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Data Shop
Data Shop, a department of Cityscape, presents short articles or notes on the uses 
of data in housing and urban research. Through this department, PD&R introduces 
readers to new and overlooked data sources and to improved techniques in using well-
known data. The emphasis is on sources and methods that analysts can use in their own 
work. Researchers often run into knotty data problems involving data interpretation 
or manipulation that must be solved before a project can proceed, but they seldom get 
to focus in detail on the solutions to such problems. If you have an idea for an applied, 
data-centric note of no more than 3,000 words, please send a one-paragraph abstract to 
david.a.vandenbroucke@hud.gov for consideration.

Abstract

This short article introduces two techniques of generating cross-tabulations in small 
areas (for example, block groups or tracts) for which only univariate distributions are 
available. These techniques require either a microsample or a cross-tabulation from 
a larger geographic area (for example, a Public Use Microdata Area). One technique 
uses hill-climbing algorithms, and the other is based on iterated proportional fitting. 
In this article, we identify the general characteristics of both techniques. We present 
and evaluate an example (generating cross-tabulations of households by housing value 
and number of children enrolled in public school), briefly discuss extensions of both 
techniques to synthetic population construction, and test the synthetic populations by 
comparing the estimated microsamples with the actual population.
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Introduction
A common problem in small-area data analysis is the lack of cross-tabulations for minor geographic 
areas. For large areas, microdata are often available, from which one can construct cross-tabulations  
in a straightforward manner. For example, using the Census Public Use Microdata Sample (PUMS), 
one can construct cross-tabulations for all geographies at or above the level of Public Use Microdata 
Areas (PUMAs). A PUMA has at least 100,000 residents. For any smaller area, only select cross-
tabulations are readily available from the census. Thus, for a census tract in the 2000 Census, 
American Fact Finder provided information on house value by household income, but these data 
were not reported for block groups. Even at the tract level, American Fact Finder provided no 
cross-tabulation for household value by number of household children enrolled in public schools. 
Recently, for a research project (Kurban, Gallagher, and Persky, 2011) on in-kind transfers, including 
those through public school systems, this value was one of several key cross-tabulations needed at  
the block-group level. An interest in imputing such small-area tables is widespread and can arise in  
any number of projects involving microgeography. The challenge is to build small-area tables in  
a reliable fashion. This article describes two relatively straightforward, and now quite accessible,  
techniques for generating synthetic cross-tabulations in small-area data analysis. The first technique, 
largely developed in Great Britain and favored by geographers (Huang and Williamson, 2002; Ryan, 
Maoh, and Kanaroglou, 2009; Voas and Williamson, 2000; Williamson, Birkin, and Rees, 1998), 
is based on hill-climbing algorithms from computer science.1 The second technique, which is better 
known in the United States, is iterated proportional fitting (IPF).2 IPF has been widely used by 
transportation analysts (Baggerly et al., 1998; Beckman, Baggerly, and McKay, 1996).

The common starting point for both techniques is information on small-area univariate distribu-
tions or marginals. For example, the census provides us with the distribution of households 
across categories of housing values within block groups. For each block group, we also have the 
distribution of households by number of children in the public schools. What we do not have (and 
what we want) is the cross-tabulation of households by housing values and number of children in 
the public schools. Both IPF and hill climbing are heuristic methods that start with a real cross-
tabulation at a higher level geography and alter it in an effort to reproduce the known marginals 
for the lower level geography IPF works directly on the higher level table with a number of 
sequential adjustments aimed at bringing that table into conformity with the small-area marginals. 
By contrast, hill climbing begins with the raw microdata for the higher level geography and assigns 
the individual observations to each of the small areas, which compose a larger area. We make these 
assignments to match the marginals available for each small area.

In the next section, we briefly introduce the conceptual foundations of each of these techniques. 
We then make some suggestions for introductory software tools that are easily available on the 

1 The term “hill climbing” is used broadly in computer science to cover a range of heuristics based on random search. 
Given an objective function, hill-climbing methods search randomly around an initial point in an attempt to maximize that 
function locally (that is, to find a hilltop). To avoid being trapped at a local maximum, hill-climbing algorithms randomly 
restart their search at more distant points, keeping track of their global performance. See Michalewicz and Fogel (2004) and 
Russell and Norvig (2003).
2 Iterated proportional fitting was first introduced by Deming and Stephan (1940).
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Internet. Although we do not provide step-by-step instructions, we do present an extended ex-
ample, which applies both techniques to the same problem. The last section introduces extensions 
of these two methods that can be used to create full-scale synthetic populations for small areas.

Two Techniques
Perhaps the easiest way to fill in a small-area cross-tabulation is simply to take a larger area cross-
tabulation and scale it down to the size of the small area in question. Alternatively, if microdata are 
available for the larger area, a simple random assignment of household observations to the various 
component small areas, achieving those areas’ total populations, would be expected to generate a 
similar result. The two techniques presented in this article offer substantial improvements on these 
naive approaches by incorporating iterative procedures that account for univariate marginals of 
the small areas. Hill climbing starts with a random assignment of microdata, while IPF starts with 
scaled-down cross-tabulations.

Hill Climbing
Hill climbing begins by randomly populating small areas with household observations taken from 
the larger area. One draws household observations from the larger area with replacement and as-
signs each small area only the number of households it actually holds. At this point, the simulated 
univariate distributions will not generally match the real distributions. Next, one randomly swaps 
households from one small area to another so as to improve the match between the real and 
simulated marginals while holding the small-area populations unchanged. Hill climbing imple-
ments pair-wise swaps only if the swaps improve the fit of the allocation. These swaps are repeated 
several times to improve the fit between the marginals gradually. To avoid becoming trapped in 
local optimums at the expense of reaching a global optimum, Huang and Williamson (2002), 
Voas and Williamson (2000), and Williamson, Birkin, and Rees (1998) implemented a flexible 
annealing procedure that allows the swapping algorithm to accept some swaps that produce poorer 
performance. This procedure helps improve the overall fit by allowing the algorithm to search 
across local optimums to get closer to a global optimum. The goodness-of-fit for each allocation is 
continuously recorded, and a prespecified stopping procedure determines when the swapping will 
come to a halt.

Iterated Proportional Fitting
A second technique for small-area table construction is iterated proportional fitting (IPF). The basic 
idea of IPF is straightforward. For a set of small areas that comprise a larger unit such as a PUMA, 
seed each small-area table with a copy of the PUMA-level table scaled to the small-area population. 
At this point, any cell in the large-area table just barely equals the sum of corresponding entries in 
the small-area seed tables; however, neither row marginals nor column marginals from the seed  
tables will add up to the actual marginals for the small areas. Next, multiply each row in each small- 
area seed table by a unique constant so that the cells in that row sum to the known corresponding 
row marginal for the actual small area. After these operations, column sums in the adjusted seed 
tables will generally not equal the corresponding true column marginals, nor will the cells in the 
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adjusted seed tables sum to the corresponding cells in the large-area table. The second adjustment 
takes the new small-area seed tables and multiplies each column by a constant so that its elements 
add up to corresponding column marginal for the actual small-area data. Finally, a third set of 
multiplicative adjustments guarantees that entries in the small-area seed tables sum to the cor-
responding entry of the actual large-area table.

The IPF technique consists of repeated iterations of these row, column, and stack adjustments. The 
overall process is brought to a halt by specifying an appropriate stopping rule based on the abso-
lute magnitude of cell adjustments. IPF has a strong intuitive appeal. It is well known to converge 
(Fienberg, 1970; Ireland and Kullback, 1968). In the general case, in which small-area cell entries 
may be generated from very different processes, the quality of IPF estimates is not guaranteed.

An Example
To illustrate the two techniques for generating small-area cross-tabulations, we now turn to an  
example suggested by our own work. But, as opposed to a scenario where small area cross-tabulations 
are not known, we use geographies in this example for which complete data are available. There-
fore, for this case, the accuracy of each technique can be fully assessed and compared.

Basic Data for Both Techniques
As suggested previously, our project involved estimating cross-tabulations of households with 
given housing values and specific numbers of children enrolled in public schools. Although 
we were interested in generating data for block groups and school districts using known cross-
tabulations for PUMAs, for this example, we frame the problem in terms of generating tables for 
PUMAs using known cross-tabulations for their super-PUMA. By doing so, we can compare the 
results with known values for those PUMAs.3

The data are from the 2000 Integrated Public Use Microdata Series (IPUMS) data file (http://www.
ipums.org/)4 for a suburban Chicago super-PUMA (17100) consisting of four PUMAs (numbers 
3101, 3102, 3103, and 3104). The 2 variables of interest are housing values aggregated into 13 
categories and number of children in public schools aggregated into 5 categories. The IPUMs 
provides these data at the household level. Exhibits 1a and 1b present the housing value and 
school children distributions (that is, marginals) for each PUMA. Exhibit 2 presents the relevant 
cross-tabulation for the super-PUMA.5

3 PUMAs are defined by the Census Bureau: each PUMA must be contiguous and have at least 100,000 people. PUMAs 
do not cross state boundaries. Super-PUMAs have at least 400,000 people and are made up of contiguous PUMAs. Like 
PUMAs, super-PUMAs do not cross state lines. PUMS data allow tabulations at both the PUMA and super-PUMA levels.
4 University of Minnesota, Minnesota Population Center. 2008. “Integrated Public Use Microdata Series: Version 4.0.”
5 The exhibits presented here are constructed from unweighted micro-observations. They could easily be weighted for use 
in actual practice.

http://www.ipums.org/
http://www.ipums.org/
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PUMA 
Number of Children

0 1 2 3 4+
3101 1,381 344 259 88 42
3102 901 197 152 59 24
3103 1,053 322 286 132 26
3104 972 391 306 125 53

PUMA = Public Use Microdata Area.

Exhibit 1b

Univariate Public School Children Tabulations by PUMA

Exhibit 1a

House Value 
($)

PUMA

3101 3102 3103 3104

Univariate House Value Tabulations by PUMA

0–49,999 147 80 15 10
50,000–79,999 176 228 41 51
80,000–89,999 137 183 55 41
90,000–99,999 161 179 84 71
100,000–124,999 351 220 196 267
125,000–149,999 356 212 264 283
150,000–174,999 248 111 282 322
175,000–199,999 182 54 247 205
200,000–249,999 164 35 295 207
250,000–299,999 99 10 201 120
300,000–399,999 58 10 96 163
400,000–499,999 13 4 24 56
500,000+ 22 7 19 51

PUMA = Public Use Microdata Area.

PUMA = Public Use Microdata Area.

Exhibit 2

House Value 
($)

Number of Children

0 1 2 3 4+

Super-PUMA 17100 Cross-Tabulations

0–49,999 181 41 18 7 5
50,000–79,999 342 80 36 28 10
80,000–89,999 280 65 53 13 5
90,000–99,999 344 70 57 17 7
100,000–124,999 658 185 135 42 14
125,000–149,999 707 184 142 56 26
150,000–174,999 572 171 144 55 21
175,000–199,999 394 130 110 44 10
200,000–249,999 362 136 135 50 18
250,000–299,999 229 85 69 35 12
300,000–399,999 146 67 65 38 11
400,000–499,999 44 23 17 9 4
500,000+ 48 17 22 10 2
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The Hill-Climbing Technique
Paul Williamson (2007) designed a readily available application of hill climbing that is suitable for 
beginners. Williamson calls his technique combinatorial optimization (CO) and a description of 
his program can be downloaded from his website.6 Users can quickly adapt the CO application to 
their particular needs.

The CO program uses the household microdata for super-PUMA 17100 and all PUMA marginals. 
Starting with PUMA 3101, the program assigns household observations by randomly drawing (with 
replacement) a subset of the 2,114 households from the super-PUMA microsample (exhibit 2) to 
match the total population in this PUMA. After each PUMA has been randomly populated, the 
CO program begins the swapping and simulated annealing procedures. The fit of the swapping 
procedures is continuously assessed using a goodness-of-fit function proposed by Huang and  
Williamson (2002) and Voas and Williamson (2001).

The final output is simply a list of households allocated to each PUMA. From this list of households, 
it is relatively easy to construct any desired cross-tabulation, including the cross-tabulation of house  
value and number of children of interest here. The final estimate for PUMA 3101 is presented in 
exhibit 3b. Exhibit 3a contains the actual cross-tabulations for this PUMA. Across all four PUMAs, 
the program does quite well. The mean absolute error per household suggests that reallocating  
6 percent of the households in the super-PUMA would allow an exact match to all four actual 
PUMA cross-tabulations.

Exhibit 3a

House Value
($)

Number of Children

0 1 2 3 4+

PUMA 3101 Real Cross-Tabulations

0–49,999 111 23 8 2 3
50,000–79,999 132 28 6 7 3
80,000–89,999 82 29 19 4 3
90,000–99,999 115 18 21 5 2
100,000–124,999 223 60 47 15 6
125,000–149,999 247 55 35 15 4
150,000–174,999 146 44 39 11 8
175,000–199,999 113 34 24 10 1
200,000–249,999 90 26 30 12 6
250,000–299,999 60 16 13 5 5
300,000–399,999 37 9 11 0 1
400,000–499,999 9 0 3 1 0
500,000+ 16 2 3 1 0
PUMA = Public Use Microdata Area.

6 Go to http://pcwww.liv.ac.uk/~william/microdata/CO%20070615/CO_software.html.

http://pcwww.liv.ac.uk/~william/microdata/CO%20070615/CO_software.html
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Exhibit 3b

House Value
($)

Number of Children

0 1 2 3 4+

Hill-Climbing Cross-Tabulations for PUMA 3101*

0–49,999 110 24 7 2 4
50,000–79,999 128 29 8 8 3
80,000–89,999 94 20 21 2 0
90,000–99,999 116 21 15 8 1
100,000–124,999 236 63 35 12 5
125,000–149,999 243 48 43 14 8
150,000–174,999 153 39 40 11 5
175,000–199,999 109 35 30 5 3
200,000–249,999 98 24 25 11 6
250,000–299,999 55 21 13 6 4
300,000–399,999 24 13 12 6 3
400,000–499,999 3 4 4 2 0
500,000+ 12 3 6 1 0
PUMA = Public Use Microdata Area.

* Values are rounded to the nearest whole number.

The IPF Technique
A number of programs for doing IPF are downloadable from the Internet.7 Several of these programs 
are part of elaborate data processing systems and require considerable investment of energy to learn. 
For beginners interested in generating only simple cross-tabulations, we found the work of Nels 
Tomlinson and Eddie Hunsinger (Alaska Department of Labor and Workforce Development, 
2011)8 programmed in R the simplest to customize and apply.

The basic inputs to an IPF program are four simple tables. These include (1) the marginals (in our 
case, the material of exhibits 1a and 1b), (2) the cross-tabulations for the larger area (our exhibit 2), 
and (3) and (4) an initial “seed table” for each of the small areas. The seed tables are copies of the 
larger area table (exhibit 2) scaled to the populations of each small area. These tables are the starting 
points for the successive row and column adjustments that characterize this procedure.

The IPF program generates cross-tabulations for each small area. In exhibit 3c, we present the resulting 
table for PUMA 3101. As with the hill-climbing technique described previously, the IPF-estimated 
marginals for the small-area tables match the actual values almost perfectly. A comparison of the cells  
of the IPF-estimated tables with the actual table cells demonstrates that IPF successfully approximated 
the cross-tabulations. The overall mean absolute error suggests that a reallocation of 4 percent of  
the households in the super-PUMA would allow an exact match to all four actual PUMA cross-
tabulations. Thus, for this example, the IPF technique performed somewhat better than the hill-
climbing technique described previously.

7 Two well-known software applications are the U.S. Department of Transportation’s TRANSIMS program available at 
http://tmip.fhwa.dot.gov/community/user_groups/transims and Arizona State University’s PopGen program available at 
http://urbanmodel.asu.edu/popgen.html.
8 For programs, documentation, and an introduction to the iterated proportional fitting literature, go to http://www.
demog.berkeley.edu/~eddieh/datafitting.html.

http://tmip.fhwa.dot.gov/community/user_groups/transims
http://urbanmodel.asu.edu/popgen.html
http://www.demog.berkeley.edu/~eddieh/datafitting.html
http://www.demog.berkeley.edu/~eddieh/datafitting.html
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Discussion
Both hill climbing and IPF handle the example problem quite well.9 It should be clear that both 
table-generating techniques are now executable without a major investment in training and 
programming. Although IPF worked somewhat more effectively for our example problem, the 
two techniques seem quite comparable in terms of results. At this level, IPF is probably somewhat 
easier to implement.

The hill-climbing technique has one major advantage: The immediate product of hill climbing 
is a full assignment of households to small areas. After that assignment is made, it can be used 
directly as a set of synthetic populations.10 From those synthetic populations, it is relatively easy 
to estimate not just the initial cross-tabulations of interest but also virtually any cross-tabulations 
of household characteristics in the original data set. Moreover, the hill-climbing technique can be 
easily extended to include any number of relevant marginal conditions in the initial assignment.

In contrast, constructing a synthetic population using the IPF technique requires a major second 
step in which household assignments are carried out using repeated random samples constrained 

9 The results achieved here by these techniques are probably better than what can be expected generally. For one thing, 
the PUMA marginals we used are drawn from the same basic data set as the microsample for the super-PUMA. When the 
marginals and sampled microdata are drawn from separate sources, a certain amount of sampling variation would be likely. 
More importantly, the quality of the fit at the small-area level depends on the extent to which higher level and lower level 
areas have similar table structures or correlations. If the small areas are quite different from each other and from their sum, 
both techniques are likely to suffer.
10 Researchers are showing an increasing interest in studying small-area phenomena. For small areas such as block groups or 
census tracts, microdata samples are generally unavailable. Generating a synthetic population at this small-area level means 
formulating a collection of households appropriately selected from a larger geography, such as a PUMA. The problem, of 
course, is to define what selection mechanisms are “appropriate.”

Exhibit 3c

House Value 
($)

Number of Children

0 1 2 3 4+

IPF Cross-Tabulations for PUMA 3101*

0–49,999 106 24 10 4 3
50,000–79,999 124 28 12 8 4
80,000–89,999 94 21 17 4 2
90,000–99,999 115 22 17 5 2
100,000–124,999 234 58 42 11 5
125,000–149,999 238 55 41 14 8
150,000–174,999 158 40 33 11 5
175,000–199,999 113 32 26 9 3
200,000–249,999 93 29 29 9 5
250,000–299,999 58 18 14 6 3
300,000–399,999 30 11 10 5 2
400,000–499,999 7 3 2 1 1
500,000+ 12 3 4 2 0
IPF = iterated proportional fitting. PUMA = Public Use Microdata Area.

* Values are rounded to the nearest whole number.
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by the estimated table cells (Beckman, Baggerly, and McKay, 1996). A system of this type requires 
more sophisticated programming. It at least necessitates becoming familiar with one of the pack-
ages (for example, TRANSIMS11 and PopGen12 described in footnote 7) available to the public. 
These packages also involve considerably more sophisticated versions of the basic IPF algorithm, 
because extending the dimensionality of the table to be estimated requires building estimates of 
lower level tables as well.

IPF and hill climbing are promising techniques for creating synthetic populations, but a number of 
issues remain unresolved. Generating synthetic populations from IPF results involves the synthetic 
reconstruction of microsamples based on stochastic approaches that are often subject to sampling 
error. This error is likely to be more significant for small sample areas. Even if the model estimates 
are unbiased, there is no guarantee that the variance will not be too large. The second problem 
with IPF is that it uses a sequential procedure. Some error is introduced in each stage as a result of 
random sampling, modeling assumptions, and data consistency (Huang and Williamson, 2002). 
Similar to the IPF procedure, the hill-climbing procedure is a stochastic process. Variations in the 
sample seed values will alter the baseline household selections and estimated distributions. Two 
previous studies (Huang and Williamson, 2002; Ryan, Maoh, and Kanaroglou, 2009) have com-
pared the performance of IPF and hill-climbing methods for construction of synthetic populations. 
Both studies concluded that hill-climbing methods outperformed IPF.

Our somewhat tentative recommendation, therefore, is to continue using IPF for simple table 
construction. If you are generating more complete synthetic populations, however, hill climbing is 
more intuitive and perhaps more accurate.

Acknowledgments

The authors thank the U.S. Department of Housing and Urban Development’s Office of Policy De-
velopment and Research for hosting a seminar where an earlier draft of this paper was first presented.

Authors

Haydar Kurban is an associate professor in the Department of Economics at Howard University.

Ryan Gallagher is an assistant professor in the Department of Economics at Northeastern Illinois 
University.

Gulriz Aytekin Kurban received a Ph.D. in computer science from the University of Chicago.

Joseph Persky is a professor in the Department of Economics at the University of Illinois at Chicago.

11 TRansportation ANalysis and SIMulation System (TRANSIMS). U.S. Department of Transportation, Federal Highway 
Administration website: http://tmip.fhwa.dot.gov/community/user_groups/transims (accessed May 2011).
12 PopGen 1.1: Population Generator, Arizona State University. http://urbanmodel.asu.edu/popgen.html (accessed May 2011).

http://tmip.fhwa.dot.gov/community/user_groups/transims
http://urbanmodel.asu.edu/popgen.html


234

Kurban, Gallagher, Kurban, and Persky

Data Shop

References

Baggerly, Keith, Richard Beckman, Michael McKay, and Douglass Roberts. 1998. 
“TRANSIMS Synthetic Population System User Guide.” LA–UR–98–9693. Los Alamos, 
NM: Los Alamos National Laboratory.

Beckman, Richard J., Keith A. Baggerly, and Michael D. McKay. 1996. “Creating Synthetic 
Baseline Populations,” Transportation Research A 30 (6): 415–429.

Deming, W. Edwards, and Frederick F. Stephan. 1940. “On a Least Squares Adjustment 
of a Sampled Frequency Table When the Expected Marginal Tables Are Known,” Annals of 
Mathematical Statistics 11: 427–444.

Fienberg, Stephen E. 1970. “An Iterative Procedure for Estimation in Contingency Tables,” 
Annals of Mathematical Statistics 41: 349–366.

Huang, Zengyi, and Paul Williamson. 2002. A Comparison of Synthetic Reconstruction 
and Combinatorial Optimization Approaches to the Creation of Small-Area Microdata. 
Working paper. Liverpool, United Kingdom: University of Liverpool, Department of 
Geography.

Ireland, C.T., and S. Kullback. 1968. “Contingency Tables With Given Marginals,” 
Biometrika 55 (1): 179–188.

Kurban, Haydar, Ryan Gallagher, and Joseph Persky. 2011. Estimating Local Suburban 
Redistribution in Property-Tax-Funded School Systems. Working paper. Washington, DC: 
Howard University.

Michalewicz, Zbigniew, and David Fogel. 2004. How To Solve It: Modern Heuristics. New 
York: Springer.

Russell, Stuart J., and Peter Norvig. 2003. Artificial Intelligence: A Modern Approach, 2nd ed. 
Upper Saddle River, NJ: Prentice Hall.

Ryan, Justin, Hanna Maoh, and Pavlos Kanaroglou. 2009. “Population Synthesis: Comparing 
the Major Techniques Using a Small, Complete Population of Firms,” Geographical Analysis 
41 (2): 181–203.

Voas, David, and Paul Williamson. 2001. “Evaluating Goodness-of-Fit Measures for Synthetic  
Microdata,” Geographical and Environmental Modeling 5 (2): 177–200.

———. 2000. “An Evaluation of the Combinatorial Optimization Approach to the Creation 
of Synthetic Microdata,” International Journal of Population Geography 6 (6): 349–366.

Williamson, Paul. 2007. CO Instruction Manuel. Working paper 2007/1. Liverpool, United  
Kingdom: University of Liverpool, Department of Geography, Population Microdata Unit.



235

A Beginner’s Guide To Creating Small-Area Cross-Tabulations

Cityscape

Williamson, Paul, Mark Birkin, and Phil H. Rees. 1998. “The Estimation of Population Microdata 
by Using Data From Small Area Statistics and Samples of Anonymised Records,” Environment and 
Planning A 30 (5): 785–816.

Additional Reading

Wong, David. 1992. “The Reliability of Using the Iterative Proportional Fitting Procedure,” Profes-
sional Geographer 44 (3): 340–348.




