$18,232,852$
18,232,852
1., 54 , 82
162.545,826

53,495,988
1.604 .452

8,914,266
4.329,148

61,747,462
6.999 .788

23,208,091
$14,368,790$
$3,286,781$
3,286,781
,405,402
587,25
1.,261,004
1.017 .360

2,777,489
9,969,348
5.660 .045

1,326,806
320, 899
$24,521,685$
$5,955,038$

COEFFICIENT OF VARIATION


10000

95 PERCENT CONF I DENCE INTERVAL

| 24,874,932 | 1890 O3 |
| :---: | :---: |
| 60,731756 | 239229 |
| 8,551.445 | 168576 |
| 17,507,043 | 220975 |
| 43.326. 291 | 48123 |
| 61,745.406 | 175594 |
| 68,329,569 | 80783 |
| 14,759.249 | 56930 |
| 16,920,876 | 159367 |
| 81,186,663 | 153203 |
| 25,386, 385 | 149407 |
| 43,524 343 | 283421 |
| 10,995.619 | 74767 |
| 6.248.491 | 89723 |
| 21,109 102 | 87963 |
| 51,017,989 | 179100 |
| 3,786,744 | 19440 |
| 15,116.213 | 73376 |
| 35, 204.34 | 421895 |
| 41,771,759 | 65694 |
| 25,867,437 | 145557 |
| 40,062,656 | 185266 |
| 1.462,849 | 3376 |
| 106.288.198 | 172941 |
| 8.233.788 | 39121 |
| -32,628,892 | 221099 |
| 35,736,390 | 200566 |
| 23.000.646 | 2033 B0 |
| 318.589.818 | 1366274 |
| 46.112,422 | 344773 |
| 104,852.136 | 323376 |
| 3,144,726 | 37296 |
| 17,471,962 | 20222 |
| 8,485.134 | 154327 |
| 36,119.283 | 182029 |
| 121.025.025 | 626362 |
| 13.719.585 | 126976 |
| 45,487,857 | 497 B 17 |
| 28,162,828 | 133282 |
| 6.442.091 | 313451 |
| 10,594,587 | 95375 |
| 1.151,012 | 18636 |
| 2.471,567 | 21979 |
| 1,994,026 | 37565 |
| 5,443.879 | 19386 |
| 19.539.922 | 150900 |
| 11,093,688 | 214039 |
| 2,600,539 | 70378 |
| 628,063 | 127379 |
| 48,062,503 | 292199 |
| 11.671.875 | 65497 |

Exhibit I-3: Estimated $\mathrm{ADD}_{s}$ Cost, by Category and Field office (continued)



Exhibit I-3: Estimated ADDs Cost, by Category and Field Office (continued)

| FIELD NUMEER | OFFICE Name | CATEGORY COST | PERCENT <br> OF TOTAK. | STANDARD ERROR OF TOTAL. | COEFFICIENT DF VARIATION | 95 PERCENT CONFI DENCE INTERVAL | COST PER UNI T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 011 | BOSTON, MA | \$0 | 000 |  |  |  | 000 |
| 012 | HARTFORD, CT | \$0 | 000 |  |  |  | 000 |
| 013 | MANCHESTER, | \$0 | 000 |  |  |  | - 00 |
| 014 | PROV | \$0 | 000 |  |  |  | 000 |
| 021 | BUFFALO, NY | \$0 | 000 |  |  |  | 000 |
| 022 | SAN JUAN. PR | \$329, 141 | 630 | 322,366 | 098 | 631.837 | 524 |
| 023 | NEW YORK, NY | \$0 | 000 |  |  |  | 0.00 |
| 024 | NEWARK. NJ | \$2,234,466 | 4276 | 1,117,297 | 050 | 2,189.902 | 4697 |
| 031 | BALTIMORE, M | +2,234, \$0 | 000 | 1,17,297 |  |  | 000 |
| 032 | PHILADELPHIA | \$0 | 000 |  |  |  | 000 |
| 033 | PITTSEURGH. | \$0 | 000 |  |  |  | 000 |
| 034 | RICHMOND. VA | \$0 | 000 |  |  |  | 000 |
| 035 | WASHINGTON. | \$0 | $\bigcirc 00$ |  |  |  | 000 |
| 036 | GHARLESTON, | \$0 | 000 |  |  |  | 000 |
| 041 | ATLANTA, GA | \$0 | 000 |  |  |  | 000 |
| 042 | BIRMINGHAM. | \$0 | 000 |  |  |  | 000 |
| 043 | COLUMBIA, SC | \$0 | 000 |  |  |  | 000 |
| 044 | GREENSBORO. | \$0 | 000 |  |  |  | $000$ |
| 045 | JACKSON, MS | \$0 | 000 |  |  | . | 000 |
| 046 | JACKSONVILLE | \$0 | 0.00 |  |  |  | 000 |
| 047 | KNOXVILLE, T | \$51,916 | 099 | 56.301 | 108 | 110,350 | 331 |
| 048 | LOUISVILLE, | \$0 | 000 |  |  |  | $\bigcirc 00$ |
| 049 | NASHVILLE, T | \$0 | - 00 |  |  |  | $\bigcirc 00$ |
| 051 | CHICAGO | \$0 | 000 |  |  |  | $\bigcirc 00$ |
| 052 | COLUMBUS, OH | \$0 | 000 |  |  |  | 000 |
| 053 | DETROIT, MI | \$1.044.752 | 1999 | 412.715 | O 40 | 808.920 | 5353 |
| 054 | INDIANAPQLIS | \$0 | 000 |  |  |  | 000 |
| 055 | MiLWAUKEE, W | \$0 | 000 |  |  |  | 000 |
| 056 | MINN/ST PAUL | \$0 | 000 |  |  |  | 000 |
| 057 | CINCINNATI. | \$0 | 000 |  |  |  | 000 |
| 058 | CLEVELAND, 0 | \$0 | 000 |  |  |  | 000 |
| 059 | GRAND RAPIDS | \$0 | 000 |  |  |  | 000 |
| 061 | DALGAS. TX | \$0 | 000 |  |  |  | O 00 |
| 062 | MLITTLE ROCK, | \$1.475.173 | 2823 | 990.883 | 067 | 1.942 .130 | 9912 |
| 063 | NEW ORLEANS. | \$1.475. $\$ 0$ | 000 |  |  |  | $000$ |
| 064 | OKLAHOMA CIT | \$0 | 000 |  |  |  | $000$ |
| 065 | SAN ANTONID. | \$0 | 000 |  |  |  | $000$ |
| 066 | HOUSTON, TX | \$0 | 000 |  | - |  | 000 |
| 071 | KANSAS CITY, | \$0 | - 00 |  | , |  | $\bigcirc$ |
| 072 | OMAHA, NE | $\$ 0$ | 000 |  |  |  | 000 |
| 073 | ST LOUIS. MO | \$58,641 | 112 | 54.043 | 092 | $105.925$ | 402 |
| 074 | DES MOINES, | \$32,108 | $\bigcirc 61$ | 19.426 | 061 | $38,074$ | 757 |
| 081 | DENVER, CO | \$0 | 000 |  |  |  | 000 |
| 091 | HONOLULU OFF | \$0 | - 00 |  |  |  | 000 |
| 092 | LOS ANGELES | $\$ 0$ | - 00 |  |  |  | 000 |
| 093 | SAN FRANCISC | \$0 | 000 |  |  |  | 000 |
| 094 | PHOENIX OFFI | \$0 | 000 |  |  |  | 000 |
| 095 | SACRAMENTO O | \$0 | 000 |  |  |  | 000 |
| 101 | ANCHORAGE, A | \$0 | $\bigcirc 00$ |  |  |  | $\bigcirc 00$ |
| 102 | PORTLAND, OR | \$0 | 000 |  |  |  | 000 |
| 103 | SEATTLE WA | \$0 | C 00 |  |  |  | 000 |
| TOTALS |  | \$5.226,197 | 10000 |  |  |  |  |


| FIELD NUMBER | OFFICE <br> NAME | CATEGORY COST | OST CATEGORY $5 P R O U$ SPECIFIC I $50=4$ |  |  | 95 PERCENT CONFIDENCE INTERVAL | COST PER <br> UNIT | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 7 \\ & 0 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | PERCENT | STANDARD ERROR | COEFFICIENT OF |  |  | $\begin{aligned} & \overline{M_{1}} \\ & { }_{x}^{\prime \prime} \end{aligned}$ |
|  |  |  | OF TOTAL. | DF TOTAL | VARIATION |  |  |  |
| 011 | BOSTON, MA | \$21.528,200 | 178 | 5,913,708 | 027 | 11,590,868 | 61208 |  |
| 012 | HARTFORD, CT | \$10.640,934 | 088 | 6,259,584 | 059 | 12,268,785 | 55572 |  |
| 013 | MANCHESTER, | \$10.638,011 | 088 | 3.222.919 | 030 | 6,316,922 | 108121 |  |
| 014 | PROV | \$10, 160,645 | 084 | 2,901,270 | $\bigcirc 29$ | 5,686,489 | 103101 |  |
| 021 | BUFFALO. NY | \$4,028,615 | 033 | 3,150,712 | 078 | 6, 175,395 | 15886 |  |
| 022 | SAN JUAN, PR | \$24,912,144 | 206 | 13,282,234 | 053 | 26,033,179 | 39688 |  |
| 023 | NEW YDRK, NY | \$55,918,559 | 461 | 19,867,199 | $\bigcirc 36$ | 38,939,709 | 35105 |  |
| 024 | NEWARK, NU | \$9,551,437 | 079 | 4,694,896 | 049 | 9.201.996 | 20077 |  |
| 031 | BALTIMORE, M | \$862,693 | 007 | 1,187,294 | 138 | 2,327,097 | 3655 |  |
| 032 | PHILADELPHIA | \$38,030,222 | 314 | 32,753,388 | - 86 | 64.196,640 | 76228 |  |
| 033 | PITTSBURGH, | \$4, 233, 137 | - 35 | 2.744,667 | 065 | 5.379,548 | 13530 |  |
| 034 | RICHMOND, VA | \$75,423,830 | 622 | 46.923,979 | $\bigcirc 62$ | 91,971,000 | 371509 |  |
| 035 | WASHINGTON. | \$4,883,633 | 040 | 2,475,645 | - 51 | 4.852,263 | 34693 |  |
| 036 | CHARLESTON, | \$70,490 | 001 | 76,438 | 108 | 149.818 | 1033 |  |
| 041 | ATLANTA, GA | \$42,843,045 | 354 | 10,764,932 | - 25 | 21.099.267 | 76290 |  |
| 042 | BIRMINGHAM, | \$47,465, 366 | 392 | 24,078,132 | 051 | 47,193,139 | 112989 |  |
| 043 | COLUMEIA, SC | \$1,240,517 | 010 | 1,574,748 | 127 | 3,086.506 | 7935 |  |
| 044 | GREENSBORO,N | \$8,228,635 | 058 | 2,663,964 | 032 | 5,221.370 | 21838 |  |
| 045 | JACKSON, MS | \$0 | $\bigcirc 00$ |  |  | 5,221.370 | 000 |  |
| 046 | UACKSONVILLE | \$9,785,861 | 081 | 13,750,407 | 141 | 26,950,797 | 23449 |  |
| 047 | KNOXVILLE, T | \$33,088,684 | 273 | 14,793,493 | 045 | 28,995,247 | 211146 |  |
| 048 | LOUISVILLE. | \$2,516,458 | $\bigcirc 21$ | 2,030,752 | $\bigcirc 81$ | 3,980.274 | 10072 |  |
| 049 | NASHVILLE, T | \$0 | - 00 | 2,030,7 |  | 3.980.27 | 000 |  |
| 051 | CHICAGO | \$ $10,452.578$ | 086 | 5,728,331 | 055 | 11.227.529 | 13597 |  |
| 052 | COLUMBUS. OH | \$0 | 000 |  |  |  | 000 |  |
| 053 | DETROIT, MI | \$142,907, 201 | 1179 | 13.896.612 | 010 | 27,237,359 | 732182 |  |
| 054 | INDIANAPOLIS | \$5,694,454 | 047 | 4,768,136 | 084 | 9,345,547 | 33140 |  |
| 055 | MILWAUKEE, W | \$12,882.899 | 106 | 7. 100,647 | $\bigcirc 55$ | 13,917.269 | 99934 |  |
| 056 | MINN/ST PAUL | \$439,956,710 | 3630 | 268,007.819 | 061 | 525.295.324 | 2075855 |  |
| 057 | CINCINNATY, | \$6,283,208 | 052 | 3,224,558 | 051 | 6,320,134 | 47723 |  |
| 058 | CLEVELANO, 0 | \$5,533,987 | 046 | 3,924,655 | 071 | 7.692,324 | 18694 |  |
| 059 | GRAND RAPIDS | \$0 | 000 |  |  |  | 000 |  |
| 061 | DALLAS, TX | $\$ 0$ | - 00 |  |  |  | 000 |  |
| 062 | LITTLE ROCK. | \$11,086,323 | 091 | 8.137,162 | 073 | 15,948,837 | 74490 |  |
| 063 | NEW ORLEANS, | \$79,724,273 | 658 | 48.468.083 | -61 | 94.997.442 | 257300 | . |
| 064 | OKLAHOMA CIT | \$0 | 000 |  |  |  | 000 |  |
| 065 | SAN ANTONIO, | \$449.387 | $\bigcirc 04$ | 578,444 | 129 | 1.133,751 | 1943 |  |
| 066 | HOUSTON, TX | \$14.398.424 | 1 18 | 3,954,118 | 028 | 7.750,071 | 162530 |  |
| 071 | KANSAS CITY, | \$7.490,782 | 062 | 6,086,518 | 081 | +1.929.576 | 48585 |  |
| 072 | OMAHA, NE | \$1,307,496 | 011 | 523,705 | 0.40 | 1,026 462 | 17543 |  |
| 073 | ST LOUIS, MO | \$3,383,982 | - 28 | 1.293 .028 | 038 | 2,534,335 | 23218 |  |
| 074 | DES MOINES, | $\$ 0$ | 000 |  |  |  | 000 |  |
| 081 | DENVER, CO | \$14,916,092 | 123 | 19,718,511 | 065 | 19.048.281 | 91673 |  |
| 091 | HONOLULU DFF | \$11,929 | - 00 | 10,563 | 089 | 20,703 | 233 |  |
| 092 | LOS ANGELES | \$243.782 | $\bigcirc 02$ | 339,343 | 139 | 665. 112 | 1321 |  |
| 093 | SAN FRANCISC | \$23,412,569 | 193 | 4,491,159 | - 19 | 8,802,672 | 106980 |  |
| 094 | PHOENIX OFFI | \$550.647 | 005 | 278,337 | $\bigcirc 51$ | 545,532 | 10593 |  |
| 095 | SACRAMENTO 0 | \$5,981,690 | $\bigcirc 49$ | 3.059,553 | $\bigcirc 51$ | 5.996.725 | 136102 | 0 |
| 101 | ANCHORAGE, A | \$614,483 | 005 | 344.025 | $\bigcirc 56$ | 674,289 | 54669 | 0 |
| 102 | PORTLAND, OR | \$820,527 | - 07 | 668. 198 | 081 | 1.309,669 | 12564 |  |
| 103 | SEATTLE WA | \$7,836,901 | - 65 | 2,448,282 | O 31 | 4,798,633 | 49660 | N |
| TOTALS |  | 1.241,931.439 | 10000 |  |  |  |  | 0 |

Exhibit I-3: Estimated ADDs Cost, by Category and Field office (continued)

| FIELD NUMBER | OFFICE NAME | CATEGORY Cost | PERCENT of TOTAL | STANDARD ERROR OF TOTAL | COEFFICIENT <br> VARIATION | OF | 95 PERCENT CONFIDENCE INTERVAL | COST PER UNIT | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 011 | BOSTON, MA | \$627.205 | - 84 | 308.303 | 0 | 49 | 604,273 | 1783 |  |
| 012 | HARTFORD, CT | \$5,313, 721 | 709 | 4,220,551 | $\bigcirc$ | 79 | 8.272.279 | 27751 |  |
| 013 | MANCHESTER, | \$4,147.780 | 553 | 4,131,337 | 1 | 00 | 8.097 .420 | 42157 |  |
| 014 | PROV | \$215.622 | - 29 | 161,267 | 0 | 75 | . 316.083 | 2188 |  |
| 021 | BUFFALO, NY | \$860,762 | 115 | 920.210 | 1 | 07 | 1,803,611 | 3394 |  |
| 022 | SAN JUAN, PR | \$3,552 | 000 | 2,952 | - | 83 | 5.786 | 006 |  |
| 023 | NEW YORK, NY | \$5,217,890 | 696 | 4,829,121 | 0 | 93 | 9,465.077 | 3276 |  |
| 024 | NEWARK, NJ | \$0 | 000 |  |  |  |  | 000 |  |
| 031 | BALTIMORE, M | \$0 | 000 |  |  |  |  | 000 |  |
| 032 | PHILADELPHIA | \$0 | 000 |  |  |  |  | $0 \infty$ |  |
| 033 | PITTSBURGH, | \$0 | 000 |  |  |  |  | 000 |  |
| 034 | RICHMOND, VA | \$0 | 000 |  |  |  |  | 000 |  |
| 035 | WASHINGTON, | \$668,381 | - 89 | 217.563 | 0 | 33 | 426,424 | 4338 |  |
| 036 | CHARLESTON, | \$0 | $\bigcirc 00$ |  |  |  |  | 000 |  |
| 041 | ATLANTA, GA | \$9,690,788 | 492 | 2,930,547 | 0 | 79 | 5,743.873 | 6572 |  |
| 042 | BIRMINGHAM. | \$17.452.132 | 2329 | 15,311.041 | $\bigcirc$ | 88 | 30.009 .639 | 41544 |  |
| 043 | COLUMBIA, SC | $\$ 0$ | 000 |  |  |  |  | 000 |  |
| 044 | GREENSBORO, N | \$2,638,192 | 352 | 2,186,899 | 0 | 83 | 4,286.322 | 7001 |  |
| 045 | JACKSON, MS | \$0 | 000 | 2,186,890 |  |  |  | 000 |  |
| 046 | JACKSONVILLE | \$0 | 000 |  |  |  |  | 000 |  |
| 047 | KNOXVILLE, T | \$122,771 | - 16 | 109.664 | 0 | 89 | 214.941 | 783 |  |
| 048 | LOUISVILLE, | \$ $\dagger$, 288, 342 | 172 | 1.005,999 | 0 | 78 | 1.971,758 | 5156 |  |
| 049 | NASHVILLE, $T$ | \$1.663,518 | 222 | 2.152,967 | 1 | 29 | 4.219 .816 | 6656 |  |
| 051 | CHICAGO | \$0 | 000 |  |  |  |  | 000 |  |
| 052 | COLUMBUS, OH | \$0 | 000 | - |  |  |  | 000 |  |
| 053 | DETROIT, MI | \$9,018,403 | 1203 | 6,221,495 | 0 | 69 | 12.194.131 | 462 Of |  |
| 054 | INDIANAPOLIS | \$1.074.034 | 143 | 1,383,225 | 1 | 29 | 2.711,121 | 6251 |  |
| 055 | MILWAUKEE, W | \$0 | 000 |  |  |  |  | 000 |  |
| 056 | MINN/ST PAUL | \$0 | 000 |  |  |  |  | 000 |  |
| 057 | CINCINNATI. | \$1,844,582 | 246 | 1.848,202 | 1 | 00 | 3.622,476 | 14010 |  |
| 058 | CLEVELAND, 0 | , \$0 | 000 |  |  |  |  | 000 |  |
| 059 | GRAND RAPIDS | \$0 | 000 | - |  |  |  | 000 |  |
| 061 | Dallas, tX | \$0 | 000 | - |  |  |  | 000 |  |
| 062 | LITTLE ROCK, | \$0 | 000 |  |  |  |  | 000 |  |
| 063 | NEW ORLEANS, | \$2,324,875 | 310 | 2,094,749 | 0 | 90 | 4.105 .709 | 75 O3 |  |
| 064 | OKlahoma cit | \$0 | 000 |  |  |  |  | 000 |  |
| 065 | SAN ANTDNIO, | \$135,596 | -18 | 174,538 | 1 | 29 | 342,094 | 586 |  |
| 066 | HOUSTON, TX | \$14.283.325 | 1906 | 9,529.209 | 0 | 67 | $18,677,250$ | 161906 |  |
| 074 | KANSAS CITY. | \$0 | 000 |  |  |  |  | 000 |  |
| 072 | OMAHA, NE | \$130,908 | $\bigcirc 17$ | 114,366 | $\bigcirc$ | 87 | 224,157 | 1756 |  |
| 073 | ST LOUIS, MO | \$0 | - 00 |  |  |  |  | $\bigcirc 00$ |  |
| 074 | DES MOINES. | \$481,977 | 024 | 128,352 | 0 | 71 | 251,569 | $42 \mathrm{B8}$ |  |
| 081 | DENVER, CO | \$762, 197 | 102 | 729,817 | 0 | 96 | 1,430,441 | 4684 |  |
| 091 | HONOLULU OFF | \$247.231 | $\bigcirc 33$ | 257,800 | 1 | 04 | 505,287 | 4826 |  |
| 092 | LOS ANGELES | \$0 | 000 |  |  |  |  | 000 |  |
| 093 | SAN FRANCISC | \$2,520 | 000 | 2,430 | $\bigcirc$ | 96 | 4,763 | - 12 |  |
| 094 | PHOENIX DFFI | \$0 | 000 |  |  |  |  | 000 | $\square$ |
| 095 | SACRAMENTO O | \$0 | 000 |  |  |  |  | 0.00 | 9 |
| 101 | ANCHORAGE, A | \$0 | 000 |  |  |  |  | 000 | 0 |
| 102 | PORTLAND, OR | \$0 | 000 |  |  |  |  | $\bigcirc 00$ |  |
| 103 | SEATTLE WA | \$1,023,610 | 137 | 432. 155 | 0 | 42 | 847.024 | 6486 | N |
| TOTALS |  | \$74.939,916 | 10000 |  |  |  |  |  | $\checkmark$ |

Exhibit 1 -3: Estimated ADDs Cost, by Category and Field office (continued)


Exhibit I-3: Estimated ADDs Cost, by Category and Field Office (continued)

| FIELD NUMBER | OFFICE NAME | CATEGORY $\operatorname{COST}$ | PERCENT <br> OF TOTAL | STANDARD ERROR OF TOTAL | COEFFICIENT OF VARIATIDN | 95 PERCENT CONFIDENCE INTERVAL | COST PER UNIT | $\stackrel{0}{x}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 011 | BOSTON, MA | \$0 | $\bigcirc 00$ |  |  |  | 000 |  |
| 012 | HARTFORD, CT | \$3.549.893 | 9415 | 2,810,377 | $\bigcirc 79$ | 5,508,338 | 18539 |  |
| 013 | MANCHESTER. | \$0 | 000 |  |  |  | - 00 |  |
| 014 | PROV | \$0 | 000 |  |  |  | $\bigcirc 00$ |  |
| 024 | BUFFALO, NY | \$0 | - 0 |  |  |  | 000 |  |
| 022 | SAN JUAN, PR | \$0 | 000 |  |  |  | - 00 |  |
| 023 | NEW YORK. NY | \$0 | - 00 |  |  |  | 000 |  |
| 024 | NEWARK, NJ | \$0 | 000 |  |  |  | 000 |  |
| 031 | BALTIMORE, M | \$0 | 000 |  |  |  | 000 |  |
| 032 | PHILADELPHIA | \$72,907 | 193 | 65.807 | 090 | 128.981 | 146 |  |
| 033 | PITTSEURGH. | \$0 | 000 |  |  |  | 000 |  |
| 034 | RICHMOND. VA | \$0 | 000 |  |  |  | 000 |  |
| 035 | WASHINGTON. | \$0 | 000 |  |  |  | - 00 |  |
| 036 | CHARLESTON, | \$0 | 000 | * |  |  | - 00 |  |
| 041 | ATLANTA. GA | \$0 | 000 |  |  |  | 000 |  |
| 042 | BIRMINGHAM, | \$0 | 000 |  |  |  | 000 |  |
| 043 | COLUMBIA, SC | \$0 | 000 |  |  |  | 000 |  |
| 044 | GREENSBORO, N | \$0 | 000 |  |  |  | - 00 |  |
| 045 | JACKSON, MS | \$0 | 000 |  |  |  | 000 |  |
| 046 | JACKSONVILLE | \$0 | 000 |  |  |  | 000 |  |
| 047 | KNOXVILLE, T | \$0 | 000 |  |  |  | 000 |  |
| 048 | LOUISVILLE. | \$0 | 000 |  |  |  | 000 |  |
| 049 | NASHVILLE, T | \$0 | $\bigcirc 00$ |  |  |  | 000 |  |
| 051 | CHICAGO | \$0 | 000 |  |  |  | 000 |  |
| 052 | COLUMBUS, OH | \$0 | 000. |  |  |  | - 00 |  |
| 053 | DETROIT,MI | \$0 | $0 \infty$ | $4 *$ |  |  | 000 |  |
| 054 | INDIANAPQLIS | \$0 | 000 |  |  |  | 000 |  |
| 055 | MILWAUKEE, W | \$0 | 000 |  |  |  | 000 |  |
| 056 | MINN/ST PAUL | \$0 | 000 |  |  |  | 000 |  |
| 057 | CINCINNATI. | so | 000 |  |  |  | 000 |  |
| 058 | CLEVELAND, 0 | \$0 | 000 |  | - |  | 000 |  |
| 059 | GRAND RAPIDS | \$0 | 000 |  |  |  | 000 |  |
| 061 | DALLAS, TX | \$0 | 000 |  |  |  | 000 |  |
| 062 | LITTLE ROCK, | \$0 | 00 |  |  |  | 000 |  |
| 063 | NEW ORLEANS. | \$115,630 | 307 | 91.442 | 079 | 179.226 | 373 |  |
| 064 | OKLAHOMA CIT | \$0 | 000 |  |  |  | 000 |  |
| 065 | SAN ANTONIO. | \$0 | 000 |  |  |  | 000 |  |
| 066 | HOUSTON, TX | \$0 | 000 |  |  |  | 000 |  |
| 071 | KANSAS CITY. | \$0 | 000 |  |  |  | 000 |  |
| 072 | OMAHA, NE | \$0 | $\bigcirc 00$ |  |  |  | 000 |  |
| 073 | ST LOUIS, MO | \$0 | 000 |  | - ${ }^{\text {c }}$ |  | 000 |  |
| 074 | DES MOINES. | \$31,920 | 085 | 17,970 | 056 | 35.221 | 752 |  |
| 081 | DENVER, CO | \$0 | 000 |  |  |  | - 00 |  |
| 091 | HONOLULU OFF | \$0 | 000 |  |  |  | 000 |  |
| 092 | LOS ANGELES | \$0 | 000 |  |  |  | $\bigcirc 00$ |  |
| 093 | SAN FRANCISC | \$0 | 000 |  |  |  | - 00 |  |
| 094 | PHOENIX OFFI | \$0 | 000 |  |  |  | 000 |  |
| 095 | SACRAMENTO 0 | \$0 | 000 |  |  |  | 000 | 0 |
| 101 | ANCHORAGE, A | \$0 | 000 |  |  |  | $\bigcirc 00$ | 08 |
| 102 | PORTLAND, OR | \$0 | $\bigcirc 00$ |  |  |  | $\bigcirc 00$ |  |
| 103 | SEATTLE WA | \$0 | 000 |  |  |  | $\bigcirc 00$ | $\bigcirc$ |
| TOTALS |  | \$3,770,35 $\dagger$ | 1000 |  |  |  |  | $\bigcirc$ |


| FIELD <br> NUMEER | OFFICE NAME | CATEGORY COST | PERCENT <br> OF TOTAL | STANDARD ERROR of total | COEFFICIENT OF VARIATION | 95 PERCENT CONFIDENCE INTERVAL | COST PERR UNIT |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 011 | BOSTON, MA | \$40.619,971 | 695 | 13,445,323 | $\bigcirc 33$ | 26,352,842 | 115490 |  |
| 012 | HARTFORD, CT | \$12,299,520 | 211 | 7.620.032 | 062 | 14,935,262 | 64234 |  |
| 013 | MANCHESTER. | \$4,258,470 | $\bigcirc 73$ | 877,136 | 021 | 1,719,186 | 43282 |  |
| 014 | PROV | \$750,779 | 013 | 590.135 | $\bigcirc 79$ | 1.156.665 | 7618 |  |
| 021 | BUFFALO, NY | - ${ }^{\$ 0}$ | 000 |  |  |  | 000 |  |
| 022 | SAN UUAN, PR | \$33,608,185 | 575 | 16.261.695 | $\bigcirc 48$ | 31.872,923 | 53542 |  |
| 024 | NEWARK, NJ | $\$ 13,769,869$ $\$ 2,385,881$ | 236 041 | 5,938,488 | $\bigcirc 43$ | 11,635,516 | 8645 |  |
| 031 | BALTIMORE, M | \$4,585,002 | 078 | 6.163,033 | 0 4 4 | $2,917,320$ $12.079,544$ | 5015 49424 |  |
| 032 | PHILADELPHIA | \$5,872,971 | 101 | 876,276 | - 15 | 1.717,501 | $\$ 1772$ |  |
| 033 | PITTSBURGH, | \$3,159,239 | 054 | 1,241.252 | - 39 | 2,432,855 | 10097 |  |
| 034 | RICHMOND, VA | \$9.063,835 | 155 | 3.007.786 | O 33 | 5.895.261 | 44645 |  |
| 036 | CHARLESTON, | \$ $\begin{array}{r}\text { 11, 456,797 } \\ \$ 45,746\end{array}$ | 195 0 0 | $10,666,944$ 64,092 | 093 | 20,907, 210 | 74351 |  |
| 041 | ATLANTA, GA | \$7,401,023 | 127 | 2,771,453 | - 37 | 125.620 $5,432.048$ | 670 13179 |  |
| 042 | EIRMINGHAM, | \$29,116,865 | 498 | 15,518.730 | - 53 | 30,416,711 | 69311 |  |
| 043 | COLUMBIA, SC | \$0 | 000 |  |  | 30.416.711 | 000 |  |
| 044 | GREENSBORO, N | \$69,691,921 | 1193 | 36,862,499 | 053 | 72,250,497 | 184952 |  |
| 045 | JACKSON, MS | \$0 | 000 |  |  |  | 000 |  |
| 046 | UACKSONVILLE | \$3,298, 115 | $\bigcirc 56$ | 2,813,397 | - 85 | 5,514,257 | 7903 |  |
| 047 | KNOXVILLE, T | \$1.549,936 | - 27 | $\ddagger, 649,525$ | 106 | 3.233 .068 | 9890 |  |
| 048 | LOUISVILLE, | \$0 | 000 |  |  |  | 000 |  |
| 049 | NASHVILLE. T | \$0 | 000 |  |  |  | 000 |  |
| 051 | CHICAGO | \$1,116,543 | $\bigcirc 19$ | 786,860 | 070 | 1,542,245 | 1452 |  |
| 052 | COLUMBUS, OH | , \$0 | 000 |  |  | 1,542.245 | $\bigcirc 00$ |  |
| 053 | DETROIT, MI | \$26,658,722 | 456 | 5,260,997 | $\bigcirc 20$ | 10,310.378 | 136585 |  |
| 054 | INDIANAPOLIS | \$3,937,435 | 067 | 3,209,671 | 082 | 6,290.956 | 22915 |  |
| 055 | MILWAUKEE, W | -\$0 | 000 |  |  | 6,290.056 | 000 |  |
| 056 | MINN/ST PALL | \$210.593 | 004 | 74,607 | $\bigcirc 35$ | 146. 229 | 994 |  |
| 057 | CINCINNATI. | \$95,872 | 002 | 99,379 | 104 | 194,782 | 728 |  |
| 058 | CLEVELAND, 0 | \$28,535,079 | 489 | 17.441,357 | $\bigcirc 61$ | 34, 485,059 | 96393 |  |
| 059 | GRAND RAPIDS | \$4,340,107 | $\bigcirc 74$ | 3,145,176 | $\bigcirc 72$ | 6,164,544 | 49398 |  |
| 061 | DALLAS, TX | , \$0 | $\bigcirc 00$ | -145,176 | - 72 | 6,164,544 | 493 0 |  |
| 062 | LITTLE ROCK, | \$27,752,726 | 475 | 18,310,007 | 066 | 35,887,615 | 186473 |  |
| 063 | NEW ORLEANS, | \$136,491,631 | 2337 | 105,075,887 | $\bigcirc 77$ | 205,948,739 | 440509 |  |
| 064 | OKLAHOMA CIT | \$2,729,266 | 047 | 2,179,444 | $\bigcirc 80$ | 4.271.711 | 21352 |  |
| 065 | SAN ANTONIO, | \$434,408 | 007 | 272,612 | $\bigcirc 63$ | 534,320 | 1878 |  |
| 066 | HOUSTON, TX | \$956,777 | $\bigcirc 16$ | 623,859 | 065 | 1.222,763 | 10845 |  |
| 071 | KANSAS CITY, | \$4,845,878 | 083 | 4,663,633 | 096 | 9,140,720 | 31430 |  |
| O72 | OMAHA, NE | \$4,814,954 | 082 | 1,166,954 | 024 | 2,287.229 | 64604 |  |
| 073 | ST LOUIS, MO | \$115,458 | $\bigcirc 02$ | +02,497 | 089 | 200,894 | 792 |  |
| 074 | DES MOINES. | \$182,245 | 003 | 102,597 | 056 | 201.089 | 4294 |  |
| 081 | DENVER, CO | \$15,289,684 | 262 | 11. 386.992 | 074 | 22,318.504 | 93969 |  |
| 091 | HONOLULU OFF | \$148,255 | 003 | 123.453 | 083 | 241.967 | 2894 |  |
| 092 | LOS ANGELES | \$1,400, 141 | $\bigcirc 24$ | 1.527.859 | 109 | 2.994,603 | 7586 |  |
| 093 | SAN FRANCISC | \$9.053.163 | 155 | 5,083,368 | 056 | 9,963,402 | 41367 |  |
| 094 | PHDENIX OFFI | \$2,080,864 | - 36 | 871,093 | 042 | 1,707.342 | 40032 | 0 |
| 095 | SACRAMENTO 0 | \$169.736 | 003 | 129, 172 | 076 | 253.178 | 3862 | 0 |
| 101 102 | ANCHORAGE, A PDRTLAND, | \$26,772,098 | 458 0 | 431,297 | 000 | 257.343 | 2381859 | 10 |
| 102 103 | PDRTLAND, OR SEATTLE WA | \$1,749,566 | $\bigcirc 30$ | -943,792 | 054 | 1,849,833 | 267 69 | N |
| 103 | SEATTLE WA | \$31.298,402 | 536 | 12,558,783 | 040 | 24,615,215 | 198330 | $\stackrel{N}{6}$ |
| totals |  | \$584, 113,727 | 10000 |  |  |  |  |  |




Exhibit I-3: Estimated ADDs Cost, by Category and Field office (continued)

| FIELD NUMBER | OFFICE NAME | CATEGORY cost | PERCENT OF TOTAL. | STANDARD ERROR OF TOTAL | COEFFICIENT OF VARIATION | 95 PERCENT CONFIDENCE INTERVAL | COST PER <br> UNIT | $\vdash$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BOSTON MA | $\$ 0$ | $0 \infty$ |  |  |  | 0.00 |  |
| 012 | HARTFORD, CT | \$0 | 000 |  |  |  | 000 |  |
| 013 | MANCHESTER, | \$0 | $\bigcirc 00$ |  |  |  | 000 |  |
| 014 | PROV | \$0 | $\bigcirc 00$ |  |  |  | 00 |  |
| 021 | BUFFALO. NY | \$0 | 000 |  |  |  | 00 |  |
| 022 | SAN JUAN, PR | \$0 | 000 |  |  |  | 00 |  |
| 023 | NEW YORK. NY | \$0 | 000 |  |  |  | 000 |  |
| 024 | NEWARK, NJ | \$0 | 000 |  |  |  | 000 |  |
| 031 | BALTIMORE, M | \$0 | -00 |  |  |  | 000 |  |
| 032 | PHILADELPHIA | \$0 | 000 000 |  |  |  | 000 |  |
| 033 | PITTSBURGH, | \$0 | 000 000 |  |  |  | 000 |  |
| 034 | RICHMOND, VA WASHINGTON, | \$0 | $\bigcirc$ |  |  |  | 000 |  |
| 036 | CHARLESTON, | \$0 | 000 |  |  |  | 000 000 |  |
| 041 | ATLANTA. GA | \$0 | $\bigcirc 00$ |  |  |  | - 00 |  |
| 042 | BIRMINGHAM, | \$0 | $\bigcirc 00$ |  |  |  | 000 |  |
| 043 | COLUMBIA, SC | \$0 | 000 |  |  |  | 000 |  |
| 044 | GREENSEORO, N | \$0 | 000 |  |  |  | 000 |  |
| 045 | JACKSON. MS | \$0 | $\bigcirc 00$ |  |  |  | 000 |  |
| 046 | JACKSONVILLE | \$0 | 000 |  |  |  | 000 |  |
| 047 | KNOXVILLE, T | \$0 | 000 |  |  |  | $\bigcirc 00$ |  |
| 048 | LOUISVILLE. | \$0 | 000 |  |  |  | 000 |  |
| 049 | NASHVILLE, 7 | $\$ 0$ | 000 |  |  |  | 000 |  |
| 051 | CHICAGO | $\$ 0$ | 000 |  |  |  | 000 |  |
| 052 | COLUMBUS OH | \$10 \$0 | 000 0 |  | 073 | 15.603 | O 56 |  |
| 053 | DETROIT, MI | \$10,970 |  | 7.961 | 073 |  | 000 |  |
| 054 | INDIANAPOLIS | $\$ 0$ $\$ 0$ | 000 000 |  |  |  | 000 |  |
| 055 | MILWAUKEE, W | \$0 | 000 000 |  |  |  | 000 |  |
| 056 | MINN/ST PAUL CINCINNATI, | \$0 | - 00 |  |  |  | 000 |  |
| 058 | CLEVELAND, 0 | \$0 | 000 |  |  |  | 000 |  |
| 059 | GRAND RAPIOS | \$0 | - 00 |  |  |  | 000 |  |
| 061 | DALLAS, TX | , $4 . \begin{array}{r}\text { \$0 } \\ \hline 159\end{array}$ | 000 8238 |  | 052 | 1.250.157 | 8236 |  |
| 062 | LITTEE ROCK, | \$1,225,759 | 8238 0 | 637.835 | 052 | 1.250.157 | 000 |  |
| 063 | NEW ORLEANS, | \$0 | - 00 |  |  |  | 000 |  |
| 064 | OKLAHOMA CIT | \$0 | - 00 |  |  |  | 000 |  |
| 065 | SAN ANTONIO, | \$0 | 000 |  |  |  | 000 |  |
| 066 | MOUSTON, TX | \$0 | $\bigcirc 00$ |  |  |  |  |  |
| 071 | KANSAS CITY. | \$0 | $\bigcirc 00$ |  | 061 | 13,326 | 149 |  |
| 072 | OMAHA, NE | \$11.093 | $\bigcirc 75$ | 6,799 | 061 | 13.326 | 000 |  |
| 073 | ST LOUIS, MO | \$0 | $\bigcirc 00$ |  | 048 | 8,729 | 217 |  |
| 074 | DES MOINES. | \$9,193 | $\bigcirc 62$ | 4,453 | O 48 | 8.729 | 000 |  |
| 081 | DENVER, CO | \$0 | -00 |  |  |  | 000 |  |
| 091 | HONOLULU OFF | \$0 | -00 |  |  |  | 000 |  |
| 092 | LOS ANGELES | \$0 | $\bigcirc 00$ |  |  |  |  |  |
| 093 | SAN FRANCISC | \$0 | 000 |  |  |  |  | 0 |
| 094 | PHOENIX OFFI | \$0 | $\bigcirc 00$ |  |  |  |  | 00 |
| 095 | SACRAMENTO D | \$0 | 000 |  |  |  | 000 | 0 |
| 101 | ANCHORAGE, A | \$0 | 000 |  |  |  |  |  |
| 102 | PORTLAND, OR | \$0 |  |  | 044 | 198.982 | 1463 |  |
| 103 | SEATTLE WA | \$230,842 | 1552 | 101,522 | $\bigcirc 44$ | 198.982 |  | $\stackrel{N}{N}$ |
| TOTALS |  | \$1,487,857 | 10000 |  |  |  |  |  |



Exhibit I-3: Estimated ADDs Cost, by Category and Field Office (continued)

| FIELD NUMBER | DFFICE NAME | $\begin{aligned} & \text { CATEGORY } \\ & \text { COST } \end{aligned}$ | PERCENT OF TOTAL | STANDARD ERRDR OF TOTAL | GOEFFICIENT OF VARIATION | 95 PERCENT CONFIDENCE INTERVAL | COST PER UNIT | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 011 | BOSTON, MA | \$2.473,359 | $\bigcirc 48$ | 1.104.047 | $\bigcirc 45$ | 2,163,933 | 7032 |  |
| 012 | HARTFORD, CT | \$606.981 | $\bigcirc 12$ | 343,067 | $\bigcirc 57$ | 672.411 | 3470 |  |
| 013 | MANCHESTER, | \$1.411.033 | $\bigcirc 27$ | 1.291.830 | 092 | 2,531.987 | 14341 |  |
| 014 | PROV | \$1,689,936 | - 33 | 1.503 .782 | - 89 | 2,947.412 | 17148 |  |
| 021 | BUFFALO, NY | \$24,600,484 | 477 | 17.235.545 | - 70 | 33,781,668 | 97009 |  |
| 022 | SAN JUAN, PR | \$9,542,267 | 185 | 3,424,009 | - 36 | 6.711 .058 | 15154 |  |
| 023 | NEW YORK, NY | \$41.158,914 | 799 | 14.266.544 | - 35 | 27,962,427 | 25839 |  |
| 024 | NEWARK, NJ | \$15.976.641 | 310 | 3,586.031 | $\bigcirc 22$ | 7,028.620 | 33582 |  |
| 031 | BALTIMORE, M | \$729, 263 | $\bigcirc 14$ | 406,366 | $\bigcirc 56$ | 796.477 | 3089 |  |
| 032 | PHILADELPHIA | \$65,511,669 | 1271 | 16,765,397 | - 26 | 32,860,178 | 131312 |  |
| 033 | PITTSEURGH, | \$13.909. 262 | 270 | 11,687,046 | - 84 | 22,906.610 | 44456 |  |
| 034 | RICHMOND, VA | \$5,575,729 | 1 OB | 1,535,970 | - 28 | 3.010 .501 | 27464 |  |
| 035 | WASHINGTON. | \$8,358, 184 | 162 | 4,932,119 | - 59 | 9.666,954 | 54242 |  |
| 036 | Charleston, | \$11,199, 272 | 217 | 4,105.951 | $\bigcirc 37$ | B 047,664 | 164092 |  |
| 041 | ATLANTA, GA | \$46.898,709 | 910 | 38,731,049 | 083 | 75.912 .857 | 83512 |  |
| 042 | BIRMINGHAM, | \$2,469,155 | 048 | 1,417,067 | 057 | 2.777.451 | 5878 |  |
| 043 | COLUMEIA, SC | \$1,847.663 | O 36 | 1,494,039 | 081 | 2,928 316 | 11819 |  |
| 044 | GREENSBDRO, N | \$47,011,996 | 912 | 31,514,232 | 067 | 61,767.895 | 1247.63 |  |
| 045 | JACKSON, MS | \$2,059,824 | $\bigcirc 40$ | 613.229 | - 30 | 1,201.930 | 16659 |  |
| 046 | JACKSONVILLE | \$16,094,082 | 312 | 6,027,673 | 037 | 11,814.239 | 38565 |  |
| 047 | KNOXVILLE, $T$ | \$559.231 | 011 | 377,610 | 068 | 740, 116 | 3569 |  |
| 048 | LOUISVILLE, | \$40.386.696 | 784 | 18,234.920 | 045 | 35,740.443 | 161644 |  |
| 049 | NASHVILLE, $T$ | \$2.892,260 | - 56 | 1,470,926 | 051 | 2.883 .015 | 11572 |  |
| 051 | CHIGAGO | \$35.456.448 | 688 | 32,175,818 | $\bigcirc 91$ | 63,064,603 | 46122 |  |
| 052 | COLUMBUS, OH | \$ $\$ 65.253$ | 001 | 31,877 | 049 | 62,478 | 6.40 |  |
| 053 | DETRQIT, MI | \$802.168 | 016 | 556,207 | O 69 | 1,090,166 |  |  |
| 054 | INDIANAPOLIS | \$7,152.359 | 139 | 5,417,783 | - 76 | 10,618.854 | 41625 |  |
| 055 | MILWAUKEE, W | \$903.395 | $\bigcirc 18$ | 622,537 | 069 | 1,220,173 | $70 \quad 12$ |  |
| 056 | MINN/ST PAUL | \$3,177.898 | 062 | 2,022,015 | - 64 | 3,963, 149 | 14994 |  |
| 057 | CINCINNATI. | \$278.354 | 005 | 257,621 | 0.93 | 504.938 | 2114 |  |
| 058 | CLEVELAND, 0 | \$19,412, 316 | 377 | 16,059,876 | 083 | 31.477.357 | 65576 |  |
| 059 | GRAND RAPIDS | \$2,278,952 | 044 | 1,399,948 | 061 | 2,743.898 | 25938 |  |
| 061 | OALLAS, TX | \$239,304 | - 05 | 173,147 | 072 | 339.368 | 694 |  |
| 062 | LITTLE ROCK, | \$10,582, 696 | 205 | 9,191,171 | 087 | 18,014.694 | 71106 |  |
| 063 | NEW ORLEANS, | \$30,726,851 | 596 | 21,591,983 | $\bigcirc 70$ | 42,320.287 | 99167 |  |
| 064 | OKLAHOMA CIT | \$4,090,974 | - 79 | 1,983,306 | 048 | 3.887,279 | 32006 |  |
| 065 | SAN ANTONIO, | \$2,375,089 | $\bigcirc 46$ | 2,629,501 | 111 | 5.453 822 | 10270 |  |
| 066 | HOUSTON, TX | \$2,017,076 | - 39 | 1,340,343 | 066 | 2,627,073 | 22864 |  |
| 071 | KANSAS CITY, | \$3,550.799 | 069 | 2,011.879 | 057 | 3,943 283 | 23030 |  |
| 072 | OMAHA, NE | \$2,927,990 | $\bigcirc 57$ | 1,344,982 |  | 2,636.165 |  |  |
| 073 | ST LOUIS, MO | \$1,057,751 | 021 | 658,163 | 062 | 1,289,999 | 7257 |  |
| 074 | DES MOINES. | \$201,431 | 004 | 202.498 | 101 | 396,897 | 4746 |  |
| 081 | DENVER, CO | \$3,276.491 | 064 | 2,440,167 | 074 | 4.782 .727 | 20137 |  |
| 091 | HONDLULU OFF | \$1.093.739 | 021 | 861,765 | 079 | 1.689.060 | 21350 |  |
| 092 | LOS ANGELES | \$246.411 | $\bigcirc 05$ | 35,496 | 039 | 187,173 | 1335 |  |
| 093 | SAN FRANCISC | \$11.87t, 710 | 230 | 3,516,576 | 030 | 6,892.498 | 542.46 |  |
| 094 | PHOENEX OFFI | \$4.967,307 | 038 | 1.870,439 | 095 | 3.666,061 | 37847 | $\square$ |
| 095 | SACRAMENTO O | \$5,766,074 | 112 | 4,388,094 | 076 | 8,600,665 | 131196 | 89 |
| 101 | ANCHORAGE, A | \$0 | 000 |  |  |  | $\bigcirc 00$ | 10 |
| 102 | PORTLAND, OR | \$292,429 | 006 | 142.440 | $\bigcirc 49$ | 279.182 | 4478 |  |
| 103 | SEATFLE WA | \$630.038 | 012 | 485.444 | 077 | 951.470 | 3992 | $N$ |
| totals |  | \$515,373.913 | 10000 |  |  |  |  | , |

Exhibit I-3: Estimated ADDs Cost, by Category and Field Office (continued)



Exhibit I-4: Estimated ADDs Cost, by Category and Region


Exhibit I-4: Estimated ADDs Cost, by Category and Region (continued)

| REGION | CATEGORY COST | PERCENT OF TOTAL | STANDARD ERROR OF TOTAL | COEFFICIENT OF VARIATION | 95 PERCENT CONFIDENCE INTERVAL | COST PER UNI T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | \$27,887, 634 | 716 | 10,917, 151 | 039 | 21,397,655 | 37679 |
| 02 | \$50,450,282 | 1296 | 15,335,577 | 030 | 30.057,731 | \$71 02 |
| 03 | \$84,794,492 | 2177 | 22, 141.873 | $\bigcirc 26$ | 43.998,071 | 57558 |
| 04 | \$84.262,994 | 2164 | 19,233,964 | 023 | 37,698,570 | 31067 |
| 05 | \$83.798.654 | 2152 | 21.812,403 | 026 | 42,752,310 | 40018 |
| 06 | \$31.544.156 | - 10 | 22.125,502 | 070 | 43,365,983 | 25224 |
| 07 | \$7,715,290 | 198 | 4,917,475 | O 64 | 9,638,251 | 18506 |
| 08 | \$85,865 | - 02 | 80,126 | 093 | 157,048 | 528 |
| 09 | \$11.721,532 | 301 | 5,275,747 | 045 | 10,340,464 | 21290 |
| 10 | \$7,166,028 | 184 | 4,818,631 | 067 | 9,444,517 | 30577 |
| totals | \$389,426,928 | 10000 |  |  |  |  |

Exhibit I-4: Estimated $\mathrm{ADD}_{s}$ Cost, by Category and Region (continued)

| REGION | category $\cos T$ | PERCENT OF TOTAL | STANDARD ERROR OF TOTAL | COEFFICIENT OF VARIATION | 95 PERCENT CONFIDENCE INTERVAL | COST PER UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | \$269,593,655 | 10.08 | 76,097.321 | 028 | 149,150,750 | 364247 |
| 02 | \$940,326,436 | 3515 | 145,510,481 | 015 | 285,200.543 | 318762 |
| 03 | \$372,692,713 | 1393 | 47.479.471 | 013 | 93.059 .762 | 252983 |
| 04 | \$349,268,480 | 1306 | 65.076,584 | - 19 | 127.550. 104 | 128773 |
| 05 | \$433.482.655 | 1620 | 58.672.062 | - 14 | 114,997.241 | 207011 |
| 06 | \$84,327,996 | 317 | 22.412.853 | 026 | 43, 341, 193 | 67911 |
| 07 | \$42,190.481 | 158 | ¢0,014.049 | 024 | 19.627,537 | 101200 |
| 08 | \$4,245,029 | - 16 | 2.428.392 | 057 | 4.759,647 | 26090 |
| 09 | \$139,256.930 | 521 | 26.915,735 | 019 | 52,754.84t | 252932 |
| 10 | \$39,245.306 | 147 | 6,185,867 |  | 12,124.289 | 167457 |
| totals | 2,675.229.680 | 10000 |  |  |  |  |

Exhibit I-4: Estimated ADDs Cost, by Category and Region (continued)

| REGIUN | $\begin{aligned} & \text { CATEGORY } \\ & \text { COST } \end{aligned}$ | PERCENT <br> OF TOTAL | STANDARD ERROR DF TOTAL | COEFFICIENT OF VARIATION | 95 PERCENT CONFIdence interval | COST PER UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | \$50.072 | - 30 | 52,679 | 105 | 103, 251 | 068 |
| 02 | \$8,845.653 | 5217 | 5,417,715 | 061 | 10.618.721 | 2993 |
| 03 | \$355.239 | 210 | 182,074 | 051 | 356,866 | 241 |
| 04 | \$214.222 | 126 | 135,194 | 063 | 264.980 | 079 |
| 05 | \$6,798,879 | 4010 | 2,863,755 | 042 | 5,612.960 | 3247 |
| 06 | \$80.169 | 047 | 53,850 | - 67 | 105,546 | 064 |
| 07 | \$12864 | 008 | 7,885 | 061 | 15,454 | 031 |
| 08 | \$0 | 000 |  |  |  | 000 |
| 09 | \$666 | 000 | 697 | 105 | 1.365 | $\bigcirc 01$ |
| 10 | \$597.544 | 352 | 794,537 | 133 | 1.557,292 | 2550 |
| TOTALS | \$16.955,309 | 10000 |  |  |  |  |

Exhibit I-4: Estimated ADDs Cost, by Category and Region (continued)

| REGION | CATEGORY $\operatorname{cost}$ | PERCENT <br> OF TOTAL | STANDARD ERROR OF TOTAL | COEFFICIENT OF Variation | 95 PERCENT CONF:DENCE INTERVAL | $\begin{aligned} & \text { COST PER } \\ & \text { UNIT } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | \$7,538,834 | 247 | 2,153,077 | - 29 | 4.220 .031 | 10186 |
| 02 | \$71.657,688 | 2346 | 27.949,878 | 039 | 54.781 .760 | 24291 |
| 03 | \$32,785,518 | 1073 | 11,163,468 | O 34 | 21,880, 398 | 22255 |
| 04 | \$73,615.081 | 24 to | 13,431,923 | $\bigcirc 18$ | 26,326,581 | 27141 |
| 05 | \$59,335,749 | 1943 | 15.704,235 | - 26 | 30.780 .301 | 28336 |
| 06 | \$35,951,220 | 1177 | 12.727. 193 | $\bigcirc 35$ | 24,945,298 | 28748 |
| 07 | \$2,518,252 | - 82 | 830,385 | 033 | 1,627.554 | 6040 |
| 08 | \$7.571.780 | 248 | 3,561,893 | 047 | 6,981,309 | 46535 |
| 09 | \$9.962.469 | 326 | 3,114,892 | $\bigcirc 31$ | 6.105.188 |  |
| 10 | \$4.496.894 | 147 | 1,359,547 | 030 | 2,864,711 | 19.88 |
| rotals | \$305.433.484 | 10000 |  |  |  |  |

Exhibit I-4: Estimated ADDs Cost, by Category and Region (continued)

| REGION | CATEGORY cost | PERCENT <br> OF TOTAL | STANDARD ERROR OF TOTAL | COEFFICIENT VARIATION | OF | 95 PERCENT CONFIDENCE INTERVAL | COST PER UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | \$48,800.495 | 993 | 28,283,598 | O | 58 | 55.435 .851 | 65934 |
| 02 | \$207,300,304 | $42 \quad 17$ | 83,981,679 | - | 41 | 164.604,092 | 70273 |
| 03 | \$25.691.220 | 523 | 10, 197,784 |  | 40 | 19,987,657 | 17439 |
| 04 | \$44.027.364 | 896 | 8,4a0,502 |  | 19 | 16.621,784 | 16233 |
| 05 | \$117.849,500 | 2397 | 35,569,561 | - | 30 | 69,716,339 | 56279 |
| 06 | \$30,992, 151 | 630 | 15,798,285 | - | 51 | 30,964,638 | 24782 |
| 07 | \$12,537,062 | 255 | 8,990,412 |  | 72 | 17.621.207 | 30072 |
| OB | \$661,066 | - 13 | -395,776 | 0 | 60 | 775.722 |  |
| 09 | \$3,200.829 | 065 | 1,288,239 | 0 | 40 | 2,524.948 | 5814 |
| 10 | \$492,815 | - 10 | 384,095 | 0 | 78 | 752.826 | 2103 |
| TOTALS | \$491,552,805 | 10000 |  |  |  |  |  |

Exhibit 1-4: Estimated ADDs Cost, by Category and Region (continued)

| REGION | category cost | PERCENT OF TOTAL | STANDARD ERROR of TOTAL | COEFFICIENT OF variatiden | 95 PERCENT CONFIDENCE INTERVAL | COST PER UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | \$197,863,470 | 708 | 44,214,318 | - 22 | 86.660.063 | 267332 |
| 02 | \$794.386.482 | 2842 | 100,570,847 | 0.13 | 197,118,860 | 269290 |
| 03 | \$195.261,461 | 698 | 39, 121, 40 | - 20 | 76.677 .434 | 132543 |
| 04 | \$489, 148,458 | 1750 | 88,113,239 | $\bigcirc 18$ | 172.701.949 | 180346 |
| 05 | \$561.489, 789 | 2008 | 74, 198, 014 | - 13 | 145, 428, 108 | 268141 |
| 06 | \$252,789,273 | 904 | 45,987,638 | - 18 | 90,135,770 | 202139 |
| 07 | \$76.225.950 | 273 | 15,577,873 | - 20 | 30,532,632 | 182840 |
| 08 | \$79,438,254 | 284 | 21,175.342 | 0.27 | 41.503 .669 | 488220 |
| 09 | \$113,256,900 | 405 | 23, 197,851 | - 20 | 45,467,787 | 205708 |
| 10 | \$35.773.832 | 128 | 6,455.273 | $\bigcirc 18$ | 12,652,334 | 452645 |
| totals | \$2,795,633,869 | 10000 |  |  |  |  |

Exhibit I-4: Estimated ADDs Cost, by Category and Region (continued)

| REgion | CATEGORY cost | PERCENT OF TOTAL | STANDARD ERROR OF TDTAL | COEFFICIENT OF VARIATION | 95 PERCENT CONFIOENCE INTERVAL | $\underset{\text { UNIT }}{\text { COST PER }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | \$1,562,232 | 414 | 1.377.092 | 088 | 2,699.101 | 2111 |
| 02 | \$1.529.596 | 405 | 786,813 | 051 | 1,542,153 | 519 |
| 03 | \$4.471.109 | 1185 | 4,522,469 | 101 | 8.864.040 | 3035 |
| 04 | \$9,803,999 | 2599 | 10,320,527 | 105 | 20.228.232 | 3615 |
| 05 | \$20.089.703 | 5325 | 8,926,740 | $\bigcirc 44$ | 17,496,410 | 9594 |
| 06 | \$0 | 000 |  |  |  | 000 |
| 07 | \$0 | 000 |  |  |  | 000 |
| 08 | \$0 | 000 |  |  |  | - 00 |
| 09 | \$0 | 000 |  |  |  | 000 |
| 10 | \$272,015 | 072 | 119.629 | - 44 | 234,472 | 1161 |
| total.s | \$37,728,653 | 10000 |  |  |  |  |

Exbibit I-4: Estimated ADDs Cost, by Category and Region (continued)

| REGION | CATEGORY cost | PERCENT OF TOTAL | STANDARD ERROR of total | COEFFICIENT OF variation | 95 PERCENT CONFIDENCE INTERVAL | $\begin{gathered} \operatorname{COST} P E R \\ \text { UNIT } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | \$150,646,923 | 743 | 34,401,842 | - 23 | 67.427.610 | 203538 |
| 02 | \$278, 186.772 | 1372 | 48.069.948 | O 17 | 94,217.039 | 94303 |
| 03 | \$235,982,440 | 1164 | 49.928,037 | 021 | 97.858.952 | 160185 |
| 04 | \$303,598,892 | 1497 | 47,181,534 | - 16 | 92.475,807 | 111935 |
| 05 | \$674,372,792 | 3325 | 183,152,199 | - 27 | 358.978,311 | 322049 |
| 06 | \$239.681.754 | 1182 | 69,556,926 | - 29 | 136,331,575 | 191658 |
| 07 | \$58,602,730 | 289 | 15,710,770 | - 27 | 30.793, 109 | 140568 |
| 08 | \$3,576,242 | $\bigcirc 18$ | 1,261.004 | 035 | 2,471.567 | 21979 |
| 09 | \$52,560,974 | 259 | 11,913,601 | 023 | 23,350,658 | 95466 134641 |
| 10 | \$30,851,284 | 152 | 25,236,452 | - 82 | 49,463,446 | 134641 |
| totals | \$2,028,060,802 | 10000 |  |  |  |  |

> . icn : .

ヶ. ,

Exhibit I-4: Estimated ADDs Cost, by Category and Region (continued)

| REGION | category COST | PERCENT OF TOTAL | STANDARD ERROR OF TDTAL | COEFFICIENT OF VARIATION | 95 PERCENT CONFIDENCE INTERVAL | COST PER UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Of | \$8,815.597 | 590 | 2,241.106 | - 25 | 4. 392.569 | 11911 |
| 02 | \$31.523.371 | 2109 | 13,023,435 | $\bigcirc 41$ | 25,525,932 | 10686 |
| $\bigcirc 3$ | \$29,739,995 | 1989 | 7,626,374 | - 26 | 14,947,693 | 20187 |
| 04 | \$34,594,768 | 2314 | B,896,163 | O 26 | 17,436,480 | 12755 |
| 05 | \$24,298,569 | 1625 | 6,64t,544 | - 27 | 13,017,426 | 11604 |
| 06 | \$11,444,356 | 766 | 9,990,433 | - 87 | 19,581.249 |  |
| 07 | \$3,394,291 | 227 | 1.204,495 | $\bigcirc 35$ | 2,360,811 | 81 0 0 |
| 08 | \$5, 889 | $\bigcirc 00$ |  |  |  | 1020 10334 |
| 09 10 | $\$ 5,689,534$ $\$ 0$ | 381 0 0 | 3,569,846 | -63 | 6,996.897 | 10334 000 |
| TOTALS | \$149.500.483 | 40000 |  |  |  |  |

## Exhibit 1-4: Estimated ADDs Cost, by Category and Region (continued)

COST CATEGORY=MANDATORY ISO=3

| REGIDN | CATEGORY cosT | PERCENT OF TOTAL |
| :---: | :---: | :---: |
| 01 | \$16,667,010 | 408 |
| 02 | \$13,826,544 | 339 |
| 03 | \$316,738, \%04 | 7757 |
| 04 | \$25,282,034 | 619 |
| 05 | \$20,149,708 | 493 |
| 06 | \$7,794,145 | 191 |
| 07 | \$2,542, 23 ¢ | 062 |
| 08 | \$0 | 000 |
| 09 | \$4,459,039 | 109 |
| 10 | \$861,104 | -21 |
| totals | \$408, 379,918 | 10000 |


| STANDARD ERROR OF TOTAL | COEFFICIENT <br> VARIATION | OF | 95 PERCENT CONFIDENCE INTERVAL | COST PER UNIT |
| :---: | :---: | :---: | :---: | :---: |
| 8,642.982 | $\bigcirc$ | 52 | 16,940, 244 | 22519 |
| 11.166,191 | $\bigcirc$ | 81 | 21,885.734 | 4687 |
| 223, 315,199 | 0 | 71 | 437,697,790 | 2150 02 |
| 14,265,417 | 0 | 56 | 27,960,218 | 9321 |
| 9,026.903 | 0 | 45 | 17,692,730 | 9623 |
| 4,002.647 | 0 | 54 | 7,845.188 | 6232 |
| 519.744 | 0 | 20 | 1,018,699 | $\begin{array}{r} 6098 \\ 000 \end{array}$ |
| 1.268,319 | 0 | 28 | 2,485,904 | 8099 |
| 1,144,984 | 1 | 33 | 2,244,169 | 3674 |

Exhibit I-4: Estimated ADDs Cost, by Category and Region (continued)

| REGION | category cost | PERCENT <br> OF TOTAL | STANDARD ERROR OF TOTAL | CDEFFICIENT OF VARIATION | 95 PERCENT CONFIDENCE INTERVAL | COST PER UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | \$0 | 000 |  |  |  | $0 \infty$ |
| 02 | \$2,563.607 | 4905 | 1.162,872 | - 45 | 2.279,229 | 869 |
| 03 |  | 000 |  |  |  |  |
| 04 | \$51.916 | 099 | 56.301 | 108 | 110.350 | 019 49 |
| 05 | \$1,044,752 | 1999 | 412,715 | $\bigcirc 40$ | 808.920 | 499 +180 |
| 06 | \$1,475, 173 |  | 990,883 | -67 | 1.942.130 | 1180 218 |
| 07 | \$90,748 | 174 0 | 57,428 | $\bigcirc 63$ | 112,560 | $\begin{array}{ll}218 \\ 0 & 00\end{array}$ |
| 08 | $\$ 0$ | 000 000 |  |  |  | $\bigcirc$ |
| 09 10 | \$0 | 0 0 0 |  |  |  | $\bigcirc$ |
| Totals | \$5.226.197 | 10000 |  |  |  |  |

Exhibit I-4: Estimated ADDs Cost, by Category and Region (continued)

| REGION | CATEGORY $\cos T$ | PERCENT of total | STANDARD ERROR DF TOTAL | COEFFICIENT OF VARIATION | 95 PERCENT CONFIDENCE INTERVAL | COST PER UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \$52,967,789 | 437 | 9,641,520 | O 18 | 18.897.380 | 71565 |
| 02 | \$94,410.755 | 779 | 24,557,939 | $\bigcirc 26$ | 48.133,560 | 32004 |
| 03 | \$123,504,005 | 10 19 | 57,356,096 | - 46 | 112,417,948 | 83834 |
| 04 | \$145.168,567 | 1198 | 33,425,467 | 023 | 65.513.915 | 53523 |
| 05 | \$623,711,037 | 5146 | 268,613,245 | 043 | 526.481 .950 | $\begin{array}{r}297855 \\ 844 \\ \hline\end{array}$ |
| 06 | \$105,598,406 | 871 | 49,308,600 | $\bigcirc 47$ |  | 84440 |
| 07 | \$12,182,260 | 101 | 6,244.349 | $\bigcirc 51$ | 12.238,924 | 29221 |
| 08 | \$14,916,092 | 123 | 9,718,511 |  |  | 91673 54853 |
| 09 | \$30,200,617 | 249 | 5.451,983 | - 18 | $10.685,886$ 5.019 .639 | 548 <br> 395 <br> 63 |
| 10 | \$9,271,910 | 077 | 2,561.04 | $\bigcirc 28$ | 5,019,639 | 39563 |
| totals | 1,211,931,439 | 10000 |  |  |  |  |

Exhibit I-4: Estimated ADDs Cost, by Category and Region (continued)

| REGION | CATEGORY <br> COST | PERCENT <br> OF |
| ---: | ---: | ---: |
|  | TOTAL |  |


| STANDARO ERROR <br> OF TOTAL | COEFFICIENT OF <br> VARIATION |
| :---: | :---: |
|  |  |
| $5,916,253$ | 057 |
| $4,916,015$ | 081 |
| 217,563 | 093 |
| $15,920,362$ | 059 |
| $6,635,975$ | 056 |
| $9.758,292$ | 055 |
| 171,912 | 096 |
| 729,817 | 193 |
| 257,811 | 042 | DENCE INTERVAL

COST FER UNIT
11.595,855
9.635.390 426,424
31,203,909
13,006.511

19.126. 253 | 136.257 |
| :--- |
| 136.947 |

1,430,44 505. 310 847.024

13922
2062
454
454
99
5701
13389
13389
751
4684
454
4368

COST CATEGORY=MANDATORY ISO=4

| REGION | $\begin{aligned} & \text { CATEGORY } \\ & \text { COST } \end{aligned}$ | PERCENT OF TOTAL |
| :---: | :---: | :---: |
| 01 | \$3.504.243 | 206 |
| 02 | \$1,379,459 | 084 |
| 03 | \$2,514,660 | 148 |
| 04 | \$132.302.241 | 7769 |
| 05 | \$17,503,615 | 1028 |
| 06 | \$5,690,023 | 334 |
| 07 | \$44,486 | 003 |
| O8 | \$ ${ }^{\text {+ }}$ +104, 572 | 065 |
| 09 | \$2,960, 292 | 174 |
| 10 | \$3,291.561 | 193 |
| totals | \$170,295,150 | 100.00 |


| STANDARD ERROR QF TOTAL | COEFEICIENT <br> VARIATIDN | Of |
| :---: | :---: | :---: |
| 2,062,082 | 0 | 59 |
| 684,895 | 0 | 50 |
| 569,721 | $\bigcirc$ | 23 |
| ¢OB,510,669 | $\bigcirc$ | 82 |
| 41,544,918 | $\bigcirc$ | 66 |
| 2,982,750 | $\bigcirc$ | 52 |
| 18.856 | $\bigcirc$ | 42 |
| 1,030.749 | $\bigcirc$ | 93 |
| 2,751.621 | 0 | 93 |
| 1,323.006 | $\bigcirc$ | 40 |

95 PERCENT CONF1- COST PER
OENGE INTERVAL

| $4.041,681$ | 4735 |
| ---: | ---: |
| 1.342 .394 | 468 |
| 1.115 .870 | 17907 |
| 212.680 .912 | 48779 |
| $22,622.159$ | 8359 |
| 5.846 .189 | 4550 |
| 36.957 | 1007 |
| $2,020.269$ | 6789 |
| $5,393,178$ | 5377 |
| $2,593,092$ | 14045 |

Exhibit I-4: Estimated ADDs Cost, by Category and Region (continued)

| REGION | category cost | PERCENT DF TOTAL | standard error of total | COEFFICIENT OF VARIATION | 95 PERCENT CDNFIDENCE INTERVAL | $\begin{aligned} & \text { COST PER } \\ & \text { UNIT } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | \$3.549.893 | 9415 | 2,810,377 | 079 | 5,508.338 | 4796 |
| 02 | \$0 | 000 |  |  |  | 000 |
| 03 | \$72,907 | 193 | 65,807 | 090 | 128,98: | 049 |
| 04 | \$0 | - 00 |  |  |  | 000 |
| 05 | \$0 | 000 |  |  |  | $0 \times$ |
| 06 | \$115.630 | 307 | 91.442 | 079 | 179,226 | $\bigcirc 92$ |
| 07 | \$31,920 | 085 | 17,970 | 056 | 35,221 | $\bigcirc 77$ |
| 08 | \$0 | 000 |  |  |  | 000 |
| 09 | \$0 | 000 |  |  |  | 000 |
| 10 | $\$ 0$ | 000 |  |  |  | 000 |
| totals | \$3,770,351 | 10000 |  |  |  |  |


| REGION | GATEGORY cost | PERCENT OF TOTAL | STANDARD ERROR OF TOTAL | COEFFICIENT OF VARIATION | 95 PERCENT CONFIDENCE INTERVAL | COST PER UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | \$57,928,739 | 992 | 15.490.621 | - 27 | 30, 361,647 | 78267 |
| 02 | \$49,763,935 | 852 | 17,375,271 | - 35 | 34.055,531 | 16870 |
| 03 | \$34,183,590 | 585 | 12,772,084 | - 37 | 25,033,284 | 23204 |
| 04 | \$117,057,860 | 1901 | 40,224,270 | - 36 | 78,839,56B | 40946 |
| 05 | \$64,894,351 | 11 \$1 | 18,780,347 | - 29 | 36,809.479 | 30990 |
| OG | \$168, 364,809 | 2882 | 106,683,701 | 063 | 209, 100,053 | 134630 |
| 07 | \$9,958,534 | 170 | 4,809,603 | 048 | 9,426.822 | 23887 |
| 08 | \$15,289,684 | 252 | 11,386,992 | $\bigcirc 74$ | 22,318,504 | 93969 |
| 09 | \$12,852.159 | 220 | 5,381,980 | 042 | 10.548, 682 | 23343 |
| 10 | \$59,820,067 | 1024 | 12,594,881 | 021 | 24,685,966 | 255249 |
| TOTALS | \$584, 113,727 | 10000 |  |  |  |  |

$$
\begin{array}{cc}
\therefore \\
\therefore & \therefore \\
\therefore & \therefore
\end{array}
$$

Exhibit $\mathrm{I}-4$ : Estimated $\mathrm{ADD}_{\mathrm{s}}$ Cost, by Category and Region (continued)


COST CATEGORY=MANDATORY ISO=5

| REGION | CATEGORY cost | PERCENT <br> OF TOTAL | STANDARD ERRDR OF TOTAL | CDEFFICIENT OF VARIATION | 95 PERCENT CONFIDENCE INTERVAL | COST PER <br> UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | \$4.037.321 | 382 | 2,246.618 | 056 | 4,403.371 | 5455 |
| 02 | \$1,956,254 | 185 | 7,188.367 | 061 | 2,329,200 | 683 |
| 03 | \$91,038,103 | 8610 | 82, 710.668 | 091 | 162.112.908 | 61797 |
| 0.4 | \$589. 114 | 056 | 530.978 | 090 | 1,040,717 | $2 \quad 17$ |
| 05 | \$2,953,393 | 279 | 1,505,205 | 051 | 2.950.202 | 1410 |
| 06 | \$1,025,949 | -97 | 627.441 | 061 | 1,229,783 | 820 |
| 07 | \$129,810 | $\bigcirc 12$ | 82,110 | 063 | 160,935 | 311 |
| 08 | \$80.715 | 008 | 73,553 | 091 | 144, 164 | 496 |
| 09 | \$852,019 | 081 | 361,516 | 042 | 708,572 | 1548 |
| 10 | \$3,074,660 | 291 | 1,231,542 | $\bigcirc 40$ | 2.413,823 | 13119 |
| totals | \$105,737.338 | 10000 |  |  |  |  |

Exhibit I-4: Estimated ADDs Cost, by Category and Region (continued)

COST CATEGORY $=$ HANOICAP ISO $=5$

| REGION | CATEGORY cost | PERCENT <br> OF FOTAL |
| :---: | :---: | :---: |
| 01 | \$0 | 000 |
| 02 | \$0 | 000 |
| 03 | \$0 | 000 |
| 04 | \$0 | - 00 |
| 05 | \$10,970 | $\bigcirc 74$ |
| 06 | \$1,225,759 | 8238 |
| 07 | \$20,285 | 136 |
| 08 | \$0 | 000 |
| 09 | \$0 | 000 |
| 10 | \$230,842 | 1552 |
| TOTALS | \$1,487,857 | 10000 |


| STANDARD ERROR OF TOTAL | COEFFICIENT DF VARIATION | 95 PERCENT CONFIDENCE INTERVAL | COST PER UNIT |
| :---: | :---: | :---: | :---: |
|  |  |  | $\begin{array}{ll} 0 & 00 \\ 0 & 00 \\ 0 & 06 \\ 0 & 00 \end{array}$ |
| 7.961 | 073 | 15,603 | 005 |
| 637.835 | 052 | 1. 250, 157 | 980 |
| 8.128 | $\bigcirc 40$ | 15,930 | $\bigcirc 49$ |
| 8. |  |  | $\begin{array}{ll} 000 \\ 000 \end{array}$ |
| 101,522 | $\bigcirc 44$ | 198.982 | 985 |



Exhibit 1-4: Estimated ADDs Cost, by Category and Region (continued)

| REGION | $\begin{aligned} & \text { CATEGORY } \\ & \text { COST } \end{aligned}$ | PERCENT OF TOTAL | STANDARD ERROR OF TOTAL | COEFFICIENT OF VARIATION | 95 PERCENT CONFIDENCE INTERVAL | COST PER UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | \$6,181,308 | 120 | 2,294,951 | 037 | 4,498,104 | 8352 |
| 02 | \$91,248,306 | 1771 | 22,916,844 | - 25 | $44,917.015$ | 30932 |
| 03 | \$105, 283, 379 | 2043 | 21,479,631 | $\bigcirc 20$ | 42.100 .077 | 71466 |
| 04 | \$160, 219,616 | 3109 | 53,563,128 | 033 | 104,983,730 | 59072 |
| 05 | \$69,527,143 | 1349 | 36,460.499 | $\bigcirc 52$ | 71,462,577 | 33203 |
| 06 | \$50,031,990 | 971 | 23,735,324 | 047 | 46,521,296 | 40007 |
| 07 | \$7,737,970 | 150 | 2,516, 112 | 033 | 4,934,579 | 18561 |
| 08 | \$3,276,491 | 064 | 2,440,167 | 074 | 4,782,727 | 20137 |
| 09 | \$20,945,24 | 406 | 5,989,322 | 029 | 14.739 .071 | 38043 |
| 10 | \$922,467 | 018 | 505.910 | 055 | 991.584 | 3936 |
| TOTALS | \$515,373,913 | 10000 |  |  |  |  |

Exhibit 1-4: Estimated ADDs Cost, by Category and Region (continued)

| REGION | CATEGORY cost | PERCENT <br> OF TOTAL |
| :---: | :---: | :---: |
| 01 | \$2,454,568 | 4034 |
| 02 | \$386. 227 | 635 |
| 03 | \$1,104,399 | 1815 |
| 04 | \$10,416 | $\bigcirc 17$ |
| 05 | \$1,659,915 | 2728 |
| 06 | \$0 | 000 |
| 07 | \$223,363 | 367 |
| 08 | \$0 | 000 |
| 09 | \$246,079 | 404 |
| 10 | \$0 | - 00 |
| TOTALS | \$6.084,968 | 10000 |

COST GATEGORY=OTHER ADDS
STANDARO ERROR OF TOTAL
cogfficien
VARIATIO
2.115,813

201, 205
05,721
246.423

23,288
164,711
(aRIATION

95 PERCENT CONFIDENGE INTERVAL
$\begin{array}{ll}0 & 86 \\ 0 & 52 \\ 0 & 64 \\ 0 & 97 \\ 1 & 35 \\ 0 & 10 \\ 0 & 67\end{array}$

COST PER UNIT

3316
131
750
750
004
793
000
50
5
5
000
$\begin{array}{ll}4 & 47 \\ 0 & 00\end{array}$

Exhibit I-4: Estimated ADDs Cost, by Category and Region (continued)

COST CATEGORY=TOTAL ADDS CÓSY

| REGION | CATEGORY cost | PERCENT <br> of total. | STANDARD ERROR OF TOTAL | COEFFICIENT OF VARIATION | 95 PERCENT CONFIDENCE INTERVAL | COST PER <br> UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | \$923,774.319 | $7 \quad 14$ | 177,482,866 | -19 | 347,866,417 | 1248108 |
| O2 | \$2,868,463.220 | 2216 | 223,941,728 | $\bigcirc O B$ | 438,925,787 | 972383 |
| 03 | \$1,787,625.042 | 1381 | 399,310,303 | - 22 | 782,648,193 | 1213438 |
| 04 | \$2,104.132,526 | 1625 | 204,953,956 | 010 | 401.709.754 | 775780 |
| 05 | \$3.034,302,429 | 2344 | 503,557,141 | $\bigcirc 17$ | 986.971.996 | 1449039 |
| 06 | \$1,098,213,146 | 848 | 163,151,671 | O 15 | 319,777,275 | 878170 |
| 07 | \$275, 276, 293 | 213 | 54,079,475 | - 20 | 105,995,770 | 660293 |
| O8 | \$149,050,478 | 115 | 42,602,208 | - 29 | 83,500.328 | 916050 |
| 09 | \$491.161,066 | 379 | 52,065,390 | $\bigcirc 11$ | 102,048,163 | 892096 |
| 10 | \$214, 516,24t | 168 | 36,450.979 | $\bigcirc 17$ | 71.443.919 | 915328 |
| TOTALS | \$12,946,514,760 | 10000 |  |  |  |  |

## REDESIGN

The national redesign cost estimate for $\$ 2,063 \mathrm{mili}$ ion was allocated to the 51 field offices and 10 HUD regions by first estimating the total number of dwelling units located in developments in need of redesign. To derive this estimate the Modernization Needs Survey questionnaire results were used. Developments were classified as redesign developments if they indicated a need for substantial redesign or indicated that major redesign work was needed in any of five development components or indicated that minor redesign work was needed in at least two of the five development components. The resulting field office redesign dwelling unit counts were then ratio adjusted to agree with the national count of 159,571 redesign dwelling units.

To estimate the redesign cost of each field office, the estimated number of redesign dwelling units was multiplied times the national redesign cost per dwelling unit mean of $\$ 12,931$. The field office redesign estimates were then sumned to form the HUD region estimates. The field office and HUD region redesign estimates are shown in Exhibit I-5.

Exhibit I-5: Total Redesign Cost, by Region and Field office

$\qquad$
subtotal

| OBS |
| :---: |
|  |
| 1 |
| $\mathbf{1}$ |
| $\mathbf{2}$ |
| $\mathbf{3}$ |
| $\mathbf{4}$ |
| SUBTOTAL |

subtotal

| FIELD | FIELD |
| :--- | :--- |
| OFFICE | OFFICE |
| NUFABER | NAME |
|  |  |
| 021 | BUFFALO, NY |
| 022 | SAN JUAN, PR |
| 023 | NEW YORK, NY |
| 024 | NEWARK, NJ |

0es

9
10
11
12
13
14
$-\quad-$

REGION=01

| FIELD | FIELD |
| :--- | :--- |
| OFFICE | OFFICE |
| NUMBER | NAME |


| 011 | BOSTON, MA |
| :--- | :--- |
| 012 | HARTFORD, CT |
| 013 | MANCHESTER, |

PROV
SUBTOTAL
-

## FYELO OFFICE

BAL TIMORE. M PHILADELPHTA PITTSAURCH, RIC HMONO, VA 035 WASHINGTON 036 CHARLESTON,

REGION=02

REGION=03

TOTAL REDESIGN COST
$\$ 92,564,603$ 52,520,603 59,020,534 $\$ 30,087,273$ $\$ 11,735,557$
$\$ 188,407,967$
$\qquad$

> TOTAI REDES IGN

COST
$\$ 26,674,966$
$\$ 51,128.387$
\$33,907.548 $\$ 154,816,327$
\$264,531,228
$\qquad$

## PERCENT OF <br> GRAND

tOTAL
4.49
262
146
$0 \quad 57$
$9 \quad 13$

PERCENT OF
GRANO
GRANO
TOTAL.
$\begin{array}{ll}1 & 39 \\ 2\end{array}$
248
164
750
1101

## PERCENT OF <br> GRAND TOTAL


$\qquad$

REGION=04 $\qquad$

## PERCENT OF <br> GRAND <br> TOTAL



| 085 |
| ---: |
|  |
|  |
| 15 |
| 16 |
| 17 |
| 18 |
| 19 |
| 20 |
| 21 |
| 22 |
| 23 |
| SUBTOTAL |


| FIELD | FIELD |
| :--- | :--- |
| OFFICE | OFFICE |
| NUMBER | NAME |

## TOTAL REDESIGN <br> COST

$\$ 137,968,613$
$\$ 60,458,393$
$\$ 22,822,617$
$\$ 69,139,775$
$\$ 11,538,772$
$\$ 58,675,797$
$\$ 25,403,147$
$\$ 62,291,478$
$\$ 34,691,661$
$\$-26,-\cdots 89,794$
$\qquad$
REGION=05
OBS

24
2
2
2
28
28

| FIELD | FIEID |
| :--- | :--- |
| OFFICE | OFFICE |
| NUMBER | NAME |
|  |  |
| 051 | CHICAGO |
| 052 | COLUMBUS, OH |
| 053 | OETROIT,MI |
| 054 | INDIANAPOLIS |
| 055 | MILWAUKE, W |
| 056 | MINN/ST PAUL |
| 057 | CINCYNNATI, |
| 058 | CIEVELAAND, |
| 059 | GRAND RAPIOS |

TOIAL
REDESICN
COST
COST

## PERCENT OF <br> GRANO <br> TOTAL

| 10 | 31 |
| ---: | ---: |
| 1 | 86 |
| 3 | 71 |
| 0 | 76 |
| 0 | 93 |
| 2 | 24 |
| 1 | 76 |
| 1 | 93 |
| 0 | 20 |
| 23 | 69 |

REGION=06

| OBS | FIELO OFFICE NUMBER | FIELO <br> OFFICE <br> NAME | total REDESIGN COST | $\begin{aligned} & \text { PERCENT OF } \\ & \text { GRAND } \\ & \text { TOTAL. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 33 | 061 | OAILAS, TX | \$23,047,728 | 1 12 |
| 34 | 062 | LITTLE ROCK, | \$15,760,497 | 076 |
| 35 | 063 | NEW ORLEANS, | \$14,305,692 | 069 |
| 36 | 064 | OKI AHOMA CIT | \$4,549,168 | 022 |
| 37 | 065 | SAN ANTONIO, | \$ $4,664,514$ | 042 |
| 38 | 066 | HOUSTON, TX | \$20,465,666 | 049 |
| - |  |  |  | -- |
| SUBTOTAL |  |  | \$46,793,265 | 421 |

Exhibit I-5: Total Redesign Cost, by Region and Field office (continued)


## ENERGY CONSERVATION

Each of the national total estimates for the energy variables was allocated to the field office level by first classifying each field office by climate zone. Exhibit I-6 shows which of the five climate zones each of the . 51 field offices was assigned to. The energy inspection sample of residential buildings and site-wide facilıties was then post-stratıfied on the basis of climate zone, and national estimates for each of the energy variables were calculated for the five climate zones. The mean cost per dwelling unit was then computed for each of the energy variables for the five climate zones. The total count of dwelling units in each field office was then multiplred times the appropriate climate zone mean cost per dwelling unit values for the energy variables to form field office estimates. These were then summed to form HUD region estimates. Exhibit $\mathrm{T}-7$ presents the energy estimates for the 51 field offices and 10 HUD regions.

Zone 5

## (



| Climate Zone | Field Office | Field Office Name | Sampled States in Field Office |
| :---: | :---: | :---: | :---: |
| 3 | 11 | Boston | Massachusetts |
| 4 | 12 | Hartford | Connecticut |
| 4 | 13 | Manchester | New Hampshire, Maine |
| 3 | 14 | Providence | Rhode Island |
| 3 | 21 | Buffalo | New York |
| 1 | 22 | Carribean | Puerto Rico, Virgin Islands |
| 3 | 23 | New York City | New York |
| 3 | 24 | Newark | New Jersey |
| 3 | 31 | Baltimore | Maryland |
| 3 | 32 | Philadelphia | Pennsylvania, Delaware |
| 3 | 33 | Pittsburgh | Pennsylvania |
| 2 | 34 | Richmond | Varginia |
| 3 | 35 | Washington | D.C., Maryland, Virginia |
| 3 | 36 | Charleston | West Virginia |
| 2 | 41 | Atlanta | Georgia |
| 2 | 42 | Birmingham | Alabama |
| 2 | 43 | Columbia | South Carolina |
| 2 | 44 | Greensboro | North Carolina |
| 2 | 45 | Jackson | Mississippi |
| 1 | 46 | Jacksonville | Florida |
| 2 | 47 | Knoxville | Tennessee |
| 3 | 48 | Louisville | Kentucky |
| 2 | 49 | Nashville | Tennessee |
| 4 | 51 | Chicago | Illinois |
| 3 | 52 | Columbus | Ohio |
| 4 | 53 | Detroit | Michigan |
| 3 | 54 | Indianapolis | Indiana |
| 4 | 55 | Milwaukee | Wisconsin |
| 5 | 56 | Minneapolis/St. Paul | Minnesota |
| 3 | 57 | Cincinnati | Ohio |
| 3 | 58 | Cleveland | Ohio |
| 4 | 59 | Grand Rapids | Michigan |
| 1 | 61 | Dallas | Texas |
| 2 | 62 | Little Rock | Atkansas |
| 2 | 63 | New Orleans | Louisiana |
| 2 | 64 | Oklahoma City | Okiahoma |
| 1 | 65 | San Antonio | Texas |
| 1 | 66 | Houston | Texas |
| 3 | 71 | Kansas City | Kansas, Missouri |
| 4 | 72 | Omaha | Nebraska |
| 3 | 73 | St. Lonis | Missouri |
| 4 | 74 | Des Moines | Iowa |
| 4 | 81 | Denver | Coloradó, North Dakota |
| 1 | 91 | Honolulu | Hawair |
| 1 | 92 | Los Angeles | Caluforma |
| 1 | 93 | San Francisco | California, Nevada |
| 1 | 94 | Phoenix | Arizona |
| 1 | 95 | Sacramento | California |
| 5 | 101 | Anchorage | Alaska |
| 3 3 | 102 | Portand Seattle | Oregon, Washington, Idaho Washington |

Exhibit 1-7: Estimated Energy Vaxiables, All Buildings, by Region and Field Office


Exhibit I-7: Estimated Energy Variables, All Buildings, by Region and Field Office (continued)


Exhibit I-7: Estimated Energy Variables, All Buildings, by Region and Field Office (continued)

REGION=03


Exhibit I-7: Estimated Energy Variables, All Buildings, by Region and Field office (continued)

REGION $=04$


Exhibit 1-7: Estimated Energy Variables, All Buildings, by Region and Field Office (continued)


Exhibit I-7: Estimated Energy Variables, All Buildings, by Region and Field Office (continued)

REGION=06


Exhibit 1-7: Estimated Energy Variables, All Buildings, by Region and Field office (continued)


Exhibit I-7: Estimated Energy Variables, All Buildings, by Region and Field Office (continued)


Exhibit I-7: Estimated Energy Variables, All Buildings, by Region and Field office (continued)


Exhibit I-7: Estimated Energy Variables, All Buildings, by Region and Field office (continued)


## HANDICAPPED ACCESSIBILITY

The national handicapped accessibility estimate of $\$ 232$ million was allocated to the 51 field offices and 10 HUD regions by multiplying the national mean cost per dwelling unit of $\$ 185$ by the total dwelling unit count for each field office (see Exhibit A-2). The resulting handicapped accessibility estimates are presented in Exhibit I-8.

Exhibit I-8: Total Allocated Handicap Cost, by Region and Field Office


| OBS | FIELD <br> OFFICE <br> NUMBER | FIELD <br> OFFICE <br> NAME | total handicap COST | PERCENT OF GRAND TOTAL |
| :---: | :---: | :---: | :---: | :---: |
| 15 | 041 | ATLANTA, GÁ ${ }^{\text {á: }}$ | \$10,364,655 | 446 |
| 16 | 042 | BIRMINGHAM, | \$7,753,282 | 334 |
| 17 | 043 | COLUMBIA, SC | \$2,885,264 | 1.24 |
| 18 | 044 | GREENSBORO, N | \$6,954,496 | 299 |
| 19 | 045 | JACKSON, MS | \$2,282,114 | 098 |
| 20 | 046 | JACKSONVILLE | \$7,702,158 | 332 |
| 21 | 047 | KNOXVILLE, $T$ | \$2,892,277 | 125 |
| 22 | 048 | LOUISVILLE, | \$4,611,291 | 1.99 |
| 23 | 049 | NASHVILLE, T | \$4,612,952 | 1.99 |
| ION |  |  | \$50, 058, 489 | 2155 |

REGION=05 $\qquad$


| $\begin{aligned} & \text { TOTAL } \\ & \text { HANOICAP, } \\ & \text { COST } \end{aligned}$ | PERCENT DF GRAND total |
| :---: | :---: |
| \$14,188,419 | 6.11 |
| \$1,880, 875 | 0.181 |
| \$3,602,289. | 1. 55 |
| \$3,171,336 | 1.37 ' |
| \$2,377,902 | 102 |
| \$3,911,615 | 1.68 |
| \$2,429,948 | 1.05 |
| \$5,463,601 | 2.35 |
| \$1,621, 565 | 0.70 |
| \$38,647, 550 | 1664 |

!

| TOTAL <br> HANDICAP COST | $\begin{aligned} & \text { PERCENT OF } \\ & \text { GRAND } \\ & \text { TOTAL } \end{aligned}$ |
| :---: | :---: |
| \$6,359,836 | 2.74 |
| \$2,746,842 | 118 |
| \$5,718,666 | 246 |
| \$2,359,077 | 1.02 |
| \$4,268,190 | 184 |
| \$1,628.209 | 0.70 |

Exhibit I-8: Total Allocated Handicap Cost, by Region and Field Office (continued)


INDIAN HOUSING
The rental FIX estimate of $\$ 161$ miliion was allocated to the six Indian Housing regions by taking the national estimate of $\$ 8,664$ per dwelling unit and multiplying this national mean times the total number of rental dwelling units in each Indian Housing region. Exhibit I-9 contains the rental FIX estimates. The same procedures was followed for the homeownership FIX allocation to the six OIPs. Exhibit $I-10$ shows the homeownership FIX estimates. For rental ADDs, we first computed the mean cost per dwelling unit for the 15 ADDs categories and multiplied these times the total number of rental dwelling units in each OIP. Exhibit $I-11$ presents the rental ADDs estimates.

Exhibit I-9: Rental FIX OIP Cost Estimates, Indian Developments

| OBS | oIP NAME | total univ RENTAL OUS | MEAN COST PER DU | Oip rental fix ESTIMATE |
| :---: | :---: | :---: | :---: | :---: |
| 1 | chicago | 3.765 | 86636 | \$27.420.292 |
| 2 | OKLAHOMA CITY | 2,913 | 86636 | \$25.237.065 |
| 3 | DENVER | 7,070 | 86636 | \$61.251,647 |
| 4 | Phoenix | 3,908 | 8663 | \$33,857,340 |
| 5 | ANCHORAGE | 169 | 8663 | \$1,464,148 |
| 6 | SEATTLE | 1,334 | 86636 | \$11,557,241 |
|  |  | = = = = = |  | $\therefore=$ - ====== $=$ |
|  |  | 18,559 |  | \$160,787,739 |

Exhibit I-10: Homeowner FIX OIP Cost Estimates, Indian Developments

| obs | OIP <br> name | total univ HOMEOWNER DUS | MEAN COST PER DU | OIP HOMEOWHEK fix estimate |
| :---: | :---: | :---: | :---: | :---: |
| 1 | chicago | 2,705 | 7213.99 | \$19,513.454 |
| 2 | OKLAHOMA City | 11.441 | 721399 | \$82,535,306 |
| 3 | DENVER | 5,178 | 7213.99 | \$37,354, 061 |
| 4 | phoenix | 8,758 | 721399 | \$63,180,160 |
| 5 | ANCHORAGE | 1,056 | 7213.99 | \$7.017,974 |
| 6 | SEATTLE | 1,746 | 721399 | \$12,595,634 |
|  |  | - = = = |  |  |
|  |  | 30.884 |  | \$222,790.993 |

Exhibit I－11：Rental ADD OIP Cost Estimates，Indian Developments，by Category

| OBS | $\begin{aligned} & \text { OLP } \\ & \text { NAME } \end{aligned}$ | TOIAL UNIV rental dus | MEAN COST PER OU CATEG 1 | $\begin{aligned} & \text { ENERGY } \\ & (\text { ISO } 182) \\ & \text { CATEG } 1 \end{aligned}$ | MEAN COST PER DU CATEG 2 | REQUIRED <br> （1SO 182） CATEG 2 | mean cost PER DU categ 3 | PROJECT SPECIFIC （ISO 182） CATEG 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | chicago | 3，165 | \＄3，082 | \＄9，754，769 | \＄2，620 | \＄8，292，818 | \＄12，659 | \＄40，065，233 |
| 2 | OKLAKOMA | CITY 2，913 | \＄3，082 | \＄8，978，104 | \＄2，620 | \＄7，632，537 | \＄12，659 | \＄36，875， 205 |
| 3 | DENVER | 7，070 | \＄3，082 | \＄21，790，318 | \＄2，620 | \＄18，524，558 | \＄12，659 | \＄89，498，009 |
| 1 | PHOENIX | 3，908 | \＄3，082 | \＄12，044，775 | \＄2，620 | \＄10，239，600 | \＄12，659 | \＄49，470，753 |
| 5 | ANCHORAGE | 169 | \＄3，082 | \＄520．872 | \＄2，620 | \＄442，808 | \＄12，659 | \＄2，139，344 |
| 6 | SEATILE | 1，334 | \＄3，082 | \＄4，111，497 | \＄2，620 | \＄3，495，298 | \＄12，659 | \＄16，886，895 |
|  |  | ＝ニニン＝ |  | ＝－－－．．－：＝＝ |  | $\therefore=:=-$－－＝ |  |  |
|  |  | 18，559 |  | \＄57，200．355 |  | \＄48，627，620 |  | \＄234，935．439 |
| 0 SS | MEAN COST PER DU CATEG 4 | PROJECT SPECIFIC （ISO 3．485） CATEG 4 | MEAN COST PER DU CATEG 5 | $\begin{aligned} & \text { ENERGY } \\ & \text { (ISO } 3,485 \text { ) } \\ & \text { CATEG } 5 \end{aligned}$ | MEAN COST PER DU CATEG 6 | $\begin{aligned} & \text { REQUIRED } \\ & \text { (ISO } 3,485 \text { ) } \\ & \text { CATEG } 6 \end{aligned}$ | MEAN CUSI PER CU CATEG 7 | CURRENTLY PROHIBITED CAfEG 7 |
| 1 | \＄1．317 | \＄4，169．165 | \＄200 | \＄033，813 | \＄263 | \＄833．910 | \＄2，036 | \＄6．943．819 |
| 4 | \＄1，317 | \＄3，837， 212 | \＄200 | \＄583，319 | \＄263 | \＄767，519 | \＄2．036 | \＄ $5,930.752$ |
| 3 | \＄1，317 | \＄9，313，110 | \＄290 | \＄ 1 ，115，817 | \＄263 | \＄1，862，808 | \＄2，036 | \＄14，394，238． |
| 4 | \＄1，317 | \＄5．197．897 | \＄200 | \＄182，604 | \＄263 | \＄1，029，082 | \＄2，036 | \＄7，956， 532 |
| 5 | \＄1，317 | \＄222．619 | \＄200 | \＄33，843 | \＄263 | \＄44．528 | \＄2，036 | \＄344，077 |
| 4 | \＄1，317 | \＄1．757．240 | \＄200 | \＄267．143 | \＄263 | \＄351，463 | \＄2，036 | \＄2，715，971 |
|  |  | \＄24， $447.6-6$ |  | $\begin{aligned} & =-76=5=0 \\ & \$ 3,716,570 \end{aligned}$ |  | $\$ 1.885,936$ |  | $\$ 37,785,385$ |
| UB； | IIt AN COST PER DU CATEG 8 | handicapped （ALL ISO） CATEG 8 | mean cost PER OU CATEG 9 | NO iso CATEG 9 | mean cost PER DU CATEG 10 | OTHER ADDs CATEG 10 | MEAN COST PER DU total | OIP RENTAL ADDs ESTIMATE TOTAL |
| 1 | \＄0 | \＄0 | \＄0 | \＄0 | \＄0 | \＄0 | \＄22，178 | \＄70，193，548 |
| ？ | \＄0 | $\$ 0$ | \＄0 | \＄0 | \＄0 | \＄0 | \＄22，178 | \＄64，604，678 |
| 3 | \＄0 | \＄0 | \＄0 | \＄0 | \＄0 | \＄0 | \＄22，178 | \＄156，794，859 |
| 4 | \＄0 | \＄0 | $\$ 0$ | \＄0 | \＄0 | $\$ 0$ | \＄22，178 | \＄86，671，844 |
| 5 | \＄0 | \＄0 | \＄0 | \＄0 | \＄0 | 80 | \＄22，178 | \＄3，748，092 |
| 6 | \＄0 | \＄0 | \＄0 | \＄0 | \＄0 | \＄0 | \＄22，178 | \＄29，585，527 |
|  |  | $=$ |  | $=$ |  |  |  |  |
|  |  | \＄0 |  | \＄0 |  |  |  | \＄417．602，548 |

## LEAD PAINT ABATEMENT

Exhibit I-12 presents Lead Paint Abatement Costs by Region and field office. Total national costs were allocated on the basis of the percentage of family units built prior to 1973. Data from the lead paint abatement research was used to allocate higher costs to the older units (pre 1951) than to the newer units.

Exhabit l-12

Lead Paunt Abatement Costs by Region and Field Office Cost of Abatement for Famly Units Buit Prior to 1973

| Field Ofice | Field Office <br> Abatement Costs | \% Nati Family Units Buitt Prior to 1973 | Region | Regronal Abatement Costs | \% Natl Family Units Buit Prior to 1973 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Boston | \$12,904,568 | $289 \%$ |  |  |  |
| Hartford | \$6,923,501 | $155 \%$ |  |  |  |
| Manchester | \$1,835,109 | 041\% |  |  |  |
| Providence | \$2,328,944 | 0 52\% | 1 | \$23.992,122 | $538 \%$ |
| Buffalo | \$7,018,499 | 157\% |  |  |  |
| New York | \$51,123,683 | 11 46\% |  |  |  |
| Newark | \$19,026,623 | $427 \%$ |  |  |  |
| Sart Juan | \$27,239,375 | $611 \%$ | It | \$104,408,180 | $2341 \%$ |
| Baltımore | \$7,969,227 | $179 \%$ |  | , |  |
| Charleston | \$1,624,003 | $036 \%$ |  |  |  |
| Philadelphia | \$22,102,730 | 4.96\% |  |  |  |
| Pittsburgh | \$11,225,527 | $252 \%$ |  |  |  |
| Richmond | \$8.952.375 | $201 \%$ |  |  |  |
| Washington | \$7,424,123 | 166\% | 1月 | \$59,297,985 | $1330 \%$ |
| Atanta | \$23.563.880 | $528 \%$ |  |  |  |
| Brmingham | \$16,937,434 | $380 \%$ |  |  |  |
| Columbia | \$4,145,958 | $093 \%$ |  |  |  |
| Greensboro | \$12,786,198 | $287 \%$ |  |  |  |
| Jackson | \$4,328,414 | 0.97\% |  |  |  |
| Jacksonville | \$14,331,037 | 3 21\% |  |  |  |
| Loursville | \$9,140,107 | 205\% |  |  |  |
| Knoxvile | \$5,230,889 | 117\% |  |  |  |
| Nashville | \$9,824,692 | $220 \%$ | IV | \$123,720,548 | 22 49\% |
| Chicago | \$30,146,597 | 676\% |  |  |  |
| Cincinnati | \$5,703,614 | $128 \%$ |  |  |  |
| Cleveland | \$10,492,690 | $235 \%$ |  |  |  |
| Columbus | \$2,986,387 | 0 67\% |  |  |  |
| Detrolt | \$8,551,274 | 192\% |  |  |  |
| Grand Rapids | \$1,879,592 | 0 42\% |  |  |  |
| Indianapolis | \$5,936,584 | $133 \%$ |  |  |  |
| Milwaukee | \$2.111,053 | $047 \%$ |  |  |  |
| Minn/St Paul | \$3,287,212 | $074 \%$ | V | \$71,095,003 | $1594 \%$ |
| Chicago Indian | \$809,740 | 018\% |  |  |  |
| Datlas | \$11,575,358 | $2 \mathrm{6} 0 \%$ |  |  |  |
| Houston | \$3,848,903 | $086 \%$ |  |  |  |
| Litte Rock | \$4,485,989 | $101 \%$ |  |  |  |
| New Orleans | \$14,567,777 | $327 \%$ |  |  |  |
| Oklahoma City | \$3,125,113 | 070\% |  |  |  |
| San Antono | \$8,561,076 | 192\% | VI | \$46,164,215 | $1035 \%$ |
| Oklahoma City Indian | \$1,307,345 | 029\% |  |  |  |
| Des Moines | \$94,997 | $002 \%$ |  |  |  |
| Kansas City | \$3,768,230 | $084 \%$ |  |  |  |
| Omaha | \$1,225,919 | - 27\% |  |  |  |
| St Louls | \$4,146,712 | 093\% | VII | \$9,235,858 | $207 \%$ |
| Denver | \$3,315,108 | $074 \%$ | VIII | \$3,315,108 | $074 \%$ |


| Denver Indian | \$1,881,099 | $042 \%$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Honolulu | \$1,881,099 | $042 \%$ |  |  |  |
| Las Angeies | \$8,598,773 | $193 \%$ |  |  |  |
| Phoenix | \$1,730,310 | $039 \%$ |  |  |  |
| Sacramento | \$1,675,272 | $038 \%$ |  |  |  |
| San Francisco | \$8,622,899 | 193\% | IX | \$22,508,353 | 505\% |
| San Francisco Indian | \$2,006,255 | $045 \%$ |  |  |  |
| Anchorage | \$549,628 | 0 12\% |  |  |  |
| Portiand | \$1,289,250 | $029 \%$ |  |  |  |
| Seattle | \$3,861,720 | $087 \%$ | X | \$5,700,598 | 1 $28 \%$ |
| Anchorage Indian | \$21,111 | $001 \%$ |  |  |  |
| Seatlie Indian | \$164,361 | 0.04\% |  |  |  |
| National Totals | \$452,189,910 | $10139 \%$ |  |  |  |
| Indian Totals | \$6,189,910 | $139 \%$ |  |  |  |
| Public Housing Total | \$446,000,000 | 10000\% |  |  |  |

APPENDIX J
ADDs REqUESTS BY SYSTEM AND ISO

Exhibit J-1: Inspector Second Opinion by System

TABLE OF SYS BY SEC

| SYS SYSTEM | SEC | INSPEC | TOR SECOND | OPINIEN |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FREQUENCY ROW PCT | NO ISO | 1 | 12 | 13 | 14 | 15 | 7 | TOTAL |
| ADO CANOPIES | 9 308 | 90 3082 | 99 3390 | 41 14 | 24 $8 \quad 22$ | 29 993 | 000 | 292 |
| ADD DECKS | 8 8 2 | 0 000 | 10 4348 | 26 ${ }^{6} 6$ | - 0 | 2174 | 001 | 23 |
| HVY DUTY LOCK SE | 081 | 336 $38 \quad 89$ | 374 $43 \quad 29$ | 92 1065 | 38 440 | 17 $+\quad 97$ | 0 <br> 0$\|$ | 864 |
| METAL DOOR \& FRA | 8 107 | 266 3564 | 264 $35 \quad 34$ | 145 1941 | 46 $6 \quad 16$ | 18 241 | 0 <br> 0 | 747 |
| PORCHES | 0 | $14 \begin{array}{r}17 \\ 91\end{array}$ | 27 2368 | 2544 | 28 2456 | 13 1140 | 0 <br> 0 00 | 114 |
| STORM/SCREEN DOO | - $\begin{array}{r}1 \\ 0\end{array}$ | $27 \%$ 4426 | 167 $27 \quad 38$ | 65 1066 | $\begin{array}{r}37 \\ 607 \\ \hline\end{array}$ | 70 1148 | 0 <br> 0 | 610 |
| VESTIBLLE | 0 000 | 37 $38 \quad 54$ | 37 $\begin{array}{r}36 \\ 50\end{array}$ | $12 \begin{array}{r}12 \\ 50\end{array}$ | 10 1042 | 1 104 | 00 | 96 |
| BASEMENT DOORS | 21 242 | 271 3122 | 327 $37 \quad 67$ | 132 1521 | 76 $8 \quad 76$ | 41 472 | 0 0 | 868 |
| EXT HALL INSULAT | 8 16 | 328 4761 | 218 $31 \quad 64$ | 116 1684 | 19 276 | \% 0 | 0 <br> 0 | 689 |
| EXT WALL EXP JOI | $0 \stackrel{0}{0}$ | $\begin{array}{r} \\ 33 \\ \hline 21\end{array}$ | $23 \begin{array}{r}15 \\ 81\end{array}$ | $33 \begin{array}{r}21 \\ 33\end{array}$ | 6 92 | - 00 | 0 0 0 | 63 |
| EXT WALL MAT'L | 8 370 | 75 3472 | 49 2269 | 189 | 32 1481 | 12 $5 \quad 56$ | 1 <br> 0 1 | 216 |
| CRAWL SPACE INSU | 5 254 | 85 $43 \quad 15$ | 73 37 | 1265 | $4 \begin{array}{r}9 \\ 4\end{array}$ | - 0 | 0 <br> 0 | 197 |
| ADD GUTTER/LEADE | 10 210 | 211 4423 | 140 $29 \quad 35$ | 1362 | 25 $5 \quad 24$ | 29 $6 \quad 08$ | 0 <br> 0 | 477 |
| ADO RDOF INSULAT | 15 395 | 39 $\begin{array}{r}150 \\ \hline 17\end{array}$ | 113 29 | 91 2395 | 11 289 | 0 000 | $\begin{array}{ll}0 & 0 \\ 0 & 00\end{array}$ | 380 |
| TDTAL (CONT INUED) | 380 | 10615 | 8255 | 4941 | 1989 | 1489 | 13 | 27682 |

Exhibit J-1: Inspector Second Opinion by System (continued)

TABLE OF SYS BY SEC

| SYS SYSTEM | SEC | INSPEC | TOR SECOND | OPINION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FREQUENCY ROW PCT | NO ISO | 19 | 12 | 13 | 14 | 15 | 7 | TOTAL |
| ADO FLUE LINERS | $0{ }^{0}$ | 20 2299 | 13 1494 | 45 5172 | 4 460 | $\begin{array}{r}5 \\ \hline 75\end{array}$ | 0 <br> 0 | 87 |
| ADD PITCHED ROOF | 3 149 | 27 1343 | 68 3383 | 86 4279 | $\begin{array}{r}78 \\ \hline 48\end{array}$ | 10 498 | 000 | 201 |
| REPLACE ROOF COV | 4 135 | 55 1858 | 87 $29 \quad 39$ | 75 254 | 29 980 | 46 1544 | 0001 | 296 |
| SMOKE VENT SYSTE | - 0 | - 0 | $50 \quad 0{ }^{6}$ | $50 \times 8$ | - 0 | 0 | 0 <br> 0 | 12 |
| WINDOWS (NRG EFF | 12 1 | 649 6140 | 198 1873 | 83 785 | 48 $4 \quad 54$ | 67 $6 \quad 34$ | 0 000 | \$057 |
| STORM/SCREEN WIN | - $\begin{array}{r}2 \\ 50\end{array}$ | $\begin{array}{r}183 \\ 45 \\ \hline 0\end{array}$ | 117 $28 \quad 96$ | 25 $6 \quad 19$ | 45 11 14 | 32 792 | 00  <br> 0 00 | 404 |
| SCREENS ONLY | $1 \begin{array}{r}3 \\ 166\end{array}$ | 72 3978 | 2342 <br> 20 | 30 1657 | 2.21 | 30 1657 | 0 000 | 181 |
| UNBRKABL GLAZING | 3 3 | 34 $36 \quad 56$ | 268 268 | 23 $\begin{array}{r}22 \\ 66\end{array}$ | 7 7 | 2 2 | - 00 | 93 |
| SHOWERS IN TUES | $1 \begin{array}{r}5 \\ 17\end{array}$ | 253 59 | $2 \begin{array}{r}97 \\ 22\end{array}$ | 1150 | 15 351 | 7 164 | 0 <br> 0 | 427 |
| ADD VANITY | 5 1 | 142 $32 \quad 49$ | 147 $33 \quad 64$ | 74 1693 | 51 1167 | 18 $4 \quad 12$ | [ 0 | 437 |
| BATH FLOOR FINIS | 3 150 | $26 \quad 52$ | $34 \begin{array}{r}68 \\ 34\end{array}$ | 38 1900 | $13 \begin{aligned} & 26 \\ & 1300\end{aligned}$ | 42 $6 \quad 00$ | \|r $\begin{array}{r}1 \\ 0\end{array}$ | 200 |
| BATH WALL COVER | $2 \begin{array}{r}5 \\ \hline 62\end{array}$ | 44 2304 | 62 3246 | $22 \quad 43$ | 24 1257 | 13 $6 \quad 81$ | 0 0 | 191 |
| EMERG CALL SYS | 2 118 | 98 5765 | 20 $\begin{array}{r}34 \\ \hline\end{array}$ | 16 941 | $\begin{array}{r}4 \\ \hline\end{array}$ | 16 41 | 0 000 | 170 |
| SINGLE ROOM A/C | 15 | 48 $36 \quad 09$ |  51 <br> 38 35 | 25 18 80 | 7 $5 \quad 26$ | 0 000 | 0 <br> 0 | 133 |
| TOTAL <br> (CONTINUED) | 380 | 10615 | 8255 | 4941 | 1989 | 1489 | 13 | 27682 |

Exhibit J-1: Inspector Second Opinion by System (continued)


Exhibit J-1: Inspector Second Opinion by System (continued)

TABLE OF SYS BY SEC

| SYS SYSTEM | SEC | IN | R S | 0 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FREQUENCY ROW PCT | ND ISO | $\left.\right\|^{\prime 1}$ | 12 | 13 | 14 | 5 | 17 | TOTAL |
| OTH FLOOR FINISH | 2 0 | $\begin{array}{r}92 \\ 24 \\ \hline 05\end{array}$ | 107 $24 \quad 49$ | 93 24 | 59 1350 | 84 19 | 0 <br> 0 | 437 |
| BED WALL COVER | 000 | $29 \begin{array}{r}29 \\ 59\end{array}$ | 17 17 | $11 \begin{array}{r}11 \\ 1122\end{array}$ | 1 23 23 | 18 18 | 0 <br> 0 | 98 |
| OTH WALL COVER | 1 089 | 30 $26 \quad 79$ | 20 $\begin{array}{r}23 \\ \hline\end{array}$ | 15 $13 \quad 39$ | 18 $16 \quad 07$ | 25 $22 \quad 32$ | 00 | 112 |
| FIRE ESCAPE | - 00 | 65 $57 \quad 52$ | 27 2389 | $5 \begin{array}{r}6 \\ \hline 1\end{array}$ | 0 000 | $13 \quad 15$ | 0 <br> 0 | 113 |
| EGRESS STAIRS | $5{ }^{2} 1$ | 1622 | 2432 | 15 4054 | 0 000 | 1351 | 0-00 | 37 |
| FIRE EXTINGUISHE | 13 $3 \quad 94$ | 215 $65 \quad 15$ | 15 $\begin{array}{r}50 \\ 15\end{array}$ | $\begin{array}{r}37 \\ 11 \\ \hline\end{array}$ | 9 273 | 186 | 0 <br> 0 | 330 |
| FIRE PUMPS | 000 | 18 6000 | 1667 | 5 1667 | 000 | $6{ }^{2}$ | 0-0 | 30 |
| SPRINKLER STANDP | 1 084 | $45 \quad \begin{array}{r}54 \\ 45\end{array}$ | 20 1681 | 19 1597 | 8 672 | 17 $14 \quad 29$ | 0r 00 | 119 |
| STANDPIPE SYSTEM | 00 | 10 9091 | $0 \begin{array}{r}0 \\ 0\end{array}$ | $9 \begin{array}{r}1 \\ 09\end{array}$ | 0 000 | - 0 | - 00 | 11 |
| FIRE ALARM | 0 000 | 247 6604 | 70 1872 | 28 749 | 24 642 | $\begin{array}{r}5 \\ 1 \\ \hline\end{array}$ | 001 ${ }^{0} 1$ | 374 |
| SMOKE DETECTORS | 1 0 | 260 7647 | 32 941 | 20 588 | 2 $0 \quad 59$ | 25 $7 \quad 35$ | 0 <br> 0 | 340 |
| SMOKE/VENT CONTR | - 00 | $48 \begin{array}{r}76 \\ 41\end{array}$ | 31 48 | $13 \begin{array}{r}21 \\ 38\end{array}$ | $4 \begin{array}{r}7 \\ 46\end{array}$ | $\begin{array}{r}127 \\ \hline\end{array}$ | 0 <br> 000 | 157 |
| SMOKE HATCHES | 0 0 | $42 \begin{array}{r}16 \\ 11\end{array}$ | $23 \quad \begin{array}{r}9 \\ \hline 8\end{array}$ | $34 \begin{array}{r}13 \\ 21\end{array}$ | - 00 | 0 | 0 <br> 0$\|$ | 38 |
| SIGNAL/COMM | - $\begin{array}{r}1 \\ 0\end{array}$ | 103 $39 \quad 02$ | 86 3258 | $15 \begin{array}{r}42 \\ 91\end{array}$ | 13 492 | 19 $7 \quad 20$ | - 01 | 264 |
| $\begin{aligned} & \text { TOTAL. } \\ & \text { (CONTINUEO) } \end{aligned}$ | 380 | 10615 | 8255 | 494 | 1989 | 1489 | 13 | 27682 |

## Exhibit J-1: Inspector Second Opinion by System (continued)

TABLE OF SYS BY SEC

| SYS SYSTEM | SEC | INSPEC | TOR SECON | D OPINION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FREQUENCY ROW PCT | NO Iso | 11 | \| 2 | 13 | 14 | 15 | 17 \| | TOTAL |
| SECURITY DEVICES | 00 | 182 $42 \quad 52$ | 150 3505 | $17 \begin{aligned} & 73 \\ & 17\end{aligned}$ | 17 $3 \quad 97$ | 140 | 0 <br> 0 | 428 |
| ELOCKUP WINDOWS | 00 | 46 36 | 58 48 | 14 1176 | 000 | $3 \begin{array}{r}4 \\ 36\end{array}$ | 0 <br> 0 | 119 |
| CHILD GUARDS | 0 0 | 5154 | $28 \quad 30$ | 20 1923 | 0 000 | 0 000 | 0001 | 104 |
| TV SURVEILLANCE | $\begin{array}{r}0 \\ 0\end{array}$ | $28 \quad 57$ | $428{ }^{3}$ | $28 \quad \begin{array}{r}2 \\ \hline\end{array}$ | 000 | - 0 | 0 <br> 0 | 7 |
| ASBESTOS REMOVAL | $29{ }^{2}$ | 33 4783 | $17 \begin{array}{r}12 \\ 17\end{array}$ | 21 3043 | 1 145 | 0 000 | 0 <br> 0 | 69 |
| LOBEY FLOOR FINI | 000 | 10 $24 \quad 39$ | $29 \begin{array}{r}12 \\ 27\end{array}$ | $9 \begin{array}{r}4 \\ \hline\end{array}$ | $17 \begin{array}{r}7 \\ \hline 17\end{array}$ | $19 \begin{array}{r}8 \\ 19\end{array}$ | 0 <br> 0 | 41 |
| STAIR FLOOR FINI | 508 | 25 $42 \quad 37$ | 1529 | $10 \quad 17$ | 1188 | 6 $10 \quad 17$ |  <br> 5${ }^{3} 1$ | 59 |
| INTERIOR RAILS | 0 | 51 $62 \quad 20$ | 23 28 | 6 $7 \quad 32$ | 1 122 | 122 | 00 | 82 |
| PUBLIC RESTROOMS | 00 | 30 4286 | 17 17 | 25718 | 1000 | 3 429 | 0 <br> 0 | 70 |
| LOBBY WALL COVER | $40^{1}$ | 3 1200 | $16 \quad 4$ | 2000 | 36 $\begin{array}{r}9 \\ 0\end{array}$ | $12 \quad 3$ | 0 <br> 000 | 25 |
| STAIR WALL COVER | $4 \begin{array}{r}1 \\ \hline\end{array}$ | $4 \quad 35$ | $8{ }^{2}{ }^{2}$ | 1304 | 7 30 | 39 93 | 0 <br> 0 | 23 |
| CHG SKIP STOP EL | 0 000 | 16 $39 \quad 02$ | 1463 | 15 $36 \quad 59$ | 0 | 4 $9 \quad 76$ | 0 <br> 000 | 41 |
| CHG UP OUT/DOWN | 0 000 | 3 1154 | 2 769 | $65 \quad \begin{array}{r}17 \\ 38\end{array}$ | 0 | 4 15 | 0 <br> 000 | 26 |
| CHG ELEV CAB MAT | 0 000 | 39 39 | 38 38 | 17 17 | 0 | $5 \quad \begin{array}{r}5 \\ \hline\end{array}$ | 000 0 | 99 |
| TOTAL <br> (CONTINUED) | 380 | 10615 | 8255 | 4941 | 1989 | 1489 | 13 | 27682 |

Exhibit J-1: Inspector Second Opinion by System (continued)

TABLE OF SYS $8 Y$ SEC

| SYS SYSTEM | SEC | INSPEC | TOR SECON | OPINION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FREQUENCY ROW PCT | NO ISO | 11 | 12 | 13 | 14 | 15 | 17 | TDTAL |
| CHG ELEV DOOR TY | 1 22 | 2 444 | 8 1788 | 26 $57 \quad 78$ | - 0 | $\begin{array}{r}8 \\ 17 \\ \hline\end{array}$ | 0 <br> 0 | 45 |
| ADO ELEVATORS | - 0 | $\begin{array}{r}5 \\ 16 \\ \hline 67\end{array}$ | $26 \quad 87$ | 30 90 | $13 \begin{array}{r}4 \\ 3\end{array}$ | $13 \begin{array}{r}4 \\ \hline\end{array}$ | 001 01 | 30 |
| BATT EMERG LTS | 1 049 | 113 $55 \quad 67$ | 33 $16 \quad 26$ | 15 $7 \quad 39$ | 24 1182 | $\begin{array}{r} \\ 8 \\ \hline 17\end{array}$ | 0 <br> 0 | 203 |
| EMERG LTS/POWER | 1 $\begin{array}{r}1 \\ \hline\end{array}$ | 49 624 | 15 1899 | 6 $7 \quad 59$ | 2. 53 | 6 759 | 0 <br> 000 | 79 |
| MECH RM EXHAUST | $2 \begin{array}{r}3 \\ 19\end{array}$ | 66 4818 | 30 2190 | 33 2409 | 0 | 5 365 | 0 <br> 0 <br> 00 | 137 |
| EXT ENTRY LTS | 0 000 | . $53 \begin{array}{r}146 \\ \hline 09\end{array}$ | 67 24 | 109 | 3 109 | 29 10 | 001 | 275 |
| BLOG MNT SITE LT | 8 166 | 60 292 | 121 2505 | 842 | 19 393 | - $\begin{array}{r}1 \\ 1\end{array}$ | 0 <br> 0 | 483 |
| POLE MNT SITE LT | 10 463 | 104 $48 \quad 15$ | 65 $30 \quad 09$ | 24 $14 \quad 11$ | 9 4 | $\begin{array}{r}4 \\ 185 \\ \hline\end{array}$ | 0 <br> 0 001 | 216 |
| OUTSIDE LIGHTS | 1 0 | 103 $36 \quad 79$ | $47^{132}$ | 23 821 | 12 $4 \quad 29$ | 3 $\begin{array}{r}9 \\ \hline\end{array}$ | 0 <br> 0 | 280 |
| BLDG MNT LTS | 3 136 | 84 $38 \quad 18$ | 67 $30 \quad 45$ | 33 1500 | 7 $3 \quad 18$ | 21 $9 \quad 55$ | 5 <br> 27 | 220 |
| COMMON AREA LTS | 0 | 108 4170 | 23 $\begin{array}{r}62 \\ \hline\end{array}$ | $22 \quad \begin{array}{r}57 \\ \hline 1\end{array}$ | 17 425 | $8 \begin{array}{r}21 \\ 8 \quad 11\end{array}$ | 0  <br> 0 00 | 259 |
| POLE MNT LTS | $1 \begin{array}{r}1 \\ 102\end{array}$ | 38 $38 \quad 78$ | 34 3469 | $20 \quad 20$ | 5 $5 \quad 10$ | - 0 | 0 <br> 0 | 98 |
| MASTER TV DIST | 5 147 | 23 674 | 75 2199 | 154 $45 \quad 16$ | 51 1496 | 33 968 | 0 000 | 341 |
| SITE ELECT UPGRA | 21 174 | 438 3626 | 378 $31 \quad 29$ | 274 $22 \quad 68$ | 50 414 | 47 389 | 0 <br> 0 <br> 0 | 1208 |
| TOTAL (CONTINUED) | 380 | 10615 | 8255 | 4941 | 1989 | 1489 | 13 | 27682 |

Exhibit J-1: Inspector Second Opinion by System (continued)

TABLE OF SYS BY SEC

| SYS SYSTEM | SEC | INSP | OR SECON | D OPINION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FREQUENCY ROW PCT | NO ISO | \| 1 | 12 | $13 \geqslant$ | 14 | 15 | 17 | TOTAL |
| DU ELECT UPGRADE | $5 \begin{array}{r}21 \\ 512\end{array}$ | 150 3659 | 112 $27 \quad 32$ | $25^{105}$ | 15 366 | 7 $17-1$ | 0 000 | 410 |
| BLDG/OU CIRCUIT | 0 000 | 5569 | 13 $\begin{array}{r}17 \\ \hline 1\end{array}$ | 20 $\begin{array}{r}26 \\ 97\end{array}$ | 1 2 4 | 7 $\begin{array}{r}9 \\ \hline\end{array}$ | 0 <br> 0 | 124 |
| CHG SERVICE PANE | 1 <br> 4 | 8 34 | $13 \quad \begin{array}{r}3 \\ 13\end{array}$ | 7 $30 \quad 43$ | 4 $17 \quad 39$ | 0 000 | 0 <br> 0 | 23 |
| MUNIC WATER | 0 | 9 23 | 15 $39 \quad 47$ | 14 $36 \quad 84$ | 0 000 | - 00 | 0 <br> 0 | 38 |
| DIST CATH PROTEC | $1 \begin{array}{r}1 \\ 1\end{array}$ | 25 3623 | 25 3623 | $24 \begin{array}{r}17 \\ 64\end{array}$ | $14 \begin{array}{r}1 \\ 4\end{array}$ | 000 | 0 <br> 0 | 69 |
| WASTE CATH PROTC | 0 000 | 11 3548 | 10 326 | $29 \quad 93$ | $3 \begin{array}{r}1 \\ 23\end{array}$ | 000 | 0 <br> 0 | 31 |
| STANDALONE TANKS | $\begin{array}{r}0 \\ 0\end{array}$ | $23 \begin{array}{r}9 \\ \hline 8\end{array}$ | $28 \begin{aligned} & 11 \\ & 21\end{aligned}$ | 9 2308 | - 0 | 10 2564 |  | 39 |
| DU HW SYSTEM | 000 | $\begin{array}{r}19 \\ 30 \quad 65 \\ \hline\end{array}$ | 18 2903 | 11 17 | $32 \begin{array}{r}2 \\ \end{array}$ | $19 \begin{array}{r}12 \\ 195\end{array}$ | 0 <br> 0 | 62 |
| BLDG HW SYSTEM | 0 000 | $\begin{array}{r}13 \\ 2281 \\ \hline\end{array}$ | 20 3509 | 15 2632 | 10 53 | 3 $5 \quad 26$ | $00 \mid$ | 57 |
| MORE HW | 0 000 | 8 17 | 14 $30 \quad 43$ | $50 \quad 23$ | 1 $2 \quad 17$ | 0 000 | 0001 | 46 |
| MORE SEPTIC CAPA | $0 \stackrel{\circ}{\circ}$ | 53 $\begin{array}{r}54 \\ 47\end{array}$ | 31 3069 | $13 \begin{gathered}14 \\ 86\end{gathered}$ | 0 | 2 198 | 0 <br> 0 | 101 |
| MORE PIPE CAPACI | - $\begin{array}{r}1 \\ 0\end{array}$ | 82 4100 | 64 3200 | 53 2650 | - 0 | 00 | 081 | 200 |
| MUNIC SEWER | 0 000 | $\begin{array}{r}0 \\ 000 \\ \hline\end{array}$ | 50 \% ${ }^{1}$ | 5000 | 0 0 | $\begin{array}{r}0 \\ 000 \\ \hline\end{array}$ | 0 <br> 0$\|$ | 2 |
| SEP STRM/SWR SYS | 0 0 | $60 \quad 3$ | $\bigcirc 0^{\circ}$ | $40 \quad 20$ | 0 000 | - 0 | 0 <br> 0 <br> 0$\|$ | 5 |
| TOTAL (CONTINUED) | 380 | 10615 | 8255 | 4941 | 1989 | 1489 | 13 | 27682 |

Exhibit J-1: Inspector Second Opinion by System (continued)

TAble of sys by sec

| SYS SYSTEM | SEc | INSP | OR | OP |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FREQUENCY ROW PCT | NO 150 |  | 12 | 13 | 14 | 15 | 17 | total |
| H2O COND EQUIP | 2 17 | 1270 | 17 2698 | 34 53 | $3 \begin{array}{r}2 \\ 17\end{array}$ | - 0 | 0-0 | 63 |
| CENT AC (COMMON | 000 | $\begin{array}{r}13 \\ 24 \\ \hline\end{array}$ | ( 3016 | $13 \begin{array}{r}7 \\ 21\end{array}$ | $22 \quad 12$ | 5 9 | - 01 | 53 |
| ASEESTOS RMVL PI | 0 | 10 4762 | $\begin{array}{r}6 \\ 28 \\ \hline-\end{array}$ | 5 23 | 0 0 | - 0 | 0 <br> 0 | 21 |
| BLOWDOWN/WTR TRE | $\begin{array}{r}1 \\ 8 \\ \hline\end{array}$ | - 0 | 50 ${ }^{6}$ | 2500 | 0 0 | $16{ }^{67}$ | 0 <br> 0 | 12 |
| WTR TREATMENT | - ${ }^{\circ}$ | 1600 | $24 \begin{array}{r}6 \\ 0\end{array}$ | 13 5200 | 0 0 | $80^{2}$ | 0 <br> 0 | 25 |
| flue damper | 3 166 | 53 298 | 60 33 | 49 27 | 9 4 | 7 38 | $0{ }^{0} 1$ | 181 |
| flue heat xchngr | 0 | 7 13 | 16 3077 | 25 48 | 0 000 | 2 85 |  | 52 |
| DU HEAT SYSTEM | $\circ$ 0 | 16 $23 \quad 19$ | $\begin{array}{r}31 \\ 44 \\ \hline\end{array}$ | $\begin{array}{r}9 \\ 13 \\ \hline\end{array}$ | $\begin{array}{r}1 \\ 145 \\ \hline\end{array}$ | $\begin{array}{r}12 \\ 17 \\ \hline\end{array}$ | 0 <br> 0 <br> 0 | 69 |
| CENT BOILER UPGR | $1{ }^{2}$ | $\begin{array}{r}64 \\ 3265 \\ \hline\end{array}$ | 46 2347 | $\begin{array}{r}79 \\ \hline 71\end{array}$ | $\begin{array}{r}7 \\ \hline 57\end{array}$ | $\begin{array}{r}7 \\ 357 \\ \hline\end{array}$ | 0 <br> 0 | 196 |
| TEMP SEtBACK CON | 2 078 | 63 24 | 65 2599 | 95 33 | 22 859 | 19 742 | 0 0 | 256 |
| day care | 1 112 | 37 $45 \quad 57$ | $46 \quad 41$ | $7 \begin{array}{r}7 \\ 7\end{array}$ | 1 +12 | 225 | 0 <br> 0 <br> 0 | 89 |
| COMMERCIAL | 0 000 | $14 \begin{array}{r}3 \\ 29\end{array}$ | 2 92 | 13 6190 | 2 92 | 1 46 | 0 <br> 0 | 21 |
| LAUNDRY | 175 | 20 3509 | $42 \begin{array}{r}24 \\ 42\end{array}$ | 875 | $\begin{array}{r}4 \\ \hline 8\end{array}$ | $5{ }^{3}{ }^{3}$ | - 01 | 57 |
| COMM/REC CTR | 00 | 52 $48 \quad 15$ | $\begin{array}{r}3245 \\ \hline 1\end{array}$ | 15 $13 \quad 89$ | 4 370 | 2 +85 | -01 | 108 |
| TOTAL <br> (CONTINUED) | 380 | 10615 | 8255 | 4941 | 1989 | 1489 | 13 | 27682 |

## Exhibit J-l: Inspector Second Opinion by System (continued)

TABLE OF SYS BY SEC

| SYS SYSTEM | SEC | INSPEC | TOR SECO | D OPINION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FREQUENCY ROW PCT | NO ISO | \| 1 | 12 | 13 | 14 | \| 5 | \| 7 | total |
| TEEN CTR | $2 \begin{array}{r}1 \\ \\ \hline\end{array}$ | $\begin{array}{r} \\ 51 \\ \hline 16\end{array}$ | 13 $30 \quad 23$ | $\begin{array}{r}5 \\ 11 \\ \hline 63\end{array}$ | $4 \begin{array}{r}2 \\ 65\end{array}$ | - 0 | $\begin{array}{r}0 \\ 0\end{array}$ | 43 |
| CENT MAIL RM | 0 0 | 19 3276 | 12 2069 | 18 3103 | 862 | 4 690 | - 0 | 5 |
| MAIL KIOSKS | $\bigcirc \bigcirc$ | $24 \begin{array}{r}13 \\ 53\end{array}$ | 24 $\begin{array}{r}13 \\ 53\end{array}$ | 39 $\begin{array}{r}21 \\ 62\end{array}$ | 4 $7 \quad 55$ | 2 $3 \quad 77$ | 0 000 | 5 |
| MAINT SHOP | 1 0.57 | 62 35 | $37 \begin{array}{r}66 \\ 30\end{array}$ | 22 $12 \quad 50$ | 19 1080 | $34^{6}$ | - 0 | 176 |
| OFFICES | 00 | 27 $25 \quad 71$ | $41 \begin{array}{r}44 \\ \hline\end{array}$ | 22 20 | 10 952 | 1920 | 000 | 105 |
| HEALTH FACILS | 0 | 29 4143 | $\begin{array}{r} \\ 38 \\ \hline 27\end{array}$ | $17 \begin{array}{r}12 \\ 14\end{array}$ | 1 143 | $1 \begin{array}{r}1 \\ 14\end{array}$ | $\begin{array}{r}0 \\ 0\end{array}$ | 70 |
| CENTRAL COMPACTO | 31 | 12 .4138 | 27 $\begin{array}{r}8 \\ \hline\end{array}$ | $17 \begin{array}{r}5 \\ 24\end{array}$ | - 00 | 3 $10 \quad 34$ | - 0 | 29 |
| INCIN-COMPACTOR | 3 265 | $\begin{array}{r}46 \\ \hline 68\end{array}$ | 2933 | $22 \begin{array}{r}25 \\ 12\end{array}$ | 3 $\begin{array}{r}4 \\ \hline\end{array}$ |   <br>  7 | 0 | 113 |
| TRASH ENCLOSURE | 3 182 | 72 4364 | 63 <br> 38 <br> 18 | 18 1091 | 7 $4 \quad 24$ | 1 061 | 061 | 16 |
| YRD FENCING | 123 | 30 1840 | 64 39 | $18 \begin{array}{r}30 \\ 40\end{array}$ | 27 $16 \quad 56$ | 10 $6 \quad 13$ | 0 | 16 |
| YRD LANDSCAPING | 0 | $32 \begin{array}{r}21 \\ 31\end{array}$ | $\begin{array}{r}25 \\ 38 \\ \hline\end{array}$ | $18 \quad 12$ | 6 9 | 1 1 | 000 | 6 |
| PERIMETER FENCE | 1 060 | $\begin{array}{r}17 \\ \hline 29\end{array}$ | 72 4286 | 34 $20 \quad 24$ | 15 $8 \quad 93$ | 10 $\begin{array}{r}17 \\ 10\end{array}$ | 0 | 168 |
| LANDSCAPING |  | 103 29 | 41 $\begin{array}{r}144 \\ \hline 14\end{array}$ | 30 857 | 1346 | $5 \begin{array}{r}20 \\ 5 \quad 71\end{array}$ | - 00 | 35 |
| REMOVE PAVING | 000 | 3922 | $29 \quad 15$ | 23 $\begin{array}{r}12 \\ 53\end{array}$ | 3 92 | 392 | 000 | 5 |
| TOTAL <br> (CDNTINUED) | 380 | 10615 | 8255 | 4941 | . 1989 | 1489 | 13 | 2768 |

Exhibit J-1: Inspector Second Opinion by System (continued)

TABLE OF SYS BY SEC

| SYS SYSTEM | SEC | INSPEC | TOR SECON | D OPINION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FREQUENCY ROW PCT | NO ISO | \| 1 | 12 | 13 | 14 | 15 | 17 | TOTAL |
| SITE DRAINAGE | 1 182 | $38 \quad \begin{array}{r}21 \\ 18\end{array}$ | 15 $27 \quad 27$ | 20 $\begin{array}{r}11 \\ 00\end{array}$ | 5 909 | 2 34 | 0 00 | 55 |
| CARPORT | - 0 | 0 | $16 \begin{array}{r}4 \\ \hline 67\end{array}$ | 6 2500 | 4511 458 | 1250 | 0001 | 24 |
| GARAGE | 000 | $\begin{array}{r}0 \\ 0\end{array}$ | $23 \quad$7 | 1000 | $63 \quad \begin{array}{r}19 \\ 33\end{array}$ | 3 33 | 0 <br> 000 | 30 |
| PARKING LOT | 11 608 | 58 $32 \quad 4$ | 75 4144 | 29 $16 \quad 02$ | 8 442 | 0 000 | 0 <br> 0 | 181 |
| PAVE LOT | $4{ }^{3}$ | $\begin{array}{rr}19 \\ 31 & 15\end{array}$ | 17 2787 | 14 $22 \quad 95$ | 6 984 | 28 3 | 0 <br> 0 00 | 61 |
| CURB LOT | 3 3 | 3433 | 31 $32 \quad 29$ | $17 \begin{aligned} & 17 \\ & 71\end{aligned}$ | 11 <br> 1146 | $1 \begin{array}{r}1 \\ 1\end{array}$ | 001 | 96 |
| DRAIN LOT | 4 $9 \quad 52$ | 17 4048 | 12 $28 \quad 57$ | 6 1429 | $2 \begin{array}{r}1 \\ 38\end{array}$ | $4 \begin{array}{r}2 \\ 46\end{array}$ | 0 <br> 000 | 42 |
| SIDEWALKS* | $2 \begin{array}{r}3 \\ \hline\end{array}$ | $\begin{array}{r}54 \\ 39 \\ \hline 13\end{array}$ | 36 2609 | $14 \begin{array}{r}29 \\ 49\end{array}$ | $12 \begin{array}{r}17 \\ \hline\end{array}$ | ¢ 88 | 0 <br> 0 | 138 |
| OEDEST WALLS | 0 | 1 $27 \begin{array}{r}3 \\ \hline\end{array}$ | $\begin{array}{rrr} \\ 18 & 18\end{array}$ | 45 45 | 1 $9 \quad 09$ | 0 000 | 0 <br> 000 | 11 |
| PLAYGROUND | 5 $2 \quad 10$ | 51 $\begin{array}{r}122 \\ \hline 126\end{array}$ | 78 $32 \quad 77$ | 19 798 | 9 388 | 5 $2 \quad 10$ | 0 <br> 0 1 | 238 |
| Play equip | $\begin{array}{r}5 \\ \hline\end{array}$ | 4489 | 64 $41 \quad 56$ | 14 309 | 1 065 | 1 065 | 0 <br> 0 <br> 00 | 154 |
| TOT LOT | 286 | 52 $\begin{array}{r}91 \\ 00\end{array}$ | 32 $\begin{array}{r}57 \\ \hline\end{array}$ | 17 $9 \quad 71$ | 173 | 1 $\begin{array}{r}2 \\ \hline\end{array}$ | 0 <br> 0 | 175 |
| TOT EQUIP | 0 000 | 20 44 | 21 $46 \quad 67$ | $6 \quad 67$ | 0 0 | $2 \quad 22$ | 0 <br> 0$\|$ | 45 |
| PLAY COURT | $4 \begin{array}{r}5 \\ 4\end{array}$ | 51 $41 \quad 46$ | 41 $33 \quad 33$ | 18 1463 | $4 \begin{array}{r}5 \\ 4\end{array}$ | $2 \begin{array}{r}3 \\ 44\end{array}$ | 0 <br> 000 | 123 |
| TOTAL <br> (CONTINUED) | 380 | 10615 | 8255 | 4941 | 1989 | 1489 | 13 | 27682 |

Exhibit J-1: Inspector Second Opinion by System (continued)

Official Business
U.S. Department of Housing and Urban Development
Washington, D.C. 20410-0000

HUD-1130-PDR


[^0]:    1 Note that these estimates are for current (or "backlog") modernization needs. A future HUD-sponsored report will estimate the accrual of physical depreciation in public housing.

[^1]:    * Mod Standards consist of items required for health and safety or systems integrity.
    ** Energy Conservation and Handicapped ADDs overlap the findings of the Energy Conservation Study and Handicapped Estimate. See the discussion on Page xvi.

[^2]:    1 Note that Exhibit 1.4 shows the public housing ADDs components for ISO categories 1 and 2; comparable figures for 211 ISOs are $\$ 1,243$ for Required; \$7,386 for Project Specific; $\$ 1,109$ for Energy; and $\$ 46$ for Handicapped. Chapter 6 and Appendix I provide details for each category.

[^3]:    1 For the details of the sampling and estimation plan, refer to The Modernization Needs of Public Housing: Sample Design for the Main Analysis Sample, Cambridge, Mass., Abt Associates Inc., March 1985; Memorandum dated Apri1 28, 1986, "Main Sample Estimation Formulae for Estimation of Public Housing Modernization Costs," by Chuck Wolters, Michael Battaglia, and Sally Merrill; and Memodanum dated March 25, 1986, "Weighting the Modernization Needs Study Inspection Sample," by Michael Battaglia and Chuck Wolters.

[^4]:    1 Direct estimates are those for which, by design, are directly available from the sample at the chosen level of reliability. Direct subclass estimates are also statistically reliable estimates directly available from the sample, but the sample design did not explicitly incorporate these characteristics. Allocated estimates, in contrast, may be derived from models as well as from simple, non-statistical rules, but are not direct estimates of the sample, usually because the sample size is too small to permit precise estimates.

[^5]:    1 This estimate includes $\$ 500,000$ to account for the total modernization needs of the Guam PHA which was not included in the PHA sampling frame.

[^6]:    * Mod Standards consist of items required for health and safety or systems integrity.
    ** Energy Conservation and Handicapped ADDs overlap the findings of the Energy Conservation Study and Handicapped Estimate.

[^7]:    1 The Modernization Needs Survey, a four page questionnaire mailed by abt Associates to some 6,670 PHA developments in about 1,000 PHAs in 1984 to gather preliminary information needed to design the inspection sampling plan.

[^8]:    I "An Evaluation of the Physical Condition of the Public Housing Stock-Energy Conservation, Volume 4, H2850, March 1980, with corrections provided by HUD's Office of Housing.

[^9]:    1 See Kevin Neels and James Wallace, "Energy Analysis Plan for the Modernization Needs Study," Abt Associates Inc., Cambridge, Massachusetts. November 1984.

[^10]:    1 See Energy Conservation for Housing: A Workbook, HUD-PDR-700(3), April 1983.

    2 (See An Evaluation of the Physical Condition of the Public Housing Stock-Energy Conservation, Volume 4, H2850, March 1980)

[^11]:    Handicapped Accessibility Costs are distributed by region based on the regron's share of units.

[^12]:    1 Wallace, James E., "The Cost of Lead Based Paint Abatement in Public Housing," prepared for the Office of Policy Development and Research, U.S. Department of Housing and Urban Development, July 1986 (HUD-1024-PDR, August 1986).

[^13]:    I For the details of the sampling plan, refer to The Modernization Needs of Public Housing: Sample Design for the Main Analysis Sample, Abt Associates, Inc., Cambridge, Mass., March 1985.

    2 The PHA size categories are: Extra Large, Large, Medium, Small, and Very Small.

[^14]:    1 For details of the weighting methodology, refer to the memorandum dated March 25, 1986, Weighting the Modernization Needs Study Inspection Sample," by Michael Battaglia and Charles Wolters.

[^15]:    1 For details of the estimation plan, refer to the memorandum dated April 28 , 1986, "Main Sample Estimate Formulae for Estimation of Public Housing Modernization Costs," by Charles Wolters, Michael Battaglia, and Sally Merrill.

[^16]:    1 The software employed for standard error estimation is the RATIOTEST program: RATIOTEST: Standard Errors Program for Computing of Ratio Estimates from Sample Survey Data, B.V. Shah, Research Triangle Institute, April, 1981.

