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Abstract

With the onset of big data, it is now relatively easy to gain access to a wide variety and 
great magnitude of data sources. Data, however, do not necessarily equate to useful 
insights and meaningful analysis. In this article, we outline a specific step-by-step 
approach to gaining insight into the spatial footprint of online, point-based data—in this 
particular case, data from the popular social media service Twitter.

Introduction
A key aspect of current research directions in urban studies is that researchers are inundated by 
both a flurry of “big” datasets and persistent writing about the importance of that data deluge. 
From cellphone records to open government datasets and online social media shared using appli- 
cation programming interfaces (APIs), the topic of big data—both in terms of possible applications 
and critique—is ever more present.

The relative ease with which a researcher can gain access to a variety of new data sources, however, 
does not necessarily mean that insights from those data can be achieved as easily. Putting aside key 
questions of what an indicator actually measures (an issue present in various forms across datasets), 
researchers are also confronted with the fact that many trusted analytical and mapping methods 
cannot be directly applied in standard ways to spatial big data. To partly alleviate this issue, we 
outline a step-by-step approach to gaining insight into the spatial footprint of online big data—in 
this particular case, the popular social media service Twitter. As with most geosocial online data 
(for example, Foursquare check-ins, geotagged Flickr photos), tweets are stored as spatial points 
with a longitude and latitude coordinate pair and a variety of other metadata (timestamp, text, 
images, activity records, etc.) that can be leveraged to gain useful insight on the spatial distribu-
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tion of daily life (Poorthuis and Zook, 2014). It should be noted that the approach outlined in this 
article would also be applicable to large spatial point pattern datasets generated from other, more 
traditional, sources.

So Much Data… Now What?
In principle, anyone with an interest in geosocial online data and some programming skills can 
access a wide range of APIs made available by almost every major social media platform. Although 
this article does not address the techniques for API access, tutorials and code are widely available. 
Moreover, those without the prerequisite technical skills can acquire ready-made datasets through 
third party vendors, such as Gnip. In stark contrast with the situation facing social science research 
for most of the 20th century, today we certainly do not suffer from a lack of data. For example, the 
Dolly project at the University of Kentucky has been collecting all geotagged tweets in the world since 
June 2012—totaling more than 9 billion data points, and counting. Even small subsets of such data, 
from people talking about receiving a flu shot to people tweeting about their favorite beer brands, 
yield many thousands of data points.

Instead, the pressing problem that presents itself is how to gain meaningful insights from such large 
collections of spatial points. Although research may take any number of approaches (Crampton et 
al., 2013), an early step is to simply map or visualize these data in ways that reveal the presence 
(or absence) of underlying spatial processes and distributions.

The easiest approach for visualizing the spatial distribution of data—in this case, tweets from 
Hurricane Sandy (Shelton et al., 2014)—is, quite literally, putting the points on the map (exhibit 1). 
This relatively straightforward one-to-one plotting of data points on a map presents two specific 

Exhibit 1

Overplotting—Too Many Points To Distinguish Clear Spatial Patterns
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problems. First, such maps suffer from “overplotting”: many overlapping points obscure each other 
and make it difficult to assess the total number of points in each area. Second, even if the problem 
of overplotting were solved, these patterns largely mimic population density: in the case of Twitter, 
more tweets are generally sent from densely populated areas because these locations simply have 
more Twitter users. This second problem is very much prevalent in maps of online phenomena 
and even reached modest Internet fame after Randall Munroe devoted a popular XKCD comic to it 
(exhibit 2). In the next sections, we walk through a step-by-step approach that first addresses the 
problem of overplotting by aggregating individual points to a hexagonal lattice. It subsequently 
provides a solution to correct for this population density “mirroring” by normalizing raw counts 
through the calculation of an odds ratio.

Exhibit 2

Population Density?

Source: Reprinted from http://xkcd.com/1138/
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Fixing the Overplotting Problem
A range of common cartographic and geographic information science, or GIScience, approaches 
can solve the problem of overplotting. The first is to make each data point slightly transparent. 
This approach is fine with only a small number of overlapping points but, in the case of big geo-
data, we are often confronted with hundreds of points overlapping in one location, while other 
locations have only one or two points. Another approach would be to visually “explode” overlap-
ping features, slightly offsetting their position to prevent overlap. Again, this approach works well 
with smaller datasets (John Snow’s classic cholera map is a prime example of this approach [Snow, 
1855]) but is not well suited for large datasets.

Another way to address the issue of overplotting is generating what is colloquially called a 
“heatmap.” Techniques such as kernel density estimation or kriging are used to create a (smooth) 
density surface. A major caveat, however, is that these techniques interpolate or “smooth” values in 
between actual data points and thus assume that the underlying spatial processes are continuous. 
This caveat applies to many natural phenomena, such as temperature and precipitation, but is 
more problematic when applied to social phenomena. This caveat is especially the case on an 
urban scale in which stark differences in demographics, retailing, and so on, are often present be-
tween neighborhoods or even from block to block. Although heatmaps are visually pleasing (and 
hence popular), they are not necessarily the most appropriate technique for gaining meaningful 
insight from online social media data.

A more suitable approach is to aggregate individual points to larger areas or polygons. These areas 
could be administrative regions, such as census tracts or counties, or they could be arbitrary spatial 
areas, such as rectangles, circles, or hexagons. Unless the final goal of the analysis is to compare 
the point data under study with other datasets that are available only for certain administrative 
units, aggregating to a lattice of arbitrary areas (such as hexagons) has two specific advantages 
from an analytical perspective. First, administrative units often have varying sizes. For example, 
counties in the western part of the United States, in general, are much larger than their eastern 
counterparts. The larger counties not only have a higher chance of having more points inside their 
border, but they also stand out much more visually. Aggregating to a regular lattice of rectangles or 
hexagons, in which every area has the exact same size, solves this problem. Second, such a lattice 
enables us to address, although not solve per se, the Modifiable Areal Unit Problem (MAUP) by 
intentionally modifying the size of the rectangles or hexagons. This can be done to test whether the 
spatial patterns indeed change due to MAUP or simply to choose the “best” cell size based on the 
underlying phenomenon (see Wilson, 2013, for an example of the consequences of changing  
areal units).

Creating a Hexagonal Lattice
Hexagonal lattices have seen a recent surge in popularity within online mapping, but they are 
more than just the latest fad—they have a few distinct advantages over rectangular grids. First, in 
cartographical terms, rectangular cells are more distracting. The eye is drawn to the horizontal and 
vertical grid lines, making it more difficult for the reader of the map to distinguish spatial patterns 
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(Carr, Olsen, and White, 1992). Second, in analytical terms, hexagonal lattices have a higher repre-
sentational accuracy than square or rectangular grids (Burt, 1980; Scott, 1988), meaning that 
they represent the underlying point pattern more closely. The hexagon is the highest sided regular 
polygon that can still be used to tessellate (that is, cover a surface without gaps or overlap), and, 
as such, it is closest to the ideal of a circle. The closer a polygon is to a circle, the closer its border 
points are to its center, which partly explains the higher representational accuracy.

As such, the first practical step in generating a hexagonal lattice is to aggregate up from the original 
point pattern. This aggregation can be done quite easily in Arcmap1 and QGIS2 or using R (R Core 
Team, 2014). Given the power of R and its relative newness to geospatial analysis, we include code 
snippets used for generating the maps in this article. More extensive (and commented) code with 
some sample data is available at https://github.com/atepoorthuis/smallstoriesbigdata.

library(sp)

tweets <- read.csv(“tweets.csv”, colClasses=c(“latitude”=“numeric”, 

“longitude”=“numeric”))

coordinates(tweets) <- c(“longitude”, “latitude”)

proj4string(tweets) <- “+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs”

hex <- HexPoints2SpatialPolygons(spsample(tweets, n=3000, “hexagonal”))

At this point we read a dataset of tweets from a .csv file, point to the longitude and latitude  
columns for the spatial coordinates, set a projection, and then generate a hexagonal grid over  
the same spatial extent. A key variable in this code is the number of cells in the lattice (3,000 in 
this example), but this number can be readily changed to explore how changes in cell size affect 
the resulting visualization. After we have produced a hexagonal lattice, we can then simply spatially 
join each individual tweet to a grid cell.

tweets$hex <- over(tweets, hex)$id

We take this intermediate step of adding the identifier of the corresponding grid cell to each indi-
vidual tweet, because it also allows for the flexibility of sampling down power users (Poorthuis and 
Zook, 2014). Within most online social media, a power law, or close approximation, can be found 
in which a few users contribute by far the most content (Clauset, Shalizi, and Newman, 2009). If 
we wanted to correct for that effect, we could, for example, randomly sample down active users to 
a maximum of 5 data points (or some other selected value) per grid cell.

library(data.table)

tweets.dt <- data.table(tweets)

tweets.dt[,sample(.I, if(.N > 5) 5 else .N), by=list(u_id, hex)]

After that, it is just a matter of counting the number of tweets per grid cell and visualizing the 
results.

tweets.dt[,tweets=.N, by=list(hex)]

1 http://www.arcgis.com/home/item.html?id=03388990d3274160afe240ac54763e57.
2 http://michaelminn.com/linux/mmqgis/.

https://github.com/atepoorthuis/smallstoriesbigdata
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An example of this step in the process is provided in exhibit 3, which shows the spatial pattern of 
tweets related to Hurricane Sandy sent in October 2012 (Shelton et al., 2014).

Exhibit 3

Aggregation to Hexagons

1–84

85–253

254–562

563–1,312

1,313–4,374

0

Number of Hurricane Sandy-related tweets

Normalizing the Cells Using an Odds Ratio
Although aggregating to hexagons solves the problem of overplotting, to a large extent, the resulting 
spatial pattern still follows very closely the distribution of population. Given that this dataset is 
derived from social media, this problem is to be expected. We are, after all, still looking at the raw 
count of the number of tweets, which is heavily influenced by how many people happen to live in 
each hexagon.

A fortunate side effect of the aggregation to polygons is that it becomes much easier to normalize 
each raw count. For conventional data, we would likely choose to normalize a phenomenon by 
simply dividing raw counts by the total population or, for example, the area of each polygon. 
In the case of online social media data, this approach has two specific disadvantages. First, the 
approach yields a ratio that becomes difficult to understand; for example, what does 15 tweets per 
square mile or 100,000 people actually mean? Second, the total population might very well not be 
the same as total tweeting population.

Instead, we calculate an odds ratio, which is slightly more sophisticated but has the great advantage 
of allowing us to normalize by any other variable, and the resulting ratios are easy to interpret 
(Edwards, 1963). In the case of social media data such as Twitter, it often makes sense to normalize 



Small Stories in Big Data:  
Gaining Insights From Large Spatial Point Pattern Datasets

157Cityscape

by a random sample of all tweets that stands in as a proxy for the total tweeting population rather 
than the total population in and of itself. By using the total tweeting population, we can visualize 
the distribution of a phenomenon within social media use, rather than the popularity of a social 
media service within the overall population. The formula for the odds ratio is—

,                                                                                                                                 (1)

where p
i
 is the number of tweets in hexagon i related to the phenomenon of interest (for example, 

flu shot tweets or tweets related to a certain beer brand) and p is the sum of all tweets related to 
that phenomenon in all hexagons. r

i
 is the number of random tweets in hexagon i and r is the sum 

of all random tweets in all hexagons. We choose a random sample of all tweets at this point, but 
one could easily substitute other variables—for example, active Internet users or possibly another 
point-based phenomenon aggregated to the same hexagonal lattice.

The resulting ratio has a midpoint of 1. At that midpoint, as many data points related to our 
phenomenon of interest as we would expect are present based on that random sample of all 
tweets. Values lower than 1 indicate we have fewer points of interest than expected, and vice versa. 
For example, an odds ratio of 0.5 means that we find only half as many points of interest as we ex-
pected, and a value of 2.0 means we find twice as many points as we expected, based on the total 
population. We can easily calculate this odds ratio in R (see result in exhibit 4).

Exhibit 4

Basic Odds Ratio
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randomTweets <- read.csv(“random.csv”, colClasses=c(“latitude”=“numeric”, 

“longitude”=“numeric”))

coordinates(randomTweets) <- c(“longitude”, “latitude”)

proj4string(randomTweets) <- “+proj=longlat +ellps=WGS84 +datum=WGS84  

+no_defs”

randomTweets$hex <- over(randomTweets, hex)$id

randomTweets.dt <- data.table(randomTweets)

randomTweets.dt[,random=.N, by=list(hex)]

hex.join <- merge(tweets.dt, randomTweet)

hex.join[,OR:=(tweets/sum(tweets))/(random/sum(random)),]

Small Numbers Problem: Confidence Intervals
When the odds ratio for each hexagon is visualized, we finally start to gain a meaningful under-
standing of the spatial pattern. Furthermore, we have now solved the issue around population den-
sity that the XKCD comic pointed out so vividly. One last problem remains, however: areas with 
only a few tweets have wildly varying odds ratios. In exhibit 4, this variation can be clearly seen 
in sparsely populated states such as Wyoming and Montana. This issue is mostly the result of the 
small numbers problem. Simply put, areas with only a small number of tweets show a high degree 
of variance. This makes sense: an odds ratio based on two tweets of interest versus three random 
“population” tweets is less “reliable” than the same ratio based on 200 tweets of interest versus 300 
random tweets. We can thus calculate a confidence interval for each odds ratio to gain an indicator 
of reliability (Bland and Altman, 2000; Morris and Gardner, 1988).

,                                                                                                 (2)

where z is the z-score of the chosen confidence level (for example, z = 1.96 for 95 percent confi-
dence level).

We can use this approach to calculate both the upper and lower bounds of the confidence interval 
but, if we are interested only in significant instances of higher odds ratios, we can calculate and 
visualize the lower bound only. This approach would enable one to say, for example, the value in 
hexagon I is at least 1.5, with 95 percent confidence. To calculate this value in R, we only have to 
adapt the formula (the last line of the previous code snippet) a little bit.

hex.join[,ORlowerconf:=exp(log(OR)-1.96*sqrt(1/tweets+1/sum(tweets)+1/

random+1/sum(random))),]

When we visualize this lower bound of the confidence interval for the odds ratio, we get to the 
final step in our approach, seen in exhibit 5, which results in a clear—and in this case, expected—
spatial pattern largely following the areas most affected by Hurricane Sandy (see Shelton, 2014, for 
a more indepth discussion of this pattern).

ORCI  =  e pi      p    ri     r
1     1     1     1__+__+__+__ln(OR) + z x
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Exhibit 5

Lower Bound of Confidence Interval for Odds Ratio
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Source: Reprinted from Shelton (2014) 

Final Considerations
The approach outlined in this article starts with an arguably noisy and large set of point-level data 
derived from social media. Using aggregation to a hexagonal lattice and subsequent normalization 
and calculation of an odds ratio with confidence intervals, we go from a raw view on the data (ex-
hibit 1) to a clear spatial pattern (exhibit 5). Although we have used a random “population” sample 
to normalize in the example, this approach is flexible; thus, the same approach can be used to 
directly compare two different point datasets (for example, artists versus bankers) or different time 
periods of the same dataset.

Furthermore, in many cases, this step will be only the first in a more indepth spatial analysis, es-
pecially because the hexagonal lattice is a very suitable input for further analysis with subsequent 
spatial statistical techniques (for example, cluster detection or spatial regression models).
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