# Seller Financing of Temporary Buydowns

Part 1: Effects on Sales Prices of Homes





### FINAL REPORT

Seller Financing of Temporary Buydowns
Part 1: Effects on Sales Prices of Homes

by Robert F. Cotterman

#### Submitted to:

U.S. Department of Housing and Urban Development
Office of Policy Development and Research
451 7<sup>th</sup> Street, S.W., Room 8212
Washington, D.C. 20410

Unicon Research Corporation 1640 Fifth Street, Suite 100 Santa Monica, California 90401 (310) 393-4636

November 10, 1992

This research was funded by the U.S. Department of Housing and Urban Development under contract number HC-5835. Views and opinions expressed herein are those of the author and do not necessarily reflect those of the Department of Housing and Urban Development.

## TABLE OF CONTENTS

| Section | <u>on</u>                                                                                  | Page   |
|---------|--------------------------------------------------------------------------------------------|--------|
| ACKI    | NOWLEDGEMENTS                                                                              | vii    |
| EXEC    | CUTIVE SUMMARY                                                                             | . viii |
| I.      | Introduction and Background                                                                | . 1    |
| II.     | Theoretical and Empirical Perspectives                                                     | 4      |
| III.    | The Sample and the Setting                                                                 | . 10   |
| IV.     | Aspects of Model Specification and Estimation                                              | . 21   |
|         | A. Functional Form Considerations                                                          | 21     |
|         | B. Variable Definitions and Construction                                                   | . 24   |
| V.      | Empirical Findings: Estimates of Hedonic Regressions                                       | . 31   |
| VI.     | Conclusions                                                                                | . 52   |
| BIBL    | IOGRAPHY                                                                                   | . 54   |
| APPE    | ENDIX: A Digression on the Usefulness of the Hedonic Price Regression as an Appraisal Tool | . 56   |

## LIST OF TABLES

|    |                                                                                                                    | Page    |
|----|--------------------------------------------------------------------------------------------------------------------|---------|
| 1  | Cell Sizes by Stratum                                                                                              | 14      |
| 2  | FHA Buydowns and New Home Sales                                                                                    | 17      |
| 3  | A Comparison of Buydown Amounts with Loan Discounts                                                                | 17      |
| 4  | Characteristics of Buydown and Nonbuydown (in Parentheses) FHA Loan Originations in Sample Cities and Time Periods |         |
| 5  | Variable Definitions and Abbreviations                                                                             | 25      |
| 6  | Variable Means and Standard Deviations                                                                             | 26      |
| 7a | Weighted Least Squares Regression Estimates; Dependent Variable: Sales Price of Home; Phoenix 1982                 | 32      |
| 7b | Weighted Least Squares Regression Estimates; Dependent Variable: Sales Price of Home; Phoenix 1985/86              | 33      |
| 7c | Weighted Least Squares Regression Estimates; Dependent Variable: Sales Price of Home; Denver 1982                  |         |
| 7d | Weighted Least Squares Regression Estimates; Dependent Variable: Sales Price of Home; San Antonio 1982             | 35      |
| 7e | Weighted Least Squares Regression Estimates; Dependent Variable: Sales Price of Home; San Antonio 1985/86          |         |
| 7f | Weighted Least Squares Regression Estimates; Dependent Variable: Sales Price of Home; Phoenix                      |         |
| 7g | Weighted Least Squares Regression Estimates; Dependent Variable: Sales Price of Home; San Antonio                  |         |
| 8a | Weighted Least Squares Regression Estimates; Dependent Variable: Log of Sales Price of Home; Phoenix 1982          | f<br>39 |
| 8b | Weighted Least Squares Regression Estimates; Dependent Variable: Log of Sales Price of Home; Phoenix 1985/86       | f<br>40 |
| 8c | Weighted Least Squares Regression Estimates; Dependent Variable: Log of Sales Price of Home; Denver 1982           | f<br>41 |
| 8d | Weighted Least Squares Regression Estimates; Dependent Variable: Log of Sales Price of Home; San Antonio 1982      | f<br>42 |
| 8e | Weighted Least Squares Regression Estimates; Dependent Variable: Log of Sales Price of Home; San Antonio 1985/86   | f<br>43 |
| 8f | Weighted Least Squares Regression Estimates; Dependent Variable: Log of Sales Price of Home; Phoenix               | f<br>44 |

# LIST OF TABLES (Continued)

|     |                                                                                                                                              | Page |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|------|
| 8g  | Weighted Least Squares Regression Estimates; Dependent Variable: Log of Sales Price of Home; San Antonio                                     | 45   |
| 9   | Extended List of Variable Definitions and Abbreviations                                                                                      | 57   |
| 10  | Extended List of Variable Means and Standard Deviations                                                                                      | 59   |
| 11a | Weighted Least Squares Regression Estimates with Extended Variable List;<br>Dependent Variable: Sales Price of Home; Phoenix 1982            | 63   |
| 11b | Weighted Least Squares Regression Estimates with Extended Variable List;<br>Dependent Variable: Sales Price of Home; Phoenix 1985/86         | 65   |
| 11c | Weighted Least Squares Regression Estimates with Extended Variable List;<br>Dependent Variable: Sales Price of Home; Denver 1982             | 67   |
| 11d | Weighted Least Squares Regression Estimates with Extended Variable List;<br>Dependent Variable: Sales Price of Home; San Antonio 1982        | 69   |
| 11e | Weighted Least Squares Regression Estimates with Extended Variable List;<br>Dependent Variable: Sales Price of Home; San Antonio 1985/86     | 71   |
| 11f | Weighted Least Squares Regression Estimates with Extended Variable List;<br>Dependent Variable: Sales Price of Home; Phoenix                 | 73   |
| 11g | Weighted Least Squares Regression Estimates with Extended Variable List;<br>Dependent Variable: Sales Price of Home; San Antonio             | 75   |
| 12a | Weighted Least Squares Regression Estimates with Extended Variable List;<br>Dependent Variable: Log of Sales Price of Home; Phoenix 1982     | 77   |
| 12b | Weighted Least Squares Regression Estimates with Extended Variable List;<br>Dependent Variable: Log of Sales Price of Home; Phoenix 1985/86  | 79   |
| 12c | Weighted Least Squares Regression Estimates with Extended Variable List;<br>Dependent Variable: Log of Sales Price of Home; Denver 1982      | 81   |
| 12d | Weighted Least Squares Regression Estimates with Extended Variable List;<br>Dependent Variable: Log of Sales Price of Home; San Antonio 1982 | 83   |
| 12e | Weighted Least Squares Regression Estimates with Extended Variable List; Dependent Variable: Log of Sales Price of Home; San Antonio 1985/86 | 85   |
| 12f | Weighted Least Squares Regression Estimates with Extended Variable List;<br>Dependent Variable: Log of Sales Price of Home; Phoenix          | 87   |
| 12g | Weighted Least Squares Regression Estimates with Extended Variable List;<br>Dependent Variable: Log of Sales Price of Home; San Antonio      | 89   |

# LIST OF TABLES (Continued)

|    | $oldsymbol{	ilde{I}}$                                                                                                                               | Page |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 13 | Weighted Least Squares Regression Estimates; Dependent Variable: Appraised Value of Home                                                            | 94   |
| 14 | Weighted Least Squares Regression Estimates with Extended Variable List;<br>Dependent Variable: Appraised Value Minus Predicted Price; Phoenix 1982 | 96   |
| 15 | Standardized Values of D at Various Percentiles of the Distribution                                                                                 | 101  |

## LIST OF FIGURES

|   |                                                                                                    | Page |
|---|----------------------------------------------------------------------------------------------------|------|
| 1 | Median Interest Rates on 30-Year FHA-Insured Loans, by Office and Month                            | 12   |
| 2 | Number of 30-Year FHA-Insured Loan Transactions in Total and on New Homes, by Month                | 13   |
| 3 | Fraction Having Temporary Buydowns among FHA-Insured, 30-Year Loans on Old and New Homes, by Month |      |
| 4 | Appraised Values versus Regression Predictions of Sales Prices                                     | 93   |

#### ACKNOWLEDGEMENTS

Several individuals and organizations made significant contributions to this study. Funding for this research was provided by the U.S. Department of Housing and Urban Development under contract number HC-5835. Under separate contract, Westat undertook the substantial burden of coding data from FHA case binders and producing machine-readable files. Bill Jackson of Westat kept detailed notes on coding conventions and problems. Lisa Puhl of Westat provided codebooks and other helpful information on the nature of the resulting computer files.

Heather Leicester of Unicon served as the project programmer, designing programs that drew random case lists from which the ultimate samples were constructed, linking together files of data from a variety of sources, providing several levels of data screening and cleaning, and writing programs that performed all statistical analyses.

Special gratitude is due Bill Reeder of HUD, who provided guidance and aid throughout the project. Bill participated in an integral way in deciding both the general direction and the details of the research. His oversight of the Westat data gathering and coding operation, as well as the Unicon analysis work, gave continuity to the project and ensured that the early data formation met ultimate analytical needs. He later provided special data corrections that could be obtained only by retrieving information from the hardcopy case files. Bill gave extensive guidance in understanding FHA rules and regulations and in understanding and interpreting FHA data. Finally, he provided insightful comments on the draft reports that led up to this final report.

Neither these individuals nor the U.S. Department of Housing and Urban Development is responsible for the content of this report. The author retains sole responsibility for all errors.

#### EXECUTIVE SUMMARY

A temporary buydown is one of many creative financing techniques which enjoyed growing popularity in the late 1970s and early 1980s. Under a typical temporary buydown, a home-buyer's mortgage payments during the early years of the mortgage are subsidized by the seller, who pays a portion of the mortgage payments that would otherwise be paid solely by the borrower. This arrangement is effected by the seller's funding an escrow account that is depleted as funds are used to supplement the payments made by the mortgagor to the lender.

Because a temporary buydown offers monetary benefits to the homebuyer, a homebuyer would be willing to pay more for a home offering a temporary buydown as a part of the sales transaction. Unless a similar buydown were offered as part of subsequent sales transactions, however, any financing premium capitalized into the original sales price of the home would not be recaptured at resale, a possibility leaving the mortgage insurer more vulnerable to loss in the event of foreclosure. Temporary buydowns may also increase the likelihood of mortgage default for two reasons. First, inability to recapture the financing premium in subsequent sales reduces the mortgagor's equity incentive not to default. Second, to the extent that loan underwriters compare initial housing expenses to income, buydowns that reduce initial mortgage expenses facilitate larger loans, resulting in higher housing expense burdens after the buydown subsidy has terminated.

These logical arguments suggesting at least partial capitalization and increased default activity are supported by indirect empirical evidence on related phenomena. Until now, however, direct evidence on the effect of buydowns has been unavailable. The purpose of this research is to begin to fill this empirical void by estimating empirically the extent to which house prices include the capitalized value of temporary buydowns. A companion report examines the effect of buydowns on default probabilities.

The study opens by examining possible motivations for temporary buydowns; this pre-

liminary analysis provides clues as to likely capitalization effects and helps guide the empirical work to follow. Prior reasoning suggests that selling prices could, but need not, reflect more than the fully capitalized value of a temporary buydown. In particular, if a temporary buydown is offered to help a buyer circumvent restrictions on the amount that could otherwise be borrowed, the buyer would be willing to pay, via a higher house price, a sum larger than the present value of the buydown payments. If property taxes vary with the sales price of the home, however, buyers who do not face these lending constraints would be unwilling to pay the fully capitalized buydown value in the form of a higher house price. For their part, sellers may be willing to accept less than the fully capitalized value of the temporary buydown, either because the buydown permits a quicker sale by facilitating loans to lower income buyers, or because the buydown is used to avoid public disclosure of an effectively reduced net price. These arguments suggest that capitalization effects may vary from transaction to transaction according to differing motivations and market conditions.

Turning to the estimation of capitalization effects, this study utilizes coded data from FHA casebinders for five samples of FHA-insured, 30-year, level-payment mortgages. Three samples consist of sales transactions for mortgages starting in 1982 in Denver, Phoenix, and San Antonio, respectively. The remaining two samples are for mortgages beginning in 1985 and the first seven months of 1986 in Phoenix and San Antonio, respectively. Data drawn for these samples include information on characteristics of the home, the sales transaction, and the buyer.

Estimation proceeds via weighted least squares regressions of sales prices on house characteristics, measures of market strength, and the present value of temporary buydowns. The statistical evidence confirms two basic features of buydown capitalization. First, temporary buydowns tend to be reflected in house prices, but generally at less than full present value. Estimated capitalization rates are generally in the 50 to 75 percent range. By implication, sellers must generally receive at least 25 to 50 percent of the value of the buydown in other forms: reduced holding costs from a more rapid sale and whatever advantages accrue from

having stable advertised prices. Second, as suggested on theoretical grounds, there is evidence of variation in effects from sample to sample, presumably reflecting different mixes of motivations for buydowns and different mixes of market strength. The 1982 sample for Phoenix, for example, has an estimated capitalization rate of nearly 200 percent, which is significantly higher than the 1985/86 estimate of about 50 percent for the same city.

The findings in this report are broadly consistent with those in the companion report which finds that buydown capitalization results in ultimately higher default rates for homes purchased under temporary buydown arrangements. A statistical contrast of default behavior for buydown purchases with default behavior in the absence of buydowns typically implies approximately full capitalization of the buydown. Although estimates obtained through the latter comparison are generally somewhat larger than those obtained by contrasting sales prices of homes with and without buydowns, as in this report, such differences are not surprising given the very different methods for arriving at capitalization effects.

### SELLER FINANCING OF TEMPORARY BUYDOWNS

Introduction. In the fall of 1986, the Department tightened FHA appraisal and underwriting standards by requiring that appraisers deduct seller concessions in excess of 5 percent from prices of comparables when figuring appraised value and that underwriters deduct any similarly excess concessions from the sale price when figuring acquisition cost. Moreover, underwriters were required to use the mortgage note rate (rather than the "bought down" rate) when figuring the maximum mortgage a buyer's income would support. The rules were later relaxed to permit seller concessions of 6 percent without penalty and qualification at an interest rate 2 percentage points below the mortgage note rate.

These policies were adopted out of concern that excessive seller concessions, particularly in the form of temporary buydowns, were being built (i.e., capitalized) into the sale prices of properties thereby reducing homebuyer equity and making default more likely. Adoption of the policies was based mainly on logical arguments and There was, however, as empirical evidence. indirect homebuilding industry argued, no direct empirical evidence regarding the effect of seller-financed temporary buydowns on the sale prices of homes or the likelihood of default. To fill this void, the Office of Policy Development and Research undertook a contract study of Seller Financing of Temporary Buydowns resulting in a two part report. Part 1 studies the Effects on Sales Prices of Homes. Part 2 examines the Effects on Mortgage Default. results are based upon analyses of approximately 3,000 FHA-insured purchase transactions in the cities of Phoenix, San Antonio, and Denver in 1982 and again in 1985/86 prior to the policy change.

What is a Buydown? Under a typical temporary buydown, the homebuyer is subsidized with payments from an escrow account funded by the seller, which lower the homebuyer's mortgage payments during the early years of the mortgage to amounts corresponding to lower interest rates than the mortgage note rate received by the lender. Typically, the subsidy payment amounts decline each year so that the homebuyer pays a progressively higher mortgage payment until the escrowed funds are exhausted and the homebuyer must make the full note rate payment.

Why Might Homebuyers Like Buydowns? Homebuyers value buydowns for two principal reasons. First, the buydown increases the homebuyer's income by the amount of the escrowed buydown subsidy. Alternatively, the escrowed subsidy can be viewed as a rebate lowering the net sales price of the home to the buyer. Second, lenders allow homebuyers using buydowns to qualify for larger loans than their incomes would support if the income-qualification rules were applied using the higher mortgage note rates. Hence, borrowers with too little income to qualify for a loan large enough to purchase their desired home at the mortgage note rate can utilize the qualifying advantage of the buydown to obtain the loan sufficient to purchase the desired home. Homebuyers in this

situation might be willing to pay more than the actual cost of the buydown for this advantage.

Why Might Homesellers Like Buydowns? Homesellers typically bear the cost of funding the escrowed buydown subsidy. However, the buydown benefits the seller in two principal ways. First, a buydown lowers the effective sale price to attract potential homebuyers without explicitly undermining the values of homebuyers who purchased their homes earlier when the market was stronger. Second, the buydown's qualifying advantage substantially increases the number of potential buyers and may hasten sales thus reducing the length of time the seller must finance and maintain the property--i.e., it reduces the seller's holding costs.

Why FHA Would be Concerned About Buydowns? Mortgage insurers worry about temporary buydowns because logic and economic theory predict that homebuyers will pay higher prices for homes with a seller-financed buydown than they will for homes without a buydown to capture the benefit of the payment savings and qualifying advantage. In the absence of price appreciation, this "financing premium" cannot be recovered on resale of the home once the buydown subsidy payments have been spent. Hence, the protection of the homebuyer's down payment or equity contribution is eroded to the extent the home sale prices (inclusive of financing premiums) exceed their resale prices and mortgage insurers are more vulnerable to borrower default and foreclosure loss. Furthermore, the buydown's increase in homebuyer mortgage payments approximating 9 percent a year over the first few years is more likely to create situations which trigger defaults.

What Effect do Buydowns Have on Home Prices? In Part 1 of the study, regressions were run relating home sale prices to the dollar amount of the escrowed buydown subsidy along with other financing concessions and defining characteristics of the homes. The study found that the degree to which the buydown subsidy was reflected (capitalized) in home prices generally fell in 19the range of 50 to 75 percent, which implies that homesellers generally recover at least 25 to 50 percent of the buydown's cost in the form of reduced holding cost from a more rapid sale. The degree to which buydowns are capitalized in house prices varies across cities and over time, presumably reflecting different mixes of market conditions and motivations for buydowns. The measured rates of capitalization may also vary simply because the regression technique relies on existence of adequate control variables for contrasting sale prices of homes sold with buydowns with those presumed to be free of any influence from buydowns. This becomes more problematic as buydowns and their influence become more prevalent in the market.

Using an alternative methodology in Part 2, which statistically contrasted default behavior for buydown purchases with defalut behavior in the absence of buydowns, the study found that homebuyers behave as if the buydown subsidy was fully capitalized in the home sale price.

What Effect do Buydowns Have on Mortgage Default? Logic predicts that temporary buydowns will have two potential effects on default. First, if buydowns are capitalized into sales prices and cannot be recovered upon resale, homebuyer equity will be reduced and the incentive to default increased. Second, the incentive to default will be reduced over the initial period of the buydown because the buydown subsidy payments initially help to defray the homebuyer's monthly payments and the buydown escrow reverts to the lender in the event of a default.

In Part 2 of the study, a proportional hazards model is specified, such that the probability of default at each point in time is assumed dependent upon the intial home sales price, the initial and current values of the buydown balance, the contemporaneous principal balance and value of the mortgage, and other factors. Model estimates confirm that in their default behavior, homebuyers act as if temporary buydowns are fully capitalized in house prices and cannot be recovered upon resale. This effect alone acts to increase the probability of default under buydowns. In addition, estimates confirm that the remaining buydown balance deters default behavior. In general, the two effects together initially lower default rates but ultimately raise default rates of buydown mortgages relative to nonbuydown mortgages.

The estimated models were used to simulate cumulative default rates for buydowns of varying size under alternative economic scenarios, which assumed differing patterns of price appreciation and unemployment. Cumulative default rates ten years from mortgage origination increased with the size of the buydown and the contrast between default rates for nonbuydown and buydown mortgages was greatest (on the order of 25 to 60 percent higher) for intermediate economic conditions, ranging from no price appreciation in the early years (Stagnation) to 3.5 percent price appreciation in the early years (Mild Expansion).

#### I. INTRODUCTION AND BACKGROUND

A temporary buydown is one of many creative financing techniques which collectively grew in importance during the late 1970s and early 1980s. Under a typical temporary buydown, a homebuyer's mortgage payments during the early years of the mortgage are set at levels that correspond to lower mortgage interest rates than the rate recorded on the mortgage note and paid to the lender. The difference between the lower monthly payments made by the borrower and the higher fixed payment actually received by the lender is typically provided by the seller of the home. For loan transactions insured by the FHA, the difference must be fully funded at the time of sale by making an escrow deposit consisting of the full amount of the aggregate difference in payments. This escrow account, which may or may not bear interest, is gradually drawn down through the life of the buydown as escrow funds are used to supplement the payments made by the mortgagor to the lender.

It is clear that a temporary buydown is worth something to a prospective homebuyer, and thus a homebuyer would be willing to pay more for a home offering a temporary buydown as a part of the sales transaction than if no buydown were offered. Unless a similar buydown were offered as part of subsequent sales transactions, however, any financing premium capitalized into the original sales price of the home would not be recaptured at resale. This possibility apparently leaves the mortgage insurer more vulnerable to loss in the event of foreclosure.

Not only do temporary buydowns leave the insurer more susceptible to loss in the event of mortgage foreclosure, they may also increase the likelihood of foreclosure for two reasons. First, the aforementioned inability to recapture the financing premium in subsequent sales reduces the mortgagor's equity incentive not to default; and second, buydowns facilitate loans that result in relatively heavier housing expense burdens. In particular, if underwriting criteria focus on initial housing expenses relative to income, then the reduction in initial monthly mortgage payments resulting from a temporary buydown permits a homebuyer to qualify for a larger loan and obligates him/her to an ultimately higher market-rate mortgage

payment than would be permitted absent the buydown.

Indirect evidence on the likely effect of buydowns reinforces the logical arguments that suggest (a) at least partial capitalization of the buydown into the selling price of the home, and (b) increased default activity. The first piece of evidence is that other seller-provided financing benefits appear to be partially capitalized into sales prices of homes. For example, recent empirical studies show that a substantial fraction of seller-provided assumption and mortgage revenue bond financing is capitalized into house prices (see Durning and Quigley [1985]). The evidence also suggests that borrower's equity is an important deterrent to default (see, for example, Foster and Van Order [1984]). If borrowers are unable to recapture the value of the buydown upon resale, they would be expected to exhibit a higher probability of default. A third source of evidence is the default behavior of buyers who have graduated payment mortgages (GPMs). The rise in borrower's payments in the early years of a mortgage with a buydown mimics the behavior of payments under GPMs like those issued under the FHA 245(b) program; such GPMs have been found to have unusually high default rates.

In 1986, reasonable concerns over the effect of buydowns on the health of the FHA mortgage insurance fund led HUD to tighten appraisal and underwriting criteria so as to (a) limit the extent of seller financing contributions included in the prices of comparables and in the determination of maximum mortgage amounts, and (b) end the use of temporarily lower initial mortgage interest rates for loan-qualification purposes. These restrictive changes, instituted in August 1986, were later relaxed somewhat in 1987.

Despite the introduction of policies to cope with perceived problems of temporary buy-downs, and the apparent reduction in the use of seller financing concessions in general and temporary buydowns in particular, there remain questions regarding the actual behavior engendered by temporary buydowns. As noted, prior policy prescriptions and actions have been guided mainly by logical arguments and by indirect empirical evidence on somewhat similar phenomena, rather than by direct empirical evidence on the effects of buydowns per

se. This report seeks to fill part of this empirical void by measuring the extent to which the full present value of a buydown is capitalized into the selling price of the home. A companion report (Cotterman [1992]) examines the related question of default experience under temporary buydowns.

### II. THEORETICAL AND EMPIRICAL PERSPECTIVES

The housing finance literature contains numerous studies examining reasons for, and the effects on sales prices of, various kinds of creative finance techniques and seller financing concessions in general. Examples include the papers by Jaffee (1984), Brueckner (1984), Agarwal and Phillips (1983 and 1984), Schwartz and Kapplin (1984), Sirmans, Smith, and Sirmans (1983), and Durning and Quigley (1985). Related work (by, for example, Zerbst and Brueggeman [1977]) has examined the extent to which discount points on FHA or VA loans are reflected in the selling prices of homes. Particularly useful is the survey article by Sirmans, Sirmans, and Smith (1985), which summarizes a large number of studies and empirical findings regarding the effects of creative finance on house prices.

Although this literature discusses a variety of creative financing techniques, temporary buydowns in particular are rarely mentioned, and some of the reasons effered for the existence of creative financing in general seem to be of limited applicability to temporary buydowns. Specifically, the tax considerations involved in converting to installment sales or invoking lower capital gains tax rates (under the old tax code) seem likely to be of little importance in explaining the existence of temporary buydowns. Instead, temporary buydowns seem more likely to be motivated by credit availability considerations or by the cost of making adjustments to publicly announced prices.

As to the first of these reasons, the presumption is that a homebuyer wishes to borrow more than would ordinarily be permitted by underwriting criteria that compare income to initial housing expenses. By reducing initial mortgage payments, and thus initial housing expenses, a temporary buydown offers a way around these underwriting restrictions on the size of the loan. In this way the use of a temporary buydown expands the seller's potential market by reaching to lower income buyers who would otherwise not qualify for a loan large enough to finance the purchase of the home.

The second of these reasons may apply when demand conditions are uncertain or highly

variable, and there are costs of changing announced prices. In these circumstances sellers may wish to retain the flexibility of being able to negotiate effective prices at the time of sale. There remains the question, however, of why temporary buydowns are used in negotiations rather than house price itself or other financial aspects of the transaction. When the sales transaction involves a builder or other seller who expects to make multiple sales transactions, a partial answer may be that actual sales prices are easily discovered by other potential buyers, and a builder would be reluctant to set the precedent of selling at a lower price than might be obtained on subsequent sales of similar homes. Builders may also pursue this policy to avoid publicly undermining the equity of earlier buyers.

The reasons for the existence of temporary buydowns offer some clues as to whether, and by how much, sales prices of homes will be affected by their presence. We note at the outset, however, that while an examination of motivations for buydowns may permit us to place bounds on their likely effect, we will be unable to predict a uniform capitalization rate that can be expected to hold in all times and places. The source of the problem is that, as noted by Durning and Quigley (1985) in a related context, the temporary buydown and the selling price are reached in negotiation over a highly differentiated product composed of numerous characteristics. For this reason it is impossible to predict on prior grounds the market tradeoff between price and the buydown amount. In particular, given the bundling feature of the commodity, the price of the commodity need not be the cost of provision of each separate component, as would be the case in a competitive market for a homogeneous product. Hence, we examine the motivations of buyers and sellers with the purpose of placing limits on possible capitalization effects, while recognizing that actual impacts may vary across transactions.

If a temporary buydown is offered to help a buyer circumvent restrictions on the amount that could otherwise be borrowed, the buyer would be willing to pay, via a higher house price, a sum larger than the present value of the buydown payments. To see this, note

<sup>&</sup>lt;sup>1</sup>One can, however, question how much competition is required among potential homebuyers and sellers to generate an approximately competitive outcome.

that any buyer with sufficient income to qualify for a loan large enough to purchase the desired home without a buydown would not be willing to pay, in the form of an increased home price, any more than the present value of seller financing concessions. The qualifying advantage of the buydown would be redundant and thus have zero value. When the buyer's income would not otherwise support a loan large enough to purchase the desired home, however, the qualifying advantage of the buydown is of value. The buyer would then be willing to pay more than the present value of the buydown amount for the right to obtain not only the financing subsidy, but also the larger loan needed to complete the purchase.

In the scenario in which a temporary buydown originates solely for the buyer to obtain a larger loan, the seller may also demand a sales price that is higher by more than the present value of the buydown payments received by the borrower. In particular, if the buydown arrangement is one in which the escrow account does not pay interest, then the cost to the seller is the sum of the future buydown payments in undiscounted dollars—a sum that clearly exceeds the present value of these same payments.

There are, however, reasons for the house price to reflect less than the full present value of the buydown, particularly if the buydown is simply part of the sales negotiation package and is not needed for circumventing restrictions on mortgage amounts. One such reason is that increasing the sales price of the home may also result in a higher property tax obligation on the part of the buyer. As a result, a buyer would be willing to trade off smaller initial mortgage payments for a higher initial house price at less than dollar-for-dollar in present value terms.

Similarly, a seller may be willing to accept a sales price that does not reflect the full present value of his contributions to the temporary buydown escrow. The seller is, in effect, willing to accept less than full recovery of the buydown escrow in return for reducing the time required to sell the property. The cost savings of obtaining a wider market and a correspondingly more rapid sale offsets part of the cost of the buydown. The seller obtains a higher price net of holding and buydown costs than would otherwise be obtained in the

absence of the buydown.

A more detailed exposition of the latter point is useful to help fix ideas. Suppose that a seller expects that if he offers a buydown of  $B_0$ , and acts optimally conditional on continuing to offer the buydown,<sup>2</sup> he will bear holding costs of  $H_0$  before selling his home at an expected price of  $P_0$ . (We ignore other transactions costs.) If he chooses not to offer a buydown, and acts optimally conditional on not offering a buydown, the seller expects to bear holding costs of  $H_*$  before receiving an expected price of  $P_*$ . Putting aside questions of attitudes towards risk, the seller will pursue the strategy of offering a buydown only if  $P_0 - B_0 - H_0 \ge P_* - H_*$ . That is, the net price to the seller after deducting holding and buydown costs must exceed the net price obtainable without a buydown. Rearranging the inequality,

$$P_0 \ge P_* + B_0 - (H_* - H_0). \tag{1}$$

In other words, the expected price to be received with a buydown must exceed the expected nonbuydown price by the amount of the buydown minus the savings in holding costs. If a buydown permits homes to sell faster by enabling lower income buyers to qualify for loans, then we might expect holding costs to be less for the buydown transaction than for the nonbuydown transaction, i.e.,  $H_0 < H_*$ . If so, then the final term on the right-hand side of (1), inclusive of the leading minus sign, is negative. Thus, the strategy of offering a buydown could be optimal for the seller even if the expected selling price with a buydown exceeds the nonbuydown selling price by less than the buydown amount, i.e., even if there is less than full capitalization of the buydown.

Notice that inequality (1) suggests the possibility of negative capitalization. In particular, if expected holding costs in the optimal nonbuydown transaction exceed expected holding costs in the optimal buydown transaction by more than the amount of the buydown, i.e.,  $H_* - H_0 > B_0$ , then a seller would be willing to offer a buydown even if the expected sales price in the buydown transaction is less than the expected nonbuydown price. The

<sup>&</sup>lt;sup>2</sup>We ignore the issue of choosing the size of the buydown.

realization of this possibility quite clearly hinges on the existence of large differences in holding costs. For example, for a buydown that is five percent of the value of the home, the difference in holding costs must exceed five percent as well.<sup>3</sup> Differences in holding costs of this magnitude suggest an inactive housing market in which offers arrive only infrequently. In addition such a market must contain a substantial fraction of potential buyers near the margin of loan qualification, for only then will a buydown significantly reduce time on the market by permitting additional borrowers to qualify for loans.

Although we cannot rule out negative capitalization as a theoretical possibility, partial (less than full) capitalization seems to be more likely. Even in an active housing market in which offers arrive fairly frequently, a buydown may speed up sales somewhat, leading sellers to be willing to accept a somewhat smaller price net of the buydown. Notice, however, that in the case in which there is no difference in holding costs, there must be full (or more than full) capitalization. In particular, no seller would be willing to forego an existing nonbuydown offer in favor of an existing buydown offer that did not fully capitalize the buydown.

In addition to outlining the theoretical limits on capitalization of buydowns, the discussion in this section serves to reinforce the idea that capitalization rates may well vary from time to time and place to place according to market conditions and the reasons for the buydown. The fact that financial characteristics are embedded in a unique multidimensional commodity implies that we need not find a single capitalization rate that applies to all buydown transactions, but this is only part of the story. Prior reasoning suggests that buyers seeking to circumvent lending constraints will be willing to accept sales prices that embody full or more than full capitalization. To the extent that property taxes for potential buyers are adversely affected by buydown capitalization, however, buyers who are not attempting to skirt loan qualification standards would be unwilling to accept full capitalization. On the other side of the transaction, sellers may be willing to accept less

<sup>&</sup>lt;sup>3</sup>As will be seen below, buydowns in the samples used in this study averaged about five percent of the value of the home.

than full capitalization of a buydown in an effort to reduce holding costs through a quicker sale to lower income buyers. If, on the other hand, holding costs are insignificantly different for buydown transactions, sellers would be unwilling to accept less than full capitalization.

This discussion clearly leaves the resolution of the capitalization question to empirics. We now turn to a framework for estimating the capitalization of temporary buydowns.

#### III. THE SAMPLE AND THE SETTING

The empirical work to follow is based upon data on individual FHA-insured loans. These data reside in hardcopy form in casebinders maintained at HUD headquarters. To begin the process of translating the hardcopy data into a form suitable for analysis, we utilized automated (A43) files maintained by HUD to select a sample of loans meeting the criteria discussed below. For this sample of loans, Westat coded and entered the data extracted from the individual casebinders. Analysis files were produced by merging the coded casebinder data with portions of the automated data that were already available.

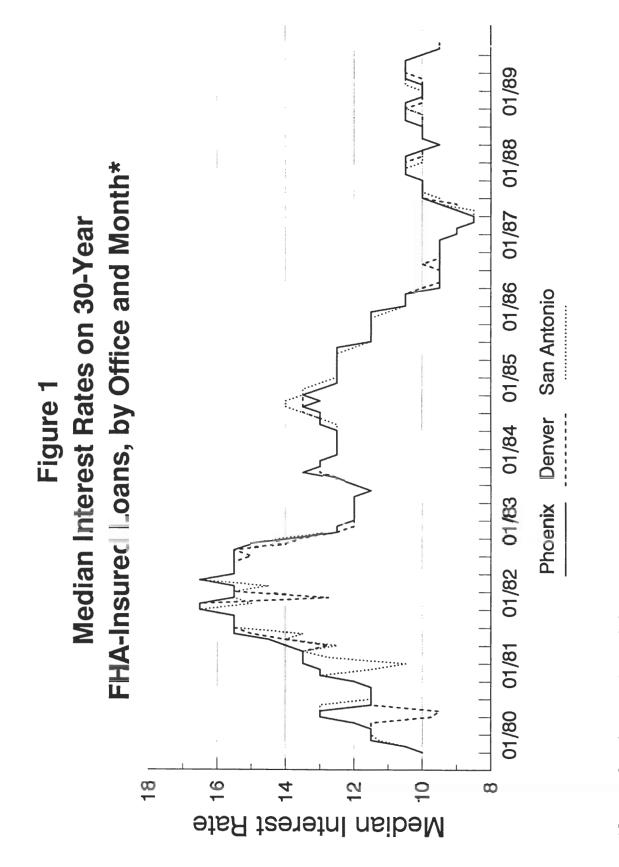
The original sample design called for standard FHA-insured mortgages originating in two offices—Denver and San Antonio—during 1982 and 1985/86. More precisely, the sample was restricted to 30-year, level-payment, non-coinsured mortgages for single-family dwellings located in the largest SMSAs serviced by each of the two offices, and having a loan amortization start date in 1982 (for the first part of the observation interval), or from January 1, 1985, through July 31, 1986, inclusive (for the second part of the observation interval).<sup>4</sup> Loan-to-value ratios were restricted to lie between 0.6 and 1.2.<sup>5</sup> Although limitations of the automated data precluded the elimination of refinancing transactions at the time that the sample was drawn, refinancing transactions were later dropped when the data were coded from the FHA casebinders.

To construct the strata from which samples were drawn, each case was categorized according to the office of origination, the time period (1982 or 1985/86), whether the loan terminated in default by September 30, 1989,<sup>6</sup> and whether the home was "new" or "old."

<sup>&</sup>lt;sup>4</sup>The second part of the observation interval stops in mid-year in an attempt to avoid sales transactions taking place under the revised HUD rules that placed restrictions on underwriting and appraisal in the presence of buydowns.

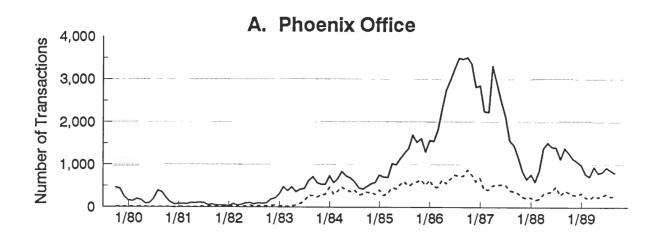
<sup>&</sup>lt;sup>5</sup>Use of the loan-to-value (LTV) ratio, as defined in the A43 data, is a bit problematic because the definition of the numerator depends on the nature of the loan processor. The financed portion of the upfront mortgage insurance premium is included in the numerator of LTV for HUD-processed cases, but is excluded from the numerator for direct endorsement cases.

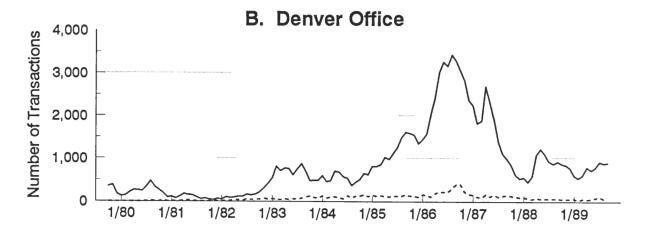
<sup>&</sup>lt;sup>6</sup>Separation by default status was dictated by other uses to which this sample was to be put. Note also that our separation according to default status was based on whether the original borrower defaulted. That is, our major interest was centered on the characteristics of the home and the homebuyer, and because such information was not available for those who assumed an already existing loan, loans that were assumed before a default ultimately occurred were classified as a nondefault by the original mortgagor.

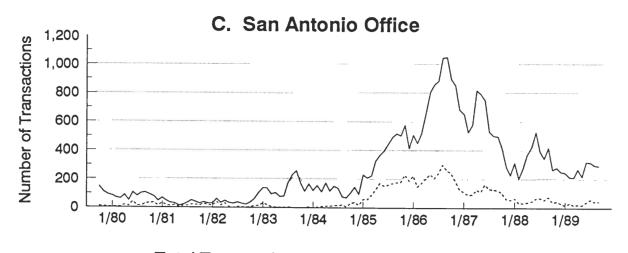

Homes were categorized as "new" if they were classified by FHA as new dwellings being sold by a builder, or existing but not previously occupied homes. Other homes were considered "old" homes. Within each stratum defined by the office, time period, default status, and new/old status, cases were randomly selected for inclusion in the sample.

Some of the cases selected for inclusion in the sample turned out to be unusable for a variety of reasons: incorrect automated data led to including some cases that did not meet the sample selection criteria; some loans turned out to be refinances; critical forms were missing from some cases; etc. Indeed, missing forms proved to be a large enough problem for the 1985/86 Denver cases that coding was suspended for the corresponding strata. Having been forced to abandon this portion of the sample, we added additional cells for Phoenix in both 1982 and 1985/86. Table 1 below summarizes features of the original cell sizes, the final sample sizes, and the number of cases that were utilized to reach the ultimate sample for each stratum.

Utilizing the same criteria that were used to select the sample of FHA-insured loans, but broadening the time period covered, Figures 1 and 2 demonstrate features of the housing market in the three sample cities during the ten-year period starting in October 1979 and ending in September 1989. Figure 1 shows the median mortgage interest rate for each city. Note that interest rates in the first portion of the sample observation interval (1982) were high by historic standards—reaching levels of about 17 percent—while interest rates were substantially lower during the 1985/86 period, dipping to about 10 percent.


Not surprisingly, the behavior of FHA loan transactions over this ten-year interval mirrors the behavior of mortgage interest rates. In particular, as shown in the three panels of Figure 2, the numbers of FHA loan transactions in total and for new homes alone were low in the early 1980s, when interest rates were high, but rebounded to high levels in the 1985/86 period as interest rates declined.


The use of temporary buydowns in these local markets changed over time and differed




\*See text for other sample restrictions.

Figure 2
Number of 30-Year FHA-Insured Loan Transactions in Total and on New Homes, by Month\*

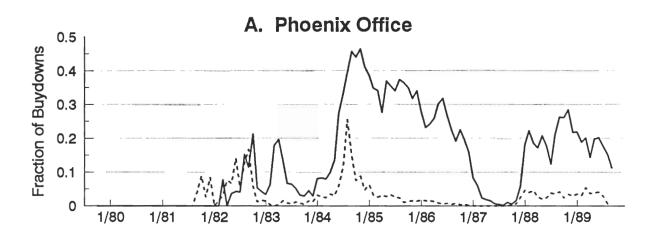


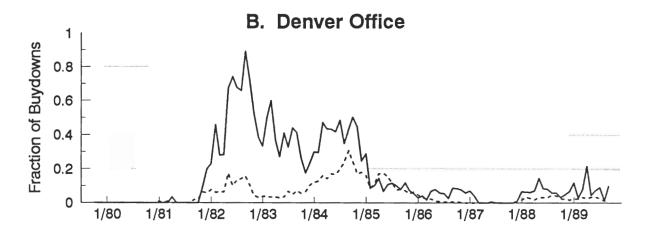




Total Transactions New Transactions

<sup>\*</sup>See text for other sample restrictions.


TABLE 1
Cell Sizes by Stratum


| Office      | Year  | Default Occurred? | New/Old<br>Home | Original<br>Cell Size | Final<br>Sample | Cases<br>Used |
|-------------|-------|-------------------|-----------------|-----------------------|-----------------|---------------|
| Denver      | 82    | no                | old             | 1,302                 | 174             | 394           |
| Denver      | 82    | no                | new             | 418                   | 187             | 394           |
| Denver      | 82    | yes               | old             | 202                   | 63              | 131           |
| Denver      | 82    | yes               | new             | 96                    | 44              | 96            |
| San Antonio | 82    | no                | old             | 339                   | 256             | 339           |
| San Antonio | 82    | no                | new             | 134                   | 102             | 134           |
| San Antonio | 85/86 | no                | old             | 5,471                 | 296             | 606           |
| San Antonio | 85/86 | no                | new             | 2,839                 | 264             | 968           |
| San Antonio | 82    | yes               | old             | 39                    | 33              | 39            |
| San Antonio | 82    | yes               | new             | 30                    | 23              | 30            |
| San Antonio | 85/86 | yes               | old             | 714                   | 96              | 229           |
| San Antonio | 85/86 | yes               | new             | 386                   | 83              | 249           |
| Phoenix     | 82    | no                | old             | 742                   | 226             | 461           |
| Phoenix     | 82    | no                | new             | 284                   | 65              | 284           |
| Phoenix     | 85/86 | no                | old             | 19,012                | 252             | 669           |
| Phoenix     | 85/86 | no                | new             | 9,507                 | 247             | 412           |
| Phoenix     | 82    | yes               | old             | 130                   | 71              | 130           |
| Phoenix     | 82    | yes               | new             | 51                    | 8               | 51            |
| Phoenix     | 85/86 | yes               | old             | 1,292                 | 83              | 154           |
| Phoenix     | 85/86 | yes               | new             | 658                   | 86              | 117           |

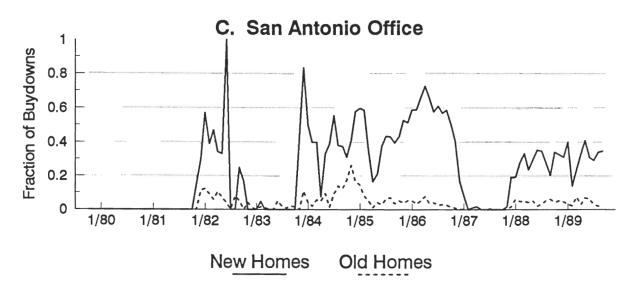

across cities as well. The panels of Figure 3 show, for new and old home sales separately, the fraction of transactions in which a temporary buydown occurred. Note that buydowns tended to be more common among new home sales than among old home sales. For new home sales transactions, the periods of substantial buydown activity occurred later in Phoenix than in Denver, while San Antonio exhibited three distinct periods of heavy buydown activity. Among old home sales, buydown activity appears to have peaked in mid-to-late 1984 in all three cities.

Table 2 summarizes some of the data contained in the figures above but focuses solely on the sample periods, 1982 and 1985/86. The first row of the table shows that new house

Figure 3
Fraction Having Temporary Buydowns among FHA-Insured, 30-Year Loans on Old and New Homes, by Month\*







<sup>\*</sup>See text for other sample restrictions.

transactions were about one-quarter to one-third of all FHA transactions within each sample period and city, but they tended to be a larger share of the transactions in San Antonio than in Phoenix, and lower still in Denver. The second row shows that buydowns were present in a larger share of all FHA transactions in the 1985/86 sample periods than in 1982. The breakdown by old and new homes, as shown in the third and fourth lines, illustrates that this increase in the popularity of buydown transactions is reflected principally in the dramatic increases in the share of buydowns among new home transactions; the share of buydowns among old homes changes little from the 1982 to the 1985/86 sample periods.

While Table 2 illustrates the potential importance of buydowns in the market by measuring their relative frequency, Table 3 illustrates their importance in another dimension. Table 3 attempts to give an indication of the monetary significance of the average buydown by comparing it to average loan discount points. The top two rows of the table express the buydown amount as a percentage of the sales price of the home, on average, for new and old home buydown transactions separately in each of the sample cities and time periods. The bottom two rows provide the analogous figures for loan discount points, i.e., discount points paid by the seller relative to the sales price of the home, on average, among all home sales in which the seller paid discount points. Notice that the orders of magnitude are quite similar. Buydowns, when present, tend to be about five percent of the sales price of the home, which is the approximate cost of a 3-2-1 buydown. There appears to be more cross-sample variation in loan discount points; differentials between new and old homes are especially dramatic for the San Antonio samples.

Table 4 carries the investigation one step further by presenting buyer characteristics and behavior associated with, or perhaps engendered by, the existence of buydowns. Each number in the body of the table presents, for a particular sample cell, an average value for those borrowers who used buydowns; the number immediately below (in parentheses) is the corresponding average in that same sample cell for borrowers who did not use buydowns. The first pair of rows shows that with only one exception borrowers who used buydowns

TABLE 2
FHA Buydowns and New Home Sales

| Characteristics of                               | Pl                | noenix              | Denver              | San A               | Antonio             |
|--------------------------------------------------|-------------------|---------------------|---------------------|---------------------|---------------------|
| FHA Loan Originations                            | 1982              | 1985/86             | 1982                | 1982                | 1985/86             |
| Percent New Homes                                | 27.8              | 33.4                | 25.5                | 30.3                | 34.3                |
| Percent Buydowns Among New Homes Among Old Homes | 6.0<br>7.5<br>5.5 | 11.6<br>31.5<br>1.6 | 21.0<br>58.0<br>8.4 | 11.8<br>29.3<br>4.2 | 20.6<br>50.9<br>4.9 |

Source: Computations based on A43 automated data.

TABLE 3

A Comparison of Buydown Amounts with Loan Discounts

| Characteristics of                                                   | Pl        | noenix        | Denver      | San A     | Antonio |
|----------------------------------------------------------------------|-----------|---------------|-------------|-----------|---------|
| FHA Loan Originations                                                | 1982      | 1985/86       | 1982        | 1982      | 1985/86 |
| Buydown Amount as Perce                                              | nt of Sal | es Price of I | Home:       |           |         |
| Among New Homes<br>with Buydowns<br>Among Old Homes                  | 5.2       | 5.4           | 4.7         | 5.3       | 5.1     |
| with Buydowns                                                        | 5.0       | 4.0           | 4.7         | 4.7       | 4.8     |
| Loan Discount Points Paid                                            | By Selle  | r as Percent  | of Sales Pa | rice of H | ome:    |
| Among New Homes with<br>Loan Discount Points<br>Among Old Homes with | 6.9       | 5.4           | 5.6         | 10.4      | 7.7     |
| Loan Discount Points                                                 | 5.6       | 2.2           | 5.2         | 4.0       | 2.6     |

Source: Calculations based on sample data coded from FHA case files.

TABLE 4

Characteristics of Buydown and Nonbuydown (in Parentheses) FHA Loan Originations in Sample Cities and Time Periods

|                                                                   |                    | [0                 | OLD HOMES          | SS                 |                    |                    | NE                 | NEW HOMES          | St                 |                    |
|-------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|                                                                   | Pho                | Phoenix            | Denver             | San A              | San Antonio        | Pho                | Phoenix            | Denver             | San A              | San Antonio        |
|                                                                   | 1982               | 1985/86            | 1982               | 1982               | 1985/86            | 1982               | 1985/86            | 1982               | 1982               | 1985/86            |
| Mean Age of Mortgagor                                             | 31.4 (32.2)        | 29.3<br>(33.8)     | 29.4 (32.1)        | 28.8 (29.9)        | 30.1 (33.8)        | 36.2<br>(35.4)     | 29.8<br>(34.5)     | 29.4 (30.1)        | 30.1 (33.3)        | 31.5 (32.3)        |
| Mean Monthly Base Pay of Morgagor                                 | 1,976 $(2,095)$    | 1,870 $(2,225)$    | 1,903 $(2,226)$    | 1,356 $(1,581)$    | 1,944<br>(1,972)   | 1,910 $(2,323)$    | 1,954 $(2,435)$    | 2,316 (2,377)      | 2,026 $(2,257)$    | 1,869 $(1,979)$    |
| Mean Monthly Net Effective Income of Mortgagor and Co-Mortgagor   | 2,264 (2,387)      | 2,092 (2,654)      | 2,678 $(2,555)$    | 1,966<br>(1,991)   | 2,274<br>(2,354)   | 2,224 $(2,381)$    | 2,479 $(2,802)$    | 2,509 $(2,718)$    | 2,515 $(2,486)$    | 2,272 $(2,479)$    |
| Mean Sales Price of Home                                          | 65,020<br>(58,255) | 61,436<br>(69,904) | 72,285<br>(70,312) | 46,365<br>(40,026) | 67,289<br>(56,664) | 71,490 (66,650)    | 77,569 (81,325)    | 76,509<br>(78,002) | 58,676<br>(65,269) | 70,321<br>(70,776) |
| Mean Loan Amount                                                  | 61,855 $(54,257)$  | 60,778<br>(67,269) | 65,526<br>(62,525) | 42,962<br>(37,371) | 66,289<br>(54,742) | 65,769<br>(58,895) | 76,599<br>(76,760) | 70,097<br>(68,323) | 54,402<br>(56,289) | 69,429<br>(68,986) |
| Difference between Mean Sales Price<br>of Home & Mean Loan Amount | 3,165 $(3,998)$    | 658 $(2,635)$      | 6,759 (7,787)      | 3,403 $(2,655)$    | 1,000 (1,922)      | 5,721<br>(7,755)   | 970 $(4,565)$      | 6,412 (9,679)      | 4,274 (8,980)      | 892<br>(1,790)     |
| Percent Defaulting as of 9/30/89                                  | 16.7 (14.8)        | 12.2 (6.3)         | 16.7 (13.1)        | 31.3 (9.4)         | 13.3 (11.5)        | 12.0 (15.5)        | 8.5 (5.5)          | 22.2 (13.9)        | 13.8 (18.1)        | 11.6 (12.4)        |

Source: All figures other than percent defaults are based on sample data coded from FHA case files. Percent defaulting is calculated from A43 automated data.

were younger on average than those who did not. The second and third pair of rows show that, with few exceptions, mortgagors who used buydowns tended to have lower incomes than those who did not, a finding which suggests the use of buydowns to help buyers qualify for loans. This idea is reinforced in the fourth pair of rows, which illustrates that despite having lower average incomes, borrowers who used buydowns in their purchase of old homes tended (with one exception) to buy more expensive homes than buyers who did not use buydowns. The situation is reversed for purchasers of new homes: sales prices were, with one exception, lower on average for transactions with buydowns than for those without. Comparisons of average loan amounts for transactions with and without buydowns generally follow the same pattern as that of sales prices. There are two exceptions, however: for new home transactions in 1982 for Denver and in 1985/86 for San Antonio, average loan amounts for buydown transactions exceeded those for nonbuydowns even though average sales prices are higher for the nonbuydown transactions.

Skipping to the last pair of rows in Table 4, we see that in all but two cases a larger fraction of buydown transactions than of nonbuydown transactions terminated in default by September 30, 1989.<sup>7</sup> This relationship is consistent with the idea that sales prices incorporate at least part of the value of any associated temporary buydown, but that the capitalized value of the buydown can not be recaptured on resale. However, the pattern of defaults may be reflecting other differences between average buydown and nonbuydown transactions. As shown in the second to the last pair of rows, the difference between the mean sales price of the home and the mean loan amount—measured initial equity—is generally higher for nonbuydown transactions. This difference in itself would tend to lead to higher default rates among buydown transactions. In addition, lower incomes are coupled with higher loan amounts for buydown transactions in many of the sample cells, suggesting that payment-to-income ratios are ultimately higher among the buydown transactions (i.e., after buydown termination). To the extent that payment-to-income ratios matter in default

<sup>&</sup>lt;sup>7</sup>National data for FHA endorsements in 1982, 1985, and 1986 show that annual conditional default rates for buydowns are ultimately higher than for nonbuydowns. See Cotterman (1992).

behavior, the observed pattern of defaults may also be partly traceable to these differences in payment-to-income ratios.

Thus, while the pattern of defaults observed in Table 4 is consistent with buydown capitalization, it is subject to other interpretations as well. We next turn to a more systematic estimation framework for isolating the effect of buydowns on house prices.

#### IV. ASPECTS OF MODEL SPECIFICATION AND ESTIMATION

#### A. Functional Form Considerations

The data set obtained from the FHA casebinders, containing a large number of variables describing the characteristics of the home, the demographic and economic characteristics of the buyer(s), and the financial aspects of the sales and loan transactions, was drawn primarily from FHA application, appraisal, and settlement forms. Our principal approach to isolating the effect of temporary buydowns on the sales prices of homes is via estimation of a hedonic price regression that relates the price of the home to financial characteristics of the transaction and features of the home. The literature provides a large number of precedents (see, for example, Agarwal and Phillips [1983 and 1984], Sirmans, Sirmans, and Smith [1983], Asabere, Hachey, and Grubaugh [1989], and Asabere [1990]), but the hedonic regressions in such studies vary in terms of functional form and in terms of independent variables, presumably partly because of differences in data availability.

Consider first the question of functional form. Specifications that are logarithmic in house prices have enjoyed popularity in the literature and have received some statistical support. For example, Asabere, Hachey, and Grubaugh (1989) and Asabere (1990) report that Box-Cox and Box-Tidwell transformations suggest specifications that are logarithmic in price and in square footage. In addition, others such as Agarwal and Phillips (1983 and 1984) note the presumed superiority of the semilogarithmic form but state that the linear form gives results that are very similar.

In contrast with some of the previous work, however, a special feature of the current study is that some variables seem likely to operate with multiplicative or proportionate effects on price while others seem likely to operate arithmetically.<sup>8</sup> In particular, it seems reasonable to view the effects of financial terms, such as temporary buydowns and loan discount points, as having arithmetic effects on sales prices. We view each additional dollar

<sup>&</sup>lt;sup>8</sup>Taken to its logical extreme, the argument that prices are determined by negotiation over unique commodities implies that even seemingly reasonable assumptions about functional form need not be correct.

of temporary buydown funding as having a constant dollar (rather than proportionate) effect on the sales price of the home: that is, an additional dollar of temporary buydown funding is expected to be associated with some fixed increase in the sales price of the home. In contrast, a proportionate effect on price would imply a dollar value of a particular buydown amount that varies with the sales price of the home.

As suggested by previous work, however, effects of various other factors on sales prices are likely to be multiplicative or proportionate, abstracting from financial considerations such as buydowns. Changes in the general price level and in the size of the home, for example, seem likely to exert proportional (though not necessarily equiproportional) effects on sales prices. A doubling of the general price level seems likely to double home prices, rather than to increase prices by a constant dollar amount regardless of original value. Similarly, we imagine a doubling of the size of a home to increase value by some fixed proportion of its original price,9 rather than by a fixed dollar amount independent of its original price.10

Assuming that all factors can be classified as either financial factors  $F_k$  that affect price additively or as quality (or other intrinsic) factors  $Q_j$  that affect price multiplicatively (perhaps after a transformation), we express the observed sales price as

$$P = \prod_{j} Q_j^{\beta_j} + \sum_{k} \alpha_k F_k,$$

where the  $\beta_j$  and  $\alpha_k$  are unknown coefficients that give the influence of the quality and financial factors, respectively, on sales price. Although we could use this equation as the basis for a nonlinear least squares estimation procedure, we instead opt for the simpler estimation route of approximating this function and applying linear least squares. The approximation begins by multiplying the final term on the right-hand side by  $\prod_j Q_j^{\beta_j} / \prod_j Q_j^{\beta_j} [=1]$ , factoring

<sup>&</sup>lt;sup>9</sup>Assuming that our regression controls effectively for other differences across homes, we may view the regression as performing the conceptual experiment of asking how prices would vary by changing each individual feature of a given home. The regression performs this experiment by controlling for other factors and then making comparisons across different homes.

<sup>10</sup>The alternative of a function that is linear in price and in square footage seems reasonable as well: the implicit assumption in that case is that each additional square foot adds a fixed dollar amount to the sales price. The difficulty with the latter assumption is that value of additional square footage seems likely to wary with the quality of the remainder of the home, i.e., square footage is not standardized in quality terms.

out  $\prod_j Q_j^{\beta_j}$  from both terms, and taking logs of both sides to obtain

$$\ln P = \sum_{j} \beta_{j} \ln Q_{j} + \ln(1 + \frac{\sum_{k} \alpha_{k} F_{k}}{\prod_{j} Q_{j}^{\beta_{j}}}).$$

Since the value of the financial aspects of the transaction (temporary buydowns, loan discount points, etc.) is expected to be a relatively small fraction of the sales price of the home exclusive of seller financing concessions ( $\approx \prod_j Q_j^{\beta_j}$ ), and since  $\ln(1+x) \approx x$  for small x, we may approximate as follows:

$$\ln P = \sum_{j} \beta_{j} \ln Q_{j} + \frac{\sum_{k} \alpha_{k} F_{k}}{\prod_{j} Q_{j}^{\beta_{j}}}.$$

Using a Taylor's series approximation and evaluating at a point at which  $Q_j = Q_{j0}$ , all j, and  $F_k = 0$ , for all k, we have

$$\ln P = A_0 + \sum_j \beta_j \ln Q_j + \frac{1}{\prod_j Q_{j0}^{\beta_j}} \sum_k \alpha_k F_k,$$

where  $A_O$  is a constant that depends on the evaluation point. Provided that  $\prod_j Q_{j0}^{\beta_j}$  (i.e., the point around which we approximate) is close to the actual price, we may further approximate the latter by

$$\ln P = A_0 + \sum_j \beta_j \ln Q_j + \sum_k \alpha_k (F_k/P).$$

Notice that in the latter expression, financial terms, such as temporary buydown amounts, are entered as their share of the sales price. The major question of interest is in the value of the  $\alpha_k$ , and in particular, whether there is full capitalization of temporary buydown amounts (i.e., whether the value of  $\alpha$  for temporary buydowns is unity).

In the empirical work for this study we provide parallel semilogarithmic and arithmetic specifications. As suggested by the development above, the semilogarithmic specifications utilize the log of price as the dependent variable and measure financial terms as fractions of the sales price. The corresponding arithmetic specifications are linear in price and in dollar amounts of buydowns and other financial aspects of the sales transactions.

#### B. Variable Definitions and Construction

We next turn to the particular variables utilized to explain sales prices of homes in the various cities and time periods. Table 5 below defines the independent variables included in one or more of the regression specifications and gives the abbreviations utilized in subsequent tables.<sup>11</sup> Simple summary statistics for these variables are presented in Table 6. In general, variables describing features of the home or its contents were obtained from the residential appraisal report, and variables capturing financial aspects of the transaction were obtained from the settlement statement. The major exceptions are the information on the amount and timing of buydown payments, which was obtained from the buydown or escrow agreement, and information on the mortgage interest rate, which was obtained from the mortgage note or deed of trust.<sup>12</sup> Several comments on variable definitions are in order here.

The above discussion concerning the regression specification does not fully answer the question of how to enter variables like temporary buydown amounts. The specifications that follow utilize the present value of the temporary buydown in which the discount rate is chosen to be the coupon rate on the mortgage.<sup>13</sup> This formulation represents from the buyer's perspective the full initial buydown value which is later dispensed over time. The undiscounted sum of buydown amounts would better represent costs to the seller when the buydown escrow is held in a noninterest bearing account.

Notice also that the semilogarithmic specification as implemented here assumes that explanatory variables such as numbers of bathrooms, presence of a fireplace, etc., have a fixed relative, rather than fixed dollar, effect on the price of the home. The rationalization for this assumption is that features such as these are worth more in high-priced homes than in low priced homes because the quality of such features will tend to be in keeping with

<sup>&</sup>lt;sup>11</sup>Regression specifications utilizing a more detailed list of controls are presented in the Appendix.

<sup>&</sup>lt;sup>12</sup>The values of the mortgage interest rate used in computing the median rate by month (see MEDINT) were obtained from the HUD automated A43 data.

<sup>&</sup>lt;sup>13</sup>It is unclear what interest rate to use in discounting. The mortgage rate has the desirable features of (a) properly reflecting the reduced payment burden facing the mortgagor who receives a temporary buydown, and (b) moving in accordance with overall market forces.

TABLE 5
Variable Definitions and Abbreviations

| Variable<br>Abbreviation | Variable Definition                                                                                                 |
|--------------------------|---------------------------------------------------------------------------------------------------------------------|
| VBO                      | The present discounted value of the monthly buydown payments using the mortgage interest rate as the discount rate. |
| BRATIO                   | The present discounted value of the monthly buydown payments (VBO) divided by the sales price of the home.          |
| DISCSELL                 | Discount points paid by the seller.                                                                                 |
| DSRATIO                  | Discount points paid by the seller (DISCELL) divided by the sales price of the home.                                |
| LAG1BUYP                 | One month lag in the fraction of FHA-insured homes in that office which sell with temporary buydowns.               |
| SQFT                     | Square footage of home.                                                                                             |
| LSQFT                    | Log of square footage of home.                                                                                      |
| SQFTMISS                 | Indicator variable = 1 if square footage is missing.                                                                |
| FACTFAB                  | Indicator variable = 1 if factory fabricated home.                                                                  |
| CENTLAIR.                | Indicator variable = 1 if central air conditioned.                                                                  |
| BEDRMS                   | Number of bedrooms.                                                                                                 |
| BATHS                    | Number of bathrooms.                                                                                                |
| AGEHSE                   | Age of house in years.                                                                                              |
| LOTSIZE                  | Size of lot in square feet.                                                                                         |
| LLOTSIZE                 | Log of LOTSIZE.                                                                                                     |
| LOTSZMIS                 | Indicator variable = 1 if lot size is missing.                                                                      |
| POOL                     | Indicator variable = 1 if swimming pool is present.                                                                 |
| GARAGE1                  | Indicator variable = 1 if single-car garage is present.                                                             |
| GARAGE2                  | Indicator variable = 1 if two-car garage is present.                                                                |
| BRICK                    | Indicator variable = 1 if brick exterior.                                                                           |
| NEW                      | Indicator variable = 1 if home classified as new.                                                                   |
| TIME82                   | Indicator variable = 1 if from 1982 time period.                                                                    |
| MEDINT                   | Median interest rate on new 30-year FHA loans during the month in which sales transaction occurred.                 |
| INT0                     | Interest rate on mortgage note.                                                                                     |
| BLDi                     | Indicator variable = 1 if a new home constructed by large builder i, i = $1, \ldots, 9$ .                           |

TABLE 6
Variable Means and Standard Deviations

|          |          | PHOENIX               | ENIX     |                       | DEI      | DENVER                |          | SAN ANTONIO           | TONIO     |                       |
|----------|----------|-----------------------|----------|-----------------------|----------|-----------------------|----------|-----------------------|-----------|-----------------------|
|          | 1        | 1982                  | 198      | 1985/86               |          | 1982                  | 15       | 1982                  | 198       | 1985/86               |
| Variable | Mean     | Standard<br>Deviation | Mean     | Standard<br>Deviation | Mean     | Standard<br>Deviation | Mean     | Standard<br>Deviation | Mean      | Standard<br>Deviation |
| VBO      | 333.3464 | 1124.983              | 685.6626 | 7086.083              | 704.3323 | 1826.624              | 315.1975 | 846.2628              | 811.4232  | 3300.589              |
| DISCSELL | 3315.187 | 4057.355              | 2099.546 | 11766.44              | 2996.577 | 3683.735              | 3019.504 | 3214.200              | 2137.4    | 6352.548              |
| SQFT     | 1345.620 | 437.8234              | 1397.788 | 1621.724              | 1214.766 | 565.1571              | 1207.828 | 371.2090              | 1311.494  | 920.0498              |
| SQFTMISS | 0        | 0                     | 0.001658 | 0.186827              | 0.001160 | 0.047635              | 0.017156 | 0.130015              | 0.003942  | 0.143628              |
| LAG1BUYP | 0.075252 | 0.062387              | 0.164622 | 0.741192              | 0.161309 | 0.1996                | 0.095710 | 0.128333              | 0.157651  | 0.410598              |
| BLD1     | 0        | 0                     | 0.047521 | 0.976866              | 0        | 0                     | 0        | 0                     | 0         | 0                     |
| BLD2     | 0        | 0                     | 0        | 0                     | 0        | 0                     | 0.225490 | 0.418417              | 0.054974  | 0.522414              |
| BLD3     | 0        | 0                     | 0        | 0                     | 0        | 0                     | 0        | 0                     | 0.017552  | 0.300982              |
| BLD4     | 0.001969 | 0.052006              | 0.016946 | 0.592632              | 0        | 0                     | 0        | 0                     | 0         | 0                     |
| BLD5     | 0        | 0                     | 0        | 0                     | 0.146556 | 0.494915              | 0        | 0                     | 0         | 0                     |
| BLD6     | 0        | 0                     | 0.010354 | 0.464796              | 0        | 0                     | 0        | 0                     | 0.0422.37 | 0.46098               |
| BLD7     | 0        | 0                     | 0.032596 | 0.815362              | 0        | 0                     | 0        | 0                     | 0         | 0                     |
| BLD8     | 0.019694 | 0.162992              | 0.012416 | 0.508457              | 0.032215 | 0.247093              | 0        | 0                     | 0         | 0                     |
| BLD9     | 0.001969 | 0.052006              | 0.009504 | 0.445501              | 0        | 0                     | 0        | 0                     | 0.008776  | 0.213775              |
| FACTFAB  | 0.001969 | 0.052006              | 0.003316 | 0.263994              | 0.001160 | 0.047635              | 0.002450 | 0.049507              | 0.003089  | 0.127196              |
| CENTLAIR | 0.798270 | 0.470732              | 0.906795 | 1.334856              | 0.079598 | 0.378774              | 0.563725 | 0.496531              | 0.718215  | 1.03109               |
| BEDRMS   | 2.944236 | 0.785358              | 2.983935 | 2.921193              | 2.627689 | 1.093460              | 2.779411 | 0.607381              | 2.896977  | 1.256284              |
| BATHS    | 1.734258 | 0.562070              | 1.911849 | 1.714452              | 1.576555 | 0.896677              | 1.514705 | 0.501623              | 1.722162  | 1.162338              |
| AGEHSE   | 14.25251 | 20.18344              | 9.631604 | 59.28847              | 19.13188 | 31.05938              | 20.3725  | 20.87845              | 17.16697  | 43.41629              |
| LOTSIZE  | 8737.524 | 9591.956              | 6335.739 | 34581.84              | 6354.694 | 22941.26              | 8281.373 | 4966.13               | 7690.766  | 12071.42              |
| LOTSZMIS | 0.11109  | 0.368631              | 0.233587 | 1.942749              | 0.290243 | 0.635150              | 0.019607 | 0.138818              | 0.068455  | 0.578785              |
| POOL     | 0.075214 | 0.309376              | 0.14678  | 1.624931              | 0.003613 | 0.083967              | 0.007352 | 0.085538              | 0.006674  | 0.186627              |
| GARAGE1  | 0.084630 | 0.326495              | 0.075916 | 1.216143              | 0.37401  | 0.677123              | 0.321078 | 0.46746               | 0.273856  | 1.022081              |
| GARAGE2  | 0.287897 | 0.531135              | 0.524212 | 2.293089              | 0.429453 | 0.692698              | 0.433823 | 0.496209              | 0.538773  | 1.142545              |
| BRICK    | 0.030498 | 0.201710              | 0.023438 | 0.694665              | 0.31866  | 0.652061              | 0.191176 | 0.39371               | 0.248607  | 0.990611              |
| MEDINT   | 15.33573 | 0.916916              | 11.45867 | 4.820494              | 14.90158 | 1.665719              | 15.25857 | 0.692128              | 11.4614   | 2.461474              |
| INT0     | 13.73682 | 1.810494              | 10.80349 | 5.617060              | 13.7069  | 1.893551              | 13.97487 | 1.497996              | 10.64856  | 3.29180               |
| NEW      | 0.143769 | 0.411569              | 0.435276 | 2.276466              | 0.265043 | 0.617632              | 0.303921 | 0.460513              | 0.232461  | 0.968141              |
| PRICE    | 60180.09 | 20612.99              | 73817.37 | 77793.70              | 72283.11 | 21351.52              | 47345.49 | 19268.52              | 60973.70  | 43299.7               |
|          |          |                       |          |                       |          |                       |          |                       |           |                       |

TABLE 6
Variable Means and Standard Deviations (Continued)

|          |          | РНО                   | PHOENIX  |                       | DEN      | DENVER                     |          | SAN ANTONIO           | TONIO    |                       |
|----------|----------|-----------------------|----------|-----------------------|----------|----------------------------|----------|-----------------------|----------|-----------------------|
|          | 1        | 1982                  | 198      | 1985/86               | 1;       | 1982                       | 1.       | 1982                  | 198      | 1985/86               |
| Variable | Mean     | Standard<br>Deviation | Mean     | Standard<br>Deviation | Mean     | Standard<br>Mean Deviation | Mean     | Standard<br>Deviation | Mean     | Standard<br>Deviation |
| BRATIO   | 0.005008 | 0.016536              | 0.009201 | 0.091406              | 0.009509 | 0.024600                   | 0.005714 | 0.014870              | 0.011693 | 0.046300              |
| DSRATIO  | 0.054045 | 0.056405              | 0.028355 | 0.14797               | 0.042981 | 0.051574                   | 0.057123 | 0.042534              | 0.03315  | 0.088962              |
| LSQFT    | 7.165861 | 0.328687              | 7.201586 | 1.767081              | 7.0460   | 0.546833                   | 6.956226 | 0.957927              | 7.118646 | 1.190729              |
| LLOTSIZE | 8.051653 | 3.372329              | 6.833836 | 17.38651              | 6.343142 | 5.696762                   | 8.789561 | 1.291821              | 8.314850 | 5.234961              |
| LNPRICE  | 10.95896 | 0.366178              | 11.18160 | 1.104293              | 11.16488 | 0.309649                   | 10.67738 | 0.430370              | 10.96531 | 0.768316              |
|          |          |                       |          |                       |          |                            |          |                       |          |                       |

the remainder of the home. Thus, for example, adding a bathroom will add the same in percentage terms, but more in dollar terms, to a high-priced home than to a low-priced home because bathroom quality will be correspondingly higher for the high-priced home.

At the same time, we enter the square footage of the home (see SQFT and LSQFT) and square footage of the lot (see LOTSIZE and LLOTSIZE) in logarithmic form when using the log of price as the dependent variable. The implicit assumption is that given percentage changes in square footage of the home or the lot translate into fixed percentage changes in price. That is, we assume that SQFT and LOTSIZE, like the  $Q_j$  in the functional form derivation above, have multiplicative effects on price and thus log linear effects on the log of price.

The basis for including most of the variables in Table 5 is fairly obvious because most are straightforward measures of the quality, size, or features of the home. A few variables merit additional discussion, however. In addition to using indicator variables to show the presence or absence of certain features of a home, e.g., the POOL variable to show the presence of a swimming pool, we also use dummy variables to indicate that some other variable should be present but is missing. This procedure is followed when the variable of interest is judged to be important but is missing in a non-trivial fraction of the cases (so that the cases with missing values can not easily be excluded). As an example, the variable SQFT (square footage of the house) must be positive. When we find SQFT to be missing or zero in our data, we set SQFT to zero and set the indicator SQFTMISS to one. We offer additional interpretation of these missing value indicators below in our discussion of empirical findings.

For new home cases we use indicator variables for several individual builders.<sup>14</sup> The idea is that builders tend to construct homes of roughly similar quality, but the quality differences among builders are largely unmeasured with the variables at hand. Including

<sup>&</sup>lt;sup>14</sup>An indicator for an individual builder was included if the builder was noted on the VA Request in 20 or more cases. The search for individual builders was conducted using character strings that were judged to be equivalent alternative representations of the builder's name.

builder indicators helps correct for these unobserved quality differences across homes.

Three variables help to control for differences in the strength of the local housing market.<sup>15</sup> The first is MEDINT, the median mortgage coupon rate in the same city for the month in which the home was sold. These rates are computed over 30-year FHA-insured loans with amortization start dates coinciding with the month of sale of the subject property. Because the amortization start dates are expected to follow loan commitments by perhaps 2-3 months, we are implicitly permitting a 2-3 month lag in the effect of the interest rate environment on house prices.

As a second proxy for the strength of the housing market we include INT0, the mortgage coupon rate for the loan on the subject property. This variable may help correct for
deficiencies in MEDINT that are due to possible timing problems in the latter. That is,
if INT0 differs from MEDINT, it may be that INT0 gives a more accurate indication of
the actual interest rate environment at the time that the subject home was sold. However,
a difference between INT0 and MEDINT may also reflect idiosyncrasies of the particular
loan transaction at issue. That is, if the coupon rate for an individual loan differs from
what is typical in the market, it may indicate, given the control for DISCSELL, that there
is something unusual about the borrower or the subject property.

The final control for market conditions is the variable LAG1BUYP, a one month lag in the fraction of FHA-insured homes in that city that sold with buydowns. LAG1BUYP is computed over 30-year FHA-insured mortgages for which the amortization start date is in the month prior to the month of sale of the subject property. Assuming again that sales transactions precede amortization start dates by 2-3 months, LAG1BUYP measures the prevalence of buydowns among sales transactions which precede the sale of the subject property by 3-4 months. Such sales transactions presumably would be used as comparables

<sup>16</sup>Both MEDINT and LAG1BUYP are computed over data that are separated according to new/old home status as well.

<sup>&</sup>lt;sup>15</sup>The discussion above noted that the effect of buydowns may vary with the motivation for buydowns and the strength of the housing market. This argument suggests that the buydown variable be interacted with measures of market strength and proxies for buydown motivation. As discussed below, our experiments along these lines were unsuccessful.

to establish the subject property's value. This variable may pick up two effects. The first is that extensive buydown activity may temporarily mislead unaware buyers, sellers, and appraisers into overestimating home values by unknowingly using comparables that have sold with buydowns to judge the prices of homes that do not feature buydowns. Presumably, such ignorance would eventually vanish, if indeed it is present at all, as the market becomes aware of the possible presence of buydowns among comparables.<sup>17</sup>

The fraction of buydowns in the market may pick up another effect as well. If buydowns tend to be offered only when the housing market is relatively weak, the relative frequency of buydowns may serve as an inverse indicator of the health of the housing market.

<sup>&</sup>lt;sup>17</sup>If this effect wanes as buyers, sellers, and appraisers adjust, then additional lags should be present. Experimentation with alternative lag structures yielded results that were similar to those presented below.

#### V. EMPIRICAL FINDINGS: ESTIMATES OF HEDONIC REGRESSIONS

Tables 7a through 7g and Tables 8a through 8g present weighted regression<sup>18</sup> estimates of the hedonic price equations based on pooled samples of old and new homes. The weights used in estimation are the inverses of the sampling rates for each stratum.<sup>19</sup> Table 7 regressions are arithmetic in house price; Table 8 regressions are semilogarithmic.

While all samples maintain separation among cities, the first five tables in each series (Tables 7a through 7e, and Tables 8a through 8e) are separated according to time period as well. The final two regressions in each series (Tables 7f and 7g, and Tables 8f and 8g) merge the 1982 and 1985/86 samples for the Phoenix and San Antonio offices, permitting only differences in intercepts for the two observation intervals. Although pooling offers the advantage of obtaining more efficient estimates of parameters that are truly the same, it runs the risk of forcing equality of coefficient estimates for which the underlying parameters are in fact different. That is, the assumption in pooling across observation intervals is that effects of all independent variables, other than the intercept, are identical in the two different time periods.<sup>20</sup>

Two possible sources differences in parameters across time periods are especially noteworthy. The first is changes in the price level over time, which seem likely to be problematic

<sup>&</sup>lt;sup>18</sup>Note that the statistical procedure assumes that the explanatory variables are uncorrelated with the disturbance term in the regression. Arguments raised by Durning and Quigley (1985) and by Clauretie (1983) imply that the buydown amount is statistically endogenous because of a mechanical relationship between the present value of the buydown and the selling price of the home. In particular, the present value of the buydown can written as the product of the loan amount and a factor that depends on the coupon rate on the mortgage and the buydown interest rates. Since the loan amount, in turn, is the selling price of the home less the downpayment, the explanatory variable that measures the present value of the buydown amount essentially includes the dependent variable (the selling price). We have shown elsewhere (Cotterman [1991]) that this argument is fallacious.

<sup>19</sup> Recall that cells are defined in part by default status. The concern is that default may be correlated with the regression error term, i.e., that homes that are high-priced (or low-priced) for reasons not well explained by the explanatory variables are disproportionately likely to end in default. Thus, samples that are selected nonrandomly according to default status may lead to bias if used in unweighted form. One could, of course, argue that an equally severe, but uncorrected, source of selection bias is in constructing a sample of FHA-insured loans. The results must be interpreted as conditional on this sample selection rule, i.e., as regressions within the universe of FHA-insured loans, which may differ from the larger universe of all mortgages.

<sup>&</sup>lt;sup>20</sup>We do not attempt to aggregate across cities under the assumption that, because of climatic differences and differences in construction practices, identical (as measured) housing features are worth more in some areas than in others.

TABLE 7a
Weighted Least Squares Regression Estimates
Dependent Variable: Sales Price of Home

PHOENIX 1982

| Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic * |
|-----------|-------------------------|-------------------|---------------|
| INTERCEPT | 22154.000               | 12089.684         | 1.832         |
| VBO       | 1.943                   | 0.447             | 4.339         |
| DISCSELL  | 0.329                   | 0.150             | 2.194         |
| SQFT      | 27.516                  | 2.214             | 12.427        |
| LAG1BUYP  | 3455.035                | 12211.182         | 0.283         |
| BLD4      | -2791.459               | 9202.193          | -0.303        |
| BLD8      | 69.968                  | 3313.137          | 0.021         |
| BLD9      | -974.292                | 9218.375          | -0.106        |
| FACTFAB   | -7098.548               | 9152.106          | -0.776        |
| CENTLAIR  | 6658.089                | 1250.200          | 5.326         |
| BEDRMS    | -842.910                | 899.231           | -0.937        |
| BATHS     | 1911.181                | 1277.626          | 1.496         |
| AGEHSE    | -107.094                | 32.392            | -3.306        |
| LOTSIZE   | 0.168                   | 0.055             | 3.010         |
| LOTSZMIS  | 1900.476                | 1509.326          | 1.259         |
| POOL      | 8414.504                | 1681.346          | 5.005         |
| GARAGE1   | 3598.673                | 1499.184          | 2.400         |
| GARAGE2   | 5091.406                | 1142.713          | 4.456         |
| BRICK     | 5581.147                | 2460.888          | 2.268         |
| MEDINT    | 465.195                 | 741.921           | 0.627         |
| INT0      | -1255.130               | 374.065           | -3.355        |
| NEW       | 1736.860                | 1473.329          | 1.179         |
|           |                         |                   |               |

Number of Observations: 370

 $R^2$ : 0.8196

Root MSE: 9015.19412

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 7b
Weighted Least Squares Regression Estimates
Dependent Variable: Sales Price of Home

## PHOENIX 1985/86

| Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|-----------|-------------------------|-------------------|--------------|
| INTERCEPT | 24688.000               | 5043.341          | 4.895        |
| VBO       | 0.566                   | 0.252             | 2.243        |
| DISCSELL  | 0.404                   | 0.147             | 2.746        |
| SQFT      | 31.501                  | 1.484             | 21.220       |
| SQFTMISS  | 56532.000               | 8043.388          | 7.028        |
| LAG1BUYP  | -18094.000              | 9471.816          | -1.910       |
| BLD1      | 3292.486                | 1696.357          | 1.941        |
| BLD4      | -569.614                | 2672.485          | -0.213       |
| BLD6      | -1506.353               | 3197.486          | -0.471       |
| BLD7      | -987.927                | 1866.692          | -0.529       |
| BLD8      | 7433.799                | 2979.664          | 2.495        |
| BLD9      | 7770.856                | 3363.227          | 2.311        |
| FACTFAB   | -11228.000              | 5606.946          | -2.003       |
| CENTLAIR  | 6944.231                | 1295.492          | 5.360        |
| BEDRMS    | -3147.924               | 683.004           | -4.609       |
| BATHS     | 4853.703                | 1112.035          | 4.365        |
| AGEHSE    | -11.056                 | 37.292            | -0.296       |
| LOTSIZE   | 0.078                   | 0.050             | 1.549        |
| LOTSZMIS  | 183.380                 | 975.744           | 0.188        |
| POOL      | 4702.453                | 1015.320          | 4.631        |
| GARAGE1   | -1055.270               | 1266.785          | -0.833       |
| GARAGE2   | 6054.102                | 883.889           | 6.849        |
| BRICK     | -1769.665               | 2230.355          | -0.793       |
| MEDINT    | -293.591                | 557.953           | -0.526       |
| INT0      | -568.740                | 500.391           | -1.137       |
| NEW       | 13026.000               | 3168.504          | 4.111        |

Number of Observations: 661

 $R^2$ : 0.7773

Root MSE: 37424.08031

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 7c
Weighted Least Squares Regression Estimates
Dependent Variable: Sales Price of Home

| DENVER 1 |
|----------|
|----------|

| Variable        | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|-----------------|-------------------------|-------------------|--------------|
| INTERCEPT       | 44824.000               | 7360.214          | 6.090        |
| VBO             | 0.476                   | 0.461             | 1.032        |
| DISCSELL        | 0.028                   | 0.216             | 0.130        |
| SQFT            | 20.866                  | 1.871             | 11.151       |
| SQFTMISS        | 23789.000               | 13800.785         | 1.724        |
| LAG1BUYP        | -613.499                | 4959.742          | -0.124       |
| $\mathrm{BLD5}$ | 4457.095                | 2544.282          | 1.752        |
| BLD8            | -5908.371               | 3206.139          | -1.843       |
| FACTFAB         | -4790.517               | 13816.677         | -0.347       |
| CENTLAIR        | 1104.212                | 1843.193          | 0.599        |
| BEDRMS          | -3051.280               | 862.027           | -3.540       |
| BATHS           | 2887.982                | 1072.363          | 2.693        |
| AGEHSE          | -145.649                | 27.093            | -5.376       |
| LOTSIZE         | -0.027                  | 0.030             | -0.932       |
| LOTSZMIS        | 3640.282                | 1708.182          | 2.131        |
| POOL            | -13707.000              | 8014.812          | -1.710       |
| GARAGE1         | 4474.115                | 1344.255          | 3.328        |
| GARAGE2         | 9222.571                | 1323.414          | 6.969        |
| BRICK           | 3341.125                | 1084.096          | 3.082        |
| MEDINT          | 858.142                 | 442.285           | 1.940        |
| INT0            | -979.580                | 437.048           | -2.241       |
| NEW             | 2185.515                | 2334.163          | 0.936        |

 $R^2$ : 0.5904

Root MSE: 13982.43094

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 7d
Weighted Least Squares Regression Estimates
Dependent Variable: Sales Price of Home

## **SAN ANTONIO 1982**

| Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|-----------|-------------------------|-------------------|--------------|
| INTERCEPT | 22833.000               | 8271.400          | 2.761        |
| VBO       | 0.098                   | 0.498             | 0.197        |
| DISCSELL  | 0.585                   | 0.189             | 3.084        |
| SQFT      | 26.911                  | 1.711             | 15.723       |
| SQFTMISS  | 34287.000               | 3438.216          | 9.972        |
| LAG1BUYP  | 2001.956                | 3120.348          | 0.642        |
| BLD2      | -3931.655               | 1716.507          | -2.290       |
| FACTFAB   | -19585.000              | 7182.273          | -2.727       |
| CENTLAIR  | 8275.954                | 1073.421          | 7.710        |
| BEDRMS    | -979.466                | 754.357           | -1.298       |
| BATHS     | 1868.624                | 1185.805          | 1.576        |
| AGEHSE    | -27.040                 | 23.845            | -1.134       |
| LOTSIZE   | -0.034                  | 0.075             | -0.459       |
| LOTSZMIS  | -260.058                | 2721.280          | -0.096       |
| POOL      | 5548.441                | 4313.149          | 1.286        |
| GARAGE1   | 2723.083                | 931.182           | 2.924        |
| GARAGE2   | 6334.702                | 1097.825          | 5.770        |
| BRICK     | 6195.232                | 1049.897          | 5.901        |
| MEDINT    | -377.460                | 589.253           | -0.641       |
| INT0      | -1053.143               | 302.295           | -3.484       |
| NEW       | 6783.852                | 1621.651          | 4.183        |

Number of Observations: 408

 $R^2$ : 0.8750

Root MSE: 6985.86147

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 7e
Weighted Least Squares Regression Estimates
Dependent Variable: Sales Price of Home
SAN ANTONIO 1985/86

| Variable  | Coefficient<br>Estimate        | Standard<br>Error | T-statistic * |
|-----------|--------------------------------|-------------------|---------------|
| INTERCEPT | 16135.000                      | 4911.065          | 3.285         |
| VBO       | 0.722                          | 0.324             | 2.223         |
| DISCSELL  | 0.689                          | 0.217             | 3.171         |
| SQFT      | 11.704                         | 1.156             | 10.118        |
| SQFTMISS  | 26763.000                      | 6079.719          | 4.402         |
| LAG1BUYP  | 751.306                        | 4784.216          | 0.157         |
| BLD2      | -2249.275                      | 2013.487          | -1.117        |
| BLD3      | -819.791                       | 3112.008          | -0.263        |
| BLD6      | 3220.780                       | 2194.388          | 1.468         |
| BLD9      | 4597.654                       | 4177.177          | 1.101         |
| FACTFAB   | 383.503                        | 6909.878          | 0.056         |
| CENTLAIR  | 8077.611                       | 1230.096          | 6.567         |
| BEDRMS    | 35.107                         | 826.136           | 0.042         |
| BATHS     | 7152.834                       | 1137.519          | 6.288         |
| AGEHSE    | -57.171                        | 28.830            | -1.983        |
| LOTSIZE   | 0.230                          | 0.080             | 2.845         |
| LOTSZMIS  | 2905.782                       | 1657.253          | 1.753         |
| POOL      | 3987.274                       | 4565.450          | 0.873         |
| GARAGE1   | 2807.335                       | 1131,083          | 2.482         |
| GARAGE2   | 12316.000                      | 1245.462          | 9,889         |
| BRICK     | 4643.807                       | 961.259           | 4.831         |
| MEDINT    | $-291.4\widehat{3}\widehat{3}$ | 549.786           | -0.449        |
| INT0      | 257.171                        | 585.835           | 0.439         |
| NEW       | -121.765                       | 2394.184          | -0.051        |

 $R^2$ : 0.7299

Root MSE: 22864.61838

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 7f
Weighted Least Squares Regression Estimates
Dependent Variable: Sales Price of Home

**PHOENIX** 

| T-statistic * | Standard<br>Error                                                                                                                                                    | Coefficient<br>Estimate                                                                                                               | Variable                                                                                              |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|               | 21101                                                                                                                                                                |                                                                                                                                       |                                                                                                       |
| 7.229         | 3848.531                                                                                                                                                             | 27822.000                                                                                                                             | INTERCEPT                                                                                             |
| 2.919         | 0.202                                                                                                                                                                | 0.589                                                                                                                                 | VBO                                                                                                   |
| 3.403         | 0.115                                                                                                                                                                | 0.391                                                                                                                                 | DISCSELL                                                                                              |
| 26.354        | 1.187                                                                                                                                                                | 31.282                                                                                                                                | SQFT                                                                                                  |
| 8.719         | 6528.681                                                                                                                                                             | 56923.000                                                                                                                             | SQFTMISS                                                                                              |
| -1.057        | 5938.763                                                                                                                                                             | -6278.180                                                                                                                             | LAG1BUYP                                                                                              |
| 2.348         | 1374.468                                                                                                                                                             | 3226.706                                                                                                                              | BLD1                                                                                                  |
| -0.296        | 2160.191                                                                                                                                                             | -640.376                                                                                                                              | BLD4                                                                                                  |
| -0.493        | 2596.501                                                                                                                                                             | -1280.801                                                                                                                             | BLD6                                                                                                  |
| -0.650        | 1516.407                                                                                                                                                             | -985.640                                                                                                                              | BLD7                                                                                                  |
| 2.828         | 2349.984                                                                                                                                                             | 6645.356                                                                                                                              | BLD8                                                                                                  |
| 2.752         | 2718.506                                                                                                                                                             | 7480.257                                                                                                                              | BLD9                                                                                                  |
| -2.423        | 4502.175                                                                                                                                                             | -10911.000                                                                                                                            | FACTFAB                                                                                               |
| 6.635         | 1015.659                                                                                                                                                             | 6738.792                                                                                                                              | CENTLAIR                                                                                              |
| -5.505        | 544.907                                                                                                                                                              | -2999.711                                                                                                                             | BEDRMS                                                                                                |
| 5.367         | 881.549                                                                                                                                                              | 4731.663                                                                                                                              | BATHS .                                                                                               |
| -0.586        | 29.034                                                                                                                                                               | -17.004                                                                                                                               | AGEHSE                                                                                                |
| 2.006         | 0.039                                                                                                                                                                | 0.080                                                                                                                                 | LOTSIZE                                                                                               |
| 0.558         | 778.499                                                                                                                                                              | 434.269                                                                                                                               | LOTSZMIS                                                                                              |
| 5.774         | 813.641                                                                                                                                                              | 4698.000                                                                                                                              | POOL                                                                                                  |
| -0.778        | 1006.765                                                                                                                                                             | -783.208                                                                                                                              | GARAGE1                                                                                               |
| 8.823         | 700.508                                                                                                                                                              | 6180.570                                                                                                                              | GARAGE2                                                                                               |
| -0.718        | 1766.430                                                                                                                                                             | -1268.481                                                                                                                             | BRICK                                                                                                 |
| -0.998        | 432.197                                                                                                                                                              | -431.395                                                                                                                              | MEDINT                                                                                                |
| -1.879        | 379.501                                                                                                                                                              | -713.194                                                                                                                              | INT0                                                                                                  |
| 4.532         | 1989.079                                                                                                                                                             | 9013.750                                                                                                                              | NEW                                                                                                   |
| -1.714        | 1780.553                                                                                                                                                             | -3051.962                                                                                                                             | TIME82                                                                                                |
|               | 2718.506<br>4502.175<br>1015.659<br>544.907<br>881.549<br>29.034<br>0.039<br>778.499<br>813.641<br>1006.765<br>700.508<br>1766.430<br>432.197<br>379.501<br>1989.079 | 7480.257 -10911.000 6738.792 -2999.711 4731.663 -17.004 0.080 434.269 4698.000 -783.208 6180.570 -1268.481 -431.395 -713.194 9013.750 | BLD9 FACTFAB CENTLAIR BEDRMS BATHS AGEHSE LOTSIZE LOTSZMIS POOL GARAGE1 GARAGE2 BRICK MEDINT INTO NEW |

Number of Observations: 1,031

 $R^2$ : 0.7811

Root MSE: 30413.94157

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 7g
Weighted Least Squares Regression Estimates
Dependent Variable: Sales Price of Home

## SAN ANTONIO

| Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|-----------|-------------------------|-------------------|--------------|
| INTERCEPT | 16368.000               | 3932.530          | 4.162        |
| VBO       | 0.642                   | 0.259             | 2.475        |
| DISCSELL  | 0.667                   | 0.161             | 4.129        |
| SQFT      | 12.459                  | 0.934             | 13.333       |
| SQFTMISS  | 24093.000               | 4210.008          | 5.723        |
| LAG1BUYP  | -346.793                | 3370.477          | -0.103       |
| BLD2      | -2206.846               | 1491.749          | -1.479       |
| BLD3      | -1266.017               | 2548.247          | -0.497       |
| BLD6      | 3225.780                | 1795.462          | 1.797        |
| BLD9      | 4822.756                | 3435.070          | 1.404        |
| FACTFAB   | -2112.578               | 5456.174          | -0.387       |
| CENTLAIR  | 8223.017                | 955.942           | 8.602        |
| BEDRMS    | 30.799                  | 643.912           | 0.048        |
| BATHS     | 6943.631                | 898.077           | 7.732        |
| AGEHSE    | -49.279                 | 22.227            | -2.217       |
| LOTSIZE   | 0.194                   | 0.063             | 3.072        |
| LOTSZMIS  | 2571.573                | 1335.765          | 1.925        |
| POOL      | 3353.989                | 3574.552          | 0.938        |
| GARAGE1   | 2596.521                | 873.398           | 2.973        |
| GARAGE2   | 11850.000               | 963.444           | 12.500       |
| BRICK     | 5088.750                | 759.842           | 6.697        |
| MEDINT    | -76.479                 | 466.653           | -0.164       |
| INT0      | -17.861                 | 392.752           | -0.045       |
| NEW       | 660.277                 | 1698.790          | 0.389        |
| TIME82    | -7818.018               | 1502.617          | -5.203       |

Number of Observations: 1,146

 $R^2$ : 0.7493

Root MSE: 18924.13450

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 8a

Weighted Least Squares Regression Estimates
Dependent Variable: Log of Sales Price of Home
PHOENIX 1982

| Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|-----------|-------------------------|-------------------|--------------|
| INTERCEPT | 5.9836                  | 0.3659            | 16.353       |
| BRATIO    | 1.9529                  | 0.5417            | 3.605        |
| DSRATIO   | -0.1418                 | 0.1872            | -0.758       |
| LSQFT     | 0.6714                  | 0.0533            | 12.595       |
| LAG1BUYP  | -0.1417                 | 0.2190            | -0.647       |
| BLD4      | 0.0169                  | 0.1635            | 0.104        |
| BLD8      | 0.0467                  | 0.0586            | 0.797        |
| BLD9      | -0.0426                 | 0.1626            | -0.262       |
| FACTFAB   | -0.2520                 | 0.1619            | -1.556       |
| CENTLAIR  | 0.1471                  | 0.0224            | 6.568        |
| BEDRMS    | -0.0274                 | 0.0158            | -1.734       |
| BATHS     | 0.0391                  | 0.0235            | 1.660        |
| AGEHSE    | -0.0022                 | 0.0005            | -3.869       |
| LLOTSIZE  | 0.0486                  | 0.0190            | 2.561        |
| LOTSZMIS  | 0.4568                  | 0.1732            | 2.637        |
| POOL      | 0.1352                  | 0.0296            | 4.557        |
| GARAGE1   | 0.0727                  | 0.0265            | 2.745        |
| GARAGE2   | 0.0711                  | 0.0199            | 3.575        |
| BRICK     | 0.1136                  | 0.0435            | 2.613        |
| MEDINT    | 0.0010                  | 0.0131            | 0.076        |
| INT0      | -0.0292                 | 0.0065            | -4.473       |
| NEW       | 0.0113                  | 0.0260            | 0.435        |

 $R^2$ : 0.8213

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 8b
Weighted Least Squares Regression Estimates
Dependent Variable: Log of Sales Price of Home
PHOENIX 1985/86

|           | <u> </u>                |                   |              |
|-----------|-------------------------|-------------------|--------------|
| Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
| INTERCEPT | 6.3698                  | 0.2087            | 30.518       |
| BRATIO    | 0.5049                  | 0.2657            | 1.900        |
| DSRATIO   | 0.2210                  | 0.1587            | 1.392        |
| LSQFT     | 0.6034                  | 0.0303            | 19.910       |
| SQFTMISS  | 4.5115                  | 0.2359            | 19.117       |
| LAG1BUYP  | -0.2232                 | 0.1293            | -1.726       |
| BLD1      | 0.0402                  | 0.0230            | 1.747        |
| BLD4      | 0.0065                  | 0.0365            | 0.179        |
| BLD6      | -0.0141                 | 0.0435            | -0.324       |
| BLD7      | -0.0117                 | 0.0254            | -0.464       |
| BLD8      | 0.0865                  | 0.0404            | 2.137        |
| BLD9      | 0.1220                  | 0.0458            | 2.662        |
| FACTFAB   | -0.1662                 | 0.0764            | -2.175       |
| CENTLAIR  | 0.1437                  | 0.0174            | 8.230        |
| BEDRMS    | -0.0513                 | 0.0093            | -5.474       |
| BATHS     | 0.0749                  | 0.0158            | 4.729        |
| AGEHSE    | -0.0005                 | 0.0005            | -1.176       |
| LLOTSIZE  | 0.0381                  | 0.0145            | 2.620        |
| LOTSZMIS  | 0.3277                  | 0.1289            | 2.542        |
| POOL      | 0.0721                  | 0.0137            | 5.255        |
| GARAGE1   | -0.0070                 | 0.0172            | -0.405       |
| GARAGE2   | 0.0848                  | 0.0120            | 7.070        |
| BRICK     | -0.0186                 | 0.0304            | -0.612       |
| MEDINT    | 0.0010                  | 0.0075            | 0.142        |
| INT0      | -0.0105                 | 0.0067            | -1.548       |
| NEW       | 0.1755                  | 0.0431            | 4.064        |

 $R^2$ : 0.7951

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 8c
Weighted Least Squares Regression Estimates
Dependent Variable: Log of Sales Price of Home
DENVER 1982

| Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|-----------|-------------------------|-------------------|--------------|
| INTERCEPT | 8.6911                  | 0.3029            | 28.691       |
| BRATIO    | -0.0883                 | 0.4978            | -0.177       |
| DSRATIO   | -0.7959                 | 0.2225            | -3.576       |
| LSQFT     | 0.3478                  | 0.0372            | 9.327        |
| SQFTMISS  | 2.4093                  | 0.3240            | 7.434        |
| LAG1BUYP  | -0.0384                 | 0.0721            | -0.533       |
| BLD5      | 0.0360                  | 0.0367            | 0.980        |
| BLD8      | -0.0561                 | 0.0469            | -1.197       |
| FACTFAB   | -0.1009                 | 0.2031            | -0.497       |
| CENTLAIR  | 0.0165                  | 0.0269            | 0.613        |
| BEDRMS    | -0.0339                 | 0.0129            | -2.621       |
| BATHS     | 0.0435                  | 0.0156            | 2.787        |
| AGEHSE    | -0.0025                 | 0.0004            | -6.046       |
| LLOTSIZE  | 0.0012                  | 0.0218            | 0.055        |
| LOTSZMIS  | 0.0484                  | 0.1978            | 0.245        |
| POOL      | -0.1467                 | 0.1172            | -1.252       |
| GARAGE1   | 0.0826                  | 0.0197            | 4.183        |
| GARAGE2   | 0.1338                  | 0.0194            | 6.890        |
| BRICK     | 0.0471                  | 0.0158            | 2.963        |
| MEDINT    | 0.0164                  | 0.0064            | 2.548        |
| INT0      | -0.0186                 | 0.0063            | -2.917       |
| NEW       | 0.0400                  | 0.0335            | 1.194        |

 $R^2$ : 0.5840

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 8d

Weighted Least Squares Regression Estimates

Dependent Variable: Log of Sales Price of Home

**SAN ANTONIO 1982** 

| Variable  | Coefficient<br>Estimate | Standard<br>Error   | T-statistic*   |
|-----------|-------------------------|---------------------|----------------|
| INTERCEPT | 5.6709                  | 0.4453              | 12.733         |
| BRATIO    | 0.8026                  | 0.7157              | 1.121          |
| DSRATIO   | -0.4231                 | 0.3302              | -1.281         |
| LSQFT     | 0.7412                  | 0.0550              | 13.459         |
| SQFTMISS  | 5.2830                  | 0.3951              | 13.370         |
| LAG1BUYP  | 0.0410                  | 0.0799              | 0.514          |
| BLD2      | 0.0190                  | 0.0447              | 0.427          |
| FACTFAB   | -0.4666                 | 0.1843              | -2.531         |
| CENTLAIR  | 0.2178                  | 0.0274              | 7.924          |
| BEDRMS    | -0.0172                 | 0.0193              | -0.891         |
| BATHS     | 0.0475                  | 0.0305              | 1.558          |
| AGEHSE    | -0.0006                 | 0.0006              | -1.106         |
| LLOTSIZE  | 0.0148                  | 0.0277              | 0.534          |
| LOTSZMIS  | 0.1166                  | 0.2585              | 0.451          |
| POOL      | 0.1319                  | 0.1103              | 1.196          |
| GARAGE1   | 0.0906                  | 0.0238              | 3.797          |
| GARAGE2   | 0.1529                  | 0.0281              | 5.436          |
| BRICK     | 0.1020                  | 0.0263              | 3.878          |
| MEDINT    | -0.0126                 | $0.015\overline{0}$ | <b>=0.84</b> 5 |
| INT0      | -0.0325                 | 0.0076              | -4.251         |
| NEW       | 0.1276                  | 0.0412              | 3.097          |

Number of Observations: 408

 $R^2$ : 0.8362

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 8e
Weighted Least Squares Regression Estimates
Dependent Variable: Log of Sales Price of Home
SAN ANTONIO 1985/86

| Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|-----------|-------------------------|-------------------|--------------|
| INTERCEPT | 7.0289                  | 0.2524            | 27.845       |
| BRATIO    | 0.7037                  | 0.3690            | 1.907        |
| DSRATIO   | 0.2283                  | 0.2409            | 0.948        |
| LSQFT     | 0.4567                  | 0.0324            | 14.079       |
| SQFTMISS  | 3.4454                  | 0.2466            | 13.967       |
| LAG1BUYP  | 0.0046                  | 0.0758            | 0.062        |
| BLD2      | -0.0403                 | 0.0320            | -1.259       |
| BLD3      | -0.0274                 | 0.0494            | -0.555       |
| BLD6      | 0.0505                  | 0.0349            | 1.445        |
| BLD9      | 0.0748                  | 0.0663            | 1.128        |
| FACTFAB   | 0.0054                  | 0.1098            | 0.049        |
| CENTLAIR  | 0.1802                  | 0.0195            | 9.229        |
| BEDRMS    | -0.0221                 | 0.0133            | -1.658       |
| BATHS     | 0.0928                  | 0.0186            | 4.970        |
| AGEHSE    | -0.0011                 | 0.0004            | -2.454       |
| LLOTSIZE  | 0.0340                  | 0.0181            | 1.874        |
| LOTSZMIS  | 0.3129                  | 0.1637            | 1.911        |
| POOL      | 0.0664                  | 0.0723            | 0.917        |
| GARAGE1   | 0.0797                  | 0.0179            | 4.436        |
| GARAGE2   | 0.2059                  | 0.0197            | 10.417       |
| BRICK     | 0.0604                  | 0.0153            | 3.950        |
| MEDINT    | 0.0117                  | 0.0103            | 1.131        |
| INT0      | -0.0135                 | 0.0093            | -1.451       |
| NEW       | 0.0206                  | 0.0379            | 0.543        |

 $R^2$ : 0.7841

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 8f
Weighted Least Squares Regression Estimates
Dependent Variable: Log of Sales Price of Home
PHOENIX

| Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|-----------|-------------------------|-------------------|--------------|
| INTERCEPT | 6.4037                  | 0.1665            | 38.444       |
| BRATIO    | 0.5601                  | 0.2144            | 2.612        |
| DSRATIO   | 0.1919                  | 0.1240            | 1.547        |
| LSQFT     | 0.6033                  | 0.0244            | 24.691       |
| SQFTMISS  | 4.5204                  | 0.1910            | 23.657       |
| LAG1BUYP  | -0.0645                 | 0.0819            | -0.788       |
| BLD1      | 0.0376                  | 0.0188            | 1.995        |
| BLD4      | 0.0070                  | 0.0298            | 0.236        |
| BLD6      | -0.0112                 | 0.0357            | -0.314       |
| BLD7      | -0.0114                 | 0.0208            | -0.549       |
| BLD8      | 0.0778                  | 0.0322            | 2.411        |
| BLD9      | 0.1196                  | 0.0374            | 3.192        |
| FACTFAB   | -0.1658                 | 0.0620            | -2.671       |
| CENTLAIR  | 0.1427                  | 0.0138            | 10.289       |
| BEDRMS    | -0.0494                 | 0.0075            | -6.537       |
| BATHS     | 0.0747                  | 0.0126            | 5.891        |
| AGEHSE    | -0.0007                 | 0.0003            | -1.779       |
| LLOTSIZE  | 0.0385                  | 0.0116            | 3.324        |
| LOTSZMIS  | 0.3349                  | 0.1028            | 3.257        |
| POOL      | 0.0716                  | 0.0111            | 6.434        |
| GARAGE1   | -0.0024                 | 0.0138            | -0.180       |
| GARAGE2   | 0.0865                  | 0.0096            | 8.994        |
| BRICK     | -0.0109                 | 0.0243            | -0.450       |
| MEDINT    | 0.0004                  | 0.0059            | 0.080        |
| INT0      | -0.0139                 | 0.0052            | -2.685       |
| NEW       | 0.1205                  | 0.0273            | 4.400        |
| TIME82    | -0.0763                 | 0.0245            | -3.104       |

R2: 0.7995

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 8g
Weighted Least Squares Regression Estimates
Dependent Variable: Log of Sales Price of Home
SAN ANTONIO

|           | Coefficient | Standard |              |
|-----------|-------------|----------|--------------|
| Variable  | Estimate    | Error    | T-statistic* |
| INTERCEPT | 6.9011      | 0.2084   | 33.107       |
| BRATIO    | 0.5482      | 0.3048   | 1.799        |
| DSRATIO   | 0.1258      | 0.1859   | 0.677        |
| LSQFT     | 0.4833      | 0.0268   | 17.985       |
| SQFTMISS  | 3.5771      | 0.2008   | 17.808       |
| LAG1BUYP  | -0.0519     | 0.0558   | -0.930       |
| BLD2      | -0.0202     | 0.0248   | -0.814       |
| BLD3      | -0.0452     | 0.0422   | -1.071       |
| BLD6      | 0.0455      | 0.0298   | 1.527        |
| BLD9      | 0.0694      | 0.0569   | 1.220        |
| FACTFAB   | -0.0410     | 0.0905   | -0.454       |
| CENTLAIR  | 0.1878      | 0.0158   | 11.847       |
| BEDRMS    | -0.0209     | 0.0108   | -1.928       |
| BATHS     | 0.0886      | 0.0153   | 5.760        |
| AGEHSE    | -0.0010     | 0.0003   | -2.699       |
| LLOTSIZE  | 0.0288      | 0.0148   | 1.945        |
| LOTSZMIS  | 0.2692      | 0.1338   | 2.013        |
| POOL      | 0.0636      | 0.0592   | 1.074        |
| GARAGE1   | 0.0769      | 0.0144   | 5.311        |
| GARAGE2   | 0.2004      | 0.0160   | 12.530       |
| BRICK     | 0.0679      | 0.0126   | 5.373        |
| MEDINT    | 0.0138      | 0.0077   | 1.787        |
| INT0      | -0.0169     | 0.0064   | -2.617       |
| NEW       | 0.0574      | 0.0281   | 2.041        |
| TIME82    | -0.1860     | 0.0250   | -7.440       |

 $R^2$ : 0.7962

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

in the arithmetic specification. Because regression coefficients in specifications in which the dependent variable is in arithmetic (rather than logarithmic) form are interpreted in dollar terms, coefficients may vary according to variations in the general cost of living. In the semilogarithmic specification, however, permitting differences in the intercept across observation intervals may be adequate to handle differences in the cost of living. In regression specifications utilizing the log of the sales price as the dependent variable, coefficients are interpreted as impacts on relative prices, which should be invariant with respect to changes in the general price level.

A second potential source of differences in parameters across observation intervals is in the strength of the housing market. As noted earlier, the impact of temporary buydowns on house prices may well differ with the strength of the market. The effects of other features of the home may similarly vary with market conditions. Although we include variables that attempt to correct for differences in the strength of the housing market, these variables are probably inadequate proxies for variation in housing demand. Estimating over separate observation intervals helps correct for this inadequacy by measuring effects within a less varied housing market.

It is possible in principle to test jointly for equality of non-intercept coefficients, and thus for the appropriateness of aggregation across observation intervals. Standard F-tests fail to reject the hypothesis of equality at the five percent level in three of the four cases. The exceptional case is San Antonio in the semilogarithmic specification, where equality is rejected at the one percent level.<sup>21</sup> Even though these tests do not generally reject aggregation, they are, nonetheless, fairly weak tests in this context; they are designed to reject a null hypothesis of equality only when there is strong evidence against it.

Because the focus of this study is on the capitalization of buydowns, and because such effects may vary with market strength, we have also tested for equality of the buydown

 $<sup>^{21}</sup>$ The relevant F-statistics are as follows for the arithmetic regressions (the Table 7 series): F(21,983) = 0.56 for Phoenix; F(20,1101) = 1.31 for San Antonio. For the semilogarithmic specifications in the Table 8 series, we find F(21,983) = 0.64 for Phoenix; F(20,1101) = 2.06 for San Antonio.

coefficient alone (i.e., VBO or BRATIO) across the two observation intervals within San Antonio and Phoenix. Equality of the buydown effect across observation intervals is rejected for Phoenix in both the arithmetic and semilogarithmic specifications, but equality is not rejected in either specification for San Antonio.<sup>22</sup>

Because some of the test statistics suggest that the data do not wholeheartedly support aggregation, we urge caution in utilizing the pooled sample regression results in Tables 7f and 7g and Tables 8f and 8g. Within this context, the results in the pooled samples are viewed as useful summaries that may hide true underlying differences. Our discussion encompasses both the aggregated and the disaggregated results.

The coefficients on the buydown variables VBO (Table 7) and BRATIO (Table 8) are of primary interest and are discussed first. We note that the coefficients are generally though not always similar in the arithmetic and semilogarithmic specifications.<sup>23</sup> Although estimates are generally positive, as expected, there is an exception—Denver homes in the semilogarithmic specification. Note, however, that the t-statistic indicates that the Denver buydown coefficient is insignificantly different from zero; that is, the effect of the buydown on price can not be distinguished from zero. Estimated effects also tend to be smaller than one, indicating less than full capitalization of the value of the buydown into the house price. Once again there is an exception: in both specifications Phoenix homes in 1982 exhibit statistically significant capitalization at a rate almost double that necessary for full capitalization (Tables 7a and 8a). As argued above, more than full capitalization (a coefficient exceeding one) is surely possible if buydowns are used primarily to help homebuyers qualify for larger mortgages, rather than to reduce the time the home is on the market.

Because buydowns generally appear to be capitalized into sales prices at less than full

<sup>&</sup>lt;sup>22</sup>The relevant t-statistics for testing equality of coefficients across the two observation intervals are as follows: for Phoenix, 2.68 in the arithmetic specification and 2.40 for the semilogarithmic specification; for San Antonio, 1.05 in the arithmetic specification and 0.12 in the semilogarithmic specification.

<sup>&</sup>lt;sup>23</sup>Note that the interpretation of the coefficients on VBO and BRATIO is identical in the two specifications: the fraction of the present value of the buydown that is reflected in increased sales price of the home. The interpretation of coefficients on discount points paid by the seller (DISCSELL and DSRATIO) is also identical across specifications.

value, gains to the seller in other ways must make up the difference between partial and full capitalization. That is, sellers will not be willing to part with homes at prices that capture less than the full present value of the buydown unless there is some offsetting gain elsewhere: reduced holding costs from a more rapid sale, benefits from keeping stable advertised prices, etc. When we find that capitalization rates in general are in the range of, say, 50 to 75 percent, the implication is that these other gains to the seller must amount to at least 25 to 50 percent of the buydown amount.

It should be emphasized that even if there is no buydown capitalization—i.e., gains to sellers from reduced holding costs, etc., are at least as large as the buydown amount—this would not imply that buydowns have no effect on the subsequent termination behavior of mortgages. Even in the absence of buydown capitalization, mortgage payments increase when the buydown is exhausted, possibly causing the buyer to reassess the home purchase in light of the higher required payment stream. The result may be a tendency towards mortgage termination—either prepayment or default.

The finding of a zero or negative impact of buydowns on house prices in Denver is possible though, as argued above, unlikely. Indeed, the arithmetic specification for the same sample yields an imprecisely measured positive effect. Nonetheless, this anomalous finding for Denver may be indicative of econometric problems that permeate all of our samples but that happen to occur with especially great force for one specification and one sample. One likely possibility is that our regressions incorrectly omit determinants of house prices that are especially important in some time periods and cities, and these omitted factors happen to be correlated with the size of buydowns (i.e., larger buydown amounts are associated with lower values of those price-enhancing features that are omitted from the regression). The buydown amount then picks up part of the impact of the omitted variable, resulting in a downward bias in the estimated buydown effect. Attempts to introduce additional controls for home quality or the strength of the housing market met with little success, however.

An alternative explanation is that there is a simultaneous relationship between the size of the buydown and the price of the home. That is, the list of explanatory variables may be adequate to explain house prices, but the size of the buydown may depend (negatively) on house prices and other factors. This seems especially likely if buydowns tend to be offered mainly to lower income buyers who tend to purchase lower priced homes. Simultaneity bias reflects the spurious negative correlation between the buydown variable and the house price. Utilizing an instrumental variables procedure in which mortgagor's income and personal characteristics were used as instruments for the buydown amount failed to offer any substantial improvement.

While the latter econometric problems may have affected our estimates, prior reasoning suggests that capitalization effects may well differ across markets even if they are unlikely to be negative. In fact, even aside from the Denver anomaly, estimated capitalization rates in Tables 7 and 8 appear to differ across samples. As noted above, for example, estimated buydown effects differ significantly across the two observation intervals in Phoenix. Indeed, in the arithmetic specification, the estimate for Phoenix in 1982 is significantly different from the estimates in each of the other samples. Such empirical evidence, together with theoretical reasoning, suggests the possibility that capitalization effects may vary within the separate observation intervals as well. Even within each observation interval, unmeasured differences in market strength within more narrowly defined local housing markets and unobserved differences in buyer and seller motivation may cause differences in buydown effects. To allow for this possibility, we interacted the buydown amount with measures of market strength (MEDINT or LAG1BUYP) and proxies for buydown motivation (buyer's income). These attempts to parameterize differences in capitalization effects were generally unsuccessful.

To summarize, aside from the aforementioned rather typical caveats regarding potential biases or weaknesses in the statistical methodology, our findings highlight two salient features of buydown capitalization. First, temporary buydowns are generally capitalized into sales prices, but typically at less than full present value. Second, buydown effects differ across samples, a finding that we interpret as reflecting differences in the strength of housing markets and differences in the motivation for buydowns. With a more detailed and precise specification of the latter factors, one may be able to explain both cross-sample and within-sample variation in capitalization effects.

It is of interest to compare the capitalization estimates obtained here with those found in the default study (Cotterman [1992]) that comprises the second part of this project. Utilizing the same data base, the default study estimates an implied capitalization rate by contrasting default behavior under buydowns with that in the absence of buydowns. The findings there are that capitalization rates are typically around 100 percent, and thus somewhat larger than those generally found in the current study. The findings are broadly consistent with each other, and the differences that do exist can probably be attributed to the different biases associated with the two very different methodologies. In particular, estimated capitalization effects reported in this paper seem likely to be somewhat downward biased, as noted above. As discussed in the companion report, however, implied capitalization rates in the default study may be upward biased estimates of true structural parameters if buyers utilizing temporary buydowns have a higher default proclivity even in the absence of buydowns.

Turning to other variables, most other coefficient estimates appear to be generally reasonable, but there are, of course, anomalies. The likely explanation is again spurious correlations induced by an inadequate list of variables to capture both differences in home quality and variations in the strength of the local housing market.

A few additional comments and cautions are in order to help in interpreting these other coefficient estimates. First, as a general matter, we again emphasize that in Tables 7a through 7g the coefficients on house characteristics are interpreted as dollar values. For example, the coefficient on central air conditioning (CENTLAIR) gives the implied estimated dollar increase in price from adding that feature to an otherwise identical home. Similarly,

the coefficient on SQFT shows the estimated effect on price from adding an additional square foot of interior space (holding constant other explanatory factors).

In contrast, and as explained above, coefficients on house characteristics from the semilogarithmic form underlying Tables 8a through 8g are, with some exceptions, interpreted as proportionate increases in house prices generated by a unit change in the house characteristic. For example, the coefficient on CENTLAIR is now the proportionate increase (or, when multiplied by 100, the percentage increase) in house prices associated with adding central air conditioning, other things the same. The exceptions occur for the variables LSQFT and LLOTSIZE. In the case of LSQFT, for example, the coefficient estimate is the estimated percentage increase in price associated with a one percent increase in interior square footage. (The interpretation of LLOTSIZE is analogous.)

Finally, coefficients on missing value indicators (e.g., SQFTMISS) give, for cases missing the associated variable (e.g., SQFT), the average difference between the observed dependent variable (price or the log of price) and a predicted dependent variable based on the remaining explanatory variables. In other words, we may think of the coefficient estimate on SQFTMISS in the following way. Consider all cases in which SQFT is missing, and for each of these cases form the predicted house price based on the values of the remaining independent variables. Deducting this predicted house price from the observed house price for each of these cases, and averaging the result, gives the average contribution of SQFT to house price among these missing value cases. The coefficient on SQFTMISS is this average contribution of SQFT to house price among those cases with missing values for the SQFT variable.

## VI. CONCLUSIONS

Prior reasoning suggests that temporary buydowns are potentially valuable features of sales transactions; part or all of the dollar value may be capitalized in the sales price of the home. When buydowns are offered primarily to help buyers qualify for larger loans than they otherwise would, sales prices may be higher by more than the present value of the buydown. Because buydowns may reduce time on the market, however, sellers may find it profitable to accept less than full capitalization in exchange for savings from a quicker sale. When buydowns are used primarily as a means of avoiding public disclosure of price reductions or as a means of temporarily lowering prices, less than full capitalization is the likely outcome. If the mixture of motivations for offering buydowns differs from time to time and place to place, it would not be surprising to find capitalization effects that differ across time periods and cities.

The empirical work has attempted to identify capitalization effects by estimating hedonic price regressions in five samples of FHA-insured sales transactions: Phoenix in 1982 and 1985/86, Denver in 1982, and San Antonio in 1982 and 1985/86. The empirical findings in this report strongly suggest that temporary buydowns are at least partially capitalized into the sales prices of homes. We estimate that the sales price of the house is generally higher by about 50 to 75 percent of the present value of the buydown. The extent to which capitalization rates fall short of 100 percent places a lower bound on the gains that sellers must obtain in other dimensions: reduced holding costs from quicker sales, benefits from stable advertised prices, and so forth must generally amount to at least 25 to 50 percent of the buydown amount.

The estimated capitalization rates reported here are broadly consistent with, but somewhat below, the capitalization rates reported in the companion study of default (Cotterman [1992]). Implied capitalization rates from the default study, as revealed in ultimately higher default rates for homes purchased under temporary buydown arrangements, are typically on the order of 100 percent. Differences between the two sets of estimates are likely traceable

to differences in underlying methodologies, each of which contains its own set of biases.

The evidence here points to substantial variation in the capitalization effect over time and across cities. For example, the estimated capitalization rate for Phoenix in 1982 is nearly 2, which is significantly larger than the rate of about 0.5 that is estimated for this same city in 1985/86. One interpretation of these differing effects is that they are traceable to different reasons for the presence of buydowns and differences in the strength of the housing market.

This logic suggests that capitalization effects may vary within the samples used for estimation in this paper, though this variation is buried in the average effect estimated for each individual sample. By utilizing better and more detailed measures of the strength of local housing markets, together with better proxies for possible motivations for buydowns, one may be able to estimate the way in which capitalization rates vary with these forces, thus explaining both the cross-sample differences uncovered in this study, as well as potentially hidden within-sample variation.

#### **BIBLIOGRAPHY**

- Agarwal, Vinod B. and Richard A. Phillips. "The Effect of Mortgage Rate Buydowns on Housing Prices: Recent Evidence from FHA-VA Transactions." Journal of the American Real Estate & Urban Economics Association 11, no. 4 (Winter 1983): 491-503.
- . "Mortgage Rate Buydowns: Further Evidence." Housing Finance Review 3, no. 2 (April 1984): 191-97.
- Asabere, Paul K. "The Value of a Neighborhood Street with Reference to the Cul-de-Sac." The Journal of Real Estate Finance and Economics 3, no. 2 (June 1990): 185-93.
- Asabere, Paul K., George Hachey, and Steven Grubaugh. "Architecture, Historic Zoning, and the Value of Homes." The Journal of Real Estate Finance and Economics 2, no. 3 (September 1989): 181-95.
- Brueckner, Jan K. "Creative Financing and House Prices: A Theoretical Inquiry into the Capitalization Issue." Journal of the American Real Estate & Urban Economics Association 12, no. 4 (Winter 1984): 417-26.
- Clauretie, Terrence M. "A Note on the Bias in House Price Capitalization Models." Journal of the American Real Estate & Urban Economics Association 11, no. 4 (Winter 1983): 521-24.
- Cotterman, Robert F. "Evaluating Financial Terms in Hedonic House Price Regressions." Unicon Research Corporation Working Paper, December 1991.
- ———. "Seller Financing of Temporary Buydowns, Part 2: Effects on Mortgage Default." Unicon Research Corporation, November 1992.
- Durning, Dan and John M. Quigley. "On the Distributional Implications of Mortgage Revenue Bonds and Creative Finance." National Tax Journal 38, no. 4 (December 1985): 513-23.
- Foster, and Robert Van Order. "An Option-Based Model of Mortgage Default." Housing Finance Review 3 (October 1984): 351-72.
- Harris, Jack C. "The Effect of Real Rates of Interest on Housing Prices." The Journal of Real Estate Finance and Economics 2, no. 1 (February 1989): 47-60.
- Jaffee, Dwight M. "Creative Finance: Measures, Sources, and Tests." Housing Finance Review 3, no. 1 (January 1984): 1-18.
- Pace, R. Kelly and Otis W. Gilley. "Estimation Employing a Priori Information Within Mass Appraisal and Hedonic Pricing Models." The Journal of Real Estate Finance and Economics 3, no. 1 (March 1990): 55-72.
- Schwartz, Jr., Arthur L. and Steven D. Kapplin. "Economic Implications of Alternative Home Financing." Housing Finance Review 3, no. 2 (April 1984): 165-75.
- Sirmans, G. Stacy, Stanley D. Smith, and C.F. Sirmans. "Assumption Financing and Selling Price of Single-Family Homes." *Journal of Financial and Quantitative Analysis* 18, no. 3 (September 1983): 307–17.

- Sirmans, G. Stacy, C.F. Sirmans, and Stanley D. Smith. "The Issues and Implications of Creative Financing and House Prices: A Survey." *Property Tax Journal* 4, no. 4 (December 1985): 383-415.
- Zerbst, Robert H. and William B. Brueggeman. "FHA and VA Mortgage Discount Points and Housing Prices." The Journal of Finance 32, no. 5 (December 1977): 1766-73.
- Zuehlke, Thomas W. "Transformations to Normality and Selectivity Bias in Hedonic Price Functions." The Journal of Real Estate Finance and Economics 2, no. 3 (September 1989): 173-80.

#### APPENDIX

# A DIGRESSION ON THE USEFULNESS OF THE HEDONIC PRICE REGRESSION AS AN APPRAISAL TOOL

Although the major purpose in gathering the data for this study was to examine buydowns, HUD anticipated the possibility of using the resulting data to study other phenomena as well. For this reason, far more information was gathered than was utilized in the regressions presented above. In this appendix we assess briefly the possibility of utilizing more detailed information on house and neighborhood characteristics to estimate hedonic regressions that could be used for appraising homes.

Tables 11 and 12 parallel Tables 7 and 8 but include a much more extensive and detailed list of control variables. Variable definitions for all variables—both the new variables used here as well as those used earlier—are presented in Table 9, and summary statistics for the complete set of variables are presented in Table 10.

The interpretation of coefficients on variables that are common to both the old and new specifications is generally similar, except that the usual "other things the same" proviso includes more "other things" in the more detailed specifications in Tables 11 and 12. In a few instances, the change in interpretation is nontrivial and deserves explicit mention. One such instance is the interpretation of variables related to numbers of rooms. For both Tables 11 and 12, the specification now includes separate entries for the number of rooms (ROOMS), as well as the number of bathrooms (BATHS) and the number of bedrooms (BEDRMS). The conceptual experiment underlying each coefficient is to increase each variable by one unit while holding constant the others. Hence, in Table 11 the coefficient on BATHS measures the estimated dollar effect on house prices of adding an additional bathroom, while holding constant the number of bedrooms and the number of rooms in total. Thus, the coefficient implicitly asks the impact on house price of substituting a bathroom for another room, other than a bedroom. The interpretation of the coefficient on BEDRMS is similar: the impact on house price of substituting a bedroom for a room other than a bathroom. The

TABLE 9

Extended List of Variable Definitions and Abbreviations

| Variable<br>Abbreviation | Variable Definition                                                                                                 |
|--------------------------|---------------------------------------------------------------------------------------------------------------------|
| VBO                      | The present discounted value of the monthly buydown payments using the mortgage interest rate as the discount rate. |
| BRATIO                   | The present discounted value of the monthly buydown payments (VBO) divided by the sales price of the home.          |
| DISCSELL                 | Discount points paid by the seller.                                                                                 |
| DSRATIO                  | Discount points paid by the seller (DISCELL) divided by the sales price of the home.                                |
| LAG1BUYP                 | One month lag in the fraction of FHA-insured homes in that office which sell with temporary buydowns.               |
| SQFT                     | Square footage of home.                                                                                             |
| LSQFT                    | Log of square footage of home.                                                                                      |
| SQFTMISS                 | Indicator variable = 1 if square footage is missing.                                                                |
| FACTFAB                  | Indicator variable = 1 if factory fabricated home.                                                                  |
| CENTLAIR                 | Indicator variable = 1 if central air conditioned.                                                                  |
| FIREPL                   | Indicator variable = 1 if fireplace is present.                                                                     |
| GOODCOND                 | Indicator variable = 1 if home in generally good condition (rather than average or poor) according to appraiser.    |
| GDRMSIZE                 | Indicator variable = 1 if room sizes and layout are good (as opposed to average or poor) in opinion of appraiser.   |
| BEDRMS                   | Number of bedrooms.                                                                                                 |
| BATHS                    | Number of bathrooms.                                                                                                |
| ROOMS                    | Number of rooms.                                                                                                    |
| AGEHSE                   | Age of house in years.                                                                                              |
| LOTSIZE                  | Size of lot in square feet.                                                                                         |
| LLOTSIZE                 | Log of LOTSIZE.                                                                                                     |
| LOTSZMIS                 | Indicator variable = 1 if lot size is missing.                                                                      |
| RANGE                    | Indicator variable = 1 if range is present.                                                                         |
| REFRIG                   | Indicator variable = 1 if refrigerator is present.                                                                  |
| DISHW                    | Indicator variable = 1 if dishwasher is present.                                                                    |
| WASHDRY                  | Indicator variable = 1 if clothes washer or dryer is present.                                                       |
| GARBDISP                 | Indicator variable = 1 if garbage disposal is present.                                                              |
| ALARM                    | Indicator variable = 1 if alarm is noted on appraisal report.                                                       |
| SECSYS                   | Indicator variable = 1 if security system is present.                                                               |
| FENCE                    | Indicator variable = 1 if fence is present.                                                                         |
| PATIO                    | Indicator variable = 1 if patio is present.                                                                         |
| POOL                     | Indicator variable = 1 if swimming pool is present.                                                                 |
| CARPORT1                 | Indicator variable = 1 if single-car carport is present.                                                            |

TABLE 9 (Continued)

| Variable<br>Abbreviation | Variable Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GARAGE1                  | Indicator variable = 1 if single-car garage is present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CARPORT2                 | Indicator variable = 1 if two-car carport is present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| GARAGE2                  | Indicator variable = 1 if two-car garage is present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MICROWV                  | Indicator variable = 1 if microwave oven is present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| HRDWDFLR                 | Indicator variable = 1 if hardwood floors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CONC                     | Indicator variable = 1 if foundation is concrete but not slab.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SLAB                     | Indicator variable = 1 if home is on slab.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BRICK                    | Indicator variable = 1 if brick exterior.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| URBAN                    | Indicator variable = 1 if urban area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RURAL                    | Indicator variable = 1 if rural area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MISNEIGH                 | Indicator variable = 1 if neighborhood information is missing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| NEW                      | Indicator variable = 1 if home classified as new.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TIME82                   | Indicator variable = 1 if from 1982 time period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MEDINT                   | Median interest rate on new 30-year FHA loans during the month in which sales transaction occurred.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| INT0                     | Interest rate on mortgage note.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BLDi                     | Indicator variable = 1 if a new home constructed by large builder i, $i = 1,, 9$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Countyi                  | Indicator variable = 1 if home is in county or city i. Counties/cities include Adams County (ADAMS), Arvanda (ARVANDA1 and ARVANDA2), Aurora (AURORA1 and AURORA2), Arapahoe County (ARAPAHOE), Englewood (ENGLEWD), Littleton (LTTLETON), Littleton South East (LTTLTNSE), Denver County (DENVERCO), Denver(DENVER), Douglas County (DOUGLAS), Jefferson County (JEFFERSN), and Lakewood (LAKEWOOD) for the Denver Office; Bexar (BEXAR), San Antonio (SANANTON), Comal County (COMAL), and Guadalupe County (GUADALUP) for the San Antonio Office; and Glendale (GLENDALE), Mesa (MESA), Phoenix (PHOENIX), Scottsdale (SCOTTSDL), Tempe (TEMPE), Avondale (AVONDALE), Chandler (CHANDLER), Gilbert (GILBERT), Goodyear (GOODYEAR), Kyrene (KYRENE), Litchfield Park (LTCHFLD), Paradise City (PRDISCTY), Peoria (PEORIA), Tolleson (TOLLESON), Youngstown (YNGSTWN), and other Maricopa County (PTHRMAR) in the Phoenix Office. Unknown counties are designated by UNKCNTY. |

TABLE 10
Extended List of Variable Means and Standard Deviations

|          |          | РНО                   | PHOENIX  |                        | DE       | DENVER                |          | SAN ANTONIO           | TONIO    |                       |
|----------|----------|-----------------------|----------|------------------------|----------|-----------------------|----------|-----------------------|----------|-----------------------|
|          | 1        | 1982                  | 198      | 1985/86                | 1        | 1982                  | 16       | 1982                  | 198      | 1985/86               |
| Variable | Mean     | Standard<br>Deviation | Mean     | Standard<br>Deviation  | Mean     | Standard<br>Deviation | Мевп     | Standard<br>Deviation | Mean     | Standard<br>Deviation |
| VBO      | 333.3464 | 1124.983              | 687.0658 | 7090.025               | 709.4595 | 1828.607              | 315.9719 | 847.159               | 811.4262 | 3300.589              |
| LAGIBUYP | 0.075252 | 0.062387              | 0.164922 | 0.741130               | 0.162173 | 0.199516              | 0.095946 | 0.128403              | 0.157651 | 0.410598              |
| DISCSELL | 3315.187 | 4057.355              | 2102.092 | 11772.53               | 3016.935 | 3676.374              | 3023.306 | 3217.237              | 2137.4   | 6352.548              |
| SOFTMISS | 1345.620 | 437.8234              | 0.00166  | $1622.918 \\ 0.186968$ | 0.001168 | 0.047737              | 0.017199 | 371.3731 $0.130172$   | 0.003942 | 920.0498 $0.143628$   |
| BLD1     | 0        | 0                     | 0.047619 | 0.977557               | 0        | 0                     | 0        | 0                     | 0        | 0                     |
| BLD2     | 0        | 0                     | 0        | 0                      | 0        | 0                     | 0.22604  | 0.418782              | 0.054974 | 0.522414              |
| BLD3     | 0        | 0                     | 0        | 0                      | 0        | 0                     | 0        | 0                     | 0.017552 | 0.300982              |
| BLD4     | 0.001969 | 0.052006              | 0.016980 | 0.593071               | 0        | 0                     | 0        | 0                     | 0        | 0                     |
| BLD5     | 0        | 0                     | 0        | 0                      | 0.147623 | 0.495668              | 0        | 0                     | 0        | 0                     |
| BLD6     | 0        | 0                     | 0.010375 | 0.46514                | 0        | 0                     | 0        | 0                     | 0.042237 | 0.46098               |
| BLD7     | 0        | 0                     | 0.032663 | 0.815952               | 0        | 0                     | 0        | 0                     | 0        | 0                     |
| BLD8     | 0.019694 | 0.162992              | 0.012442 | 0.508836               | 0.03244  | 0.247594              | 0        | 0                     | 0        | 0                     |
| BLD9     | 0.001969 | 0.052006              | 0.009523 | 0.445834               | 0        | 0                     | 0        | 0                     | 0.008776 | 0.213775              |
| FACTFAB  | 0.001969 | 0.052006              | 0.003323 | 0.264193               | 0.001168 | 0.047737              | 0.002457 | 0.049568              | 0.003089 | 0.127196              |
| CENTLAIR | 0.798270 | 0.470732              | 0.906604 | 1.335728               | 0.080177 | 0.379469              | 0.565110 | 0.496352              | 0.718215 | 1.03109               |
| FIREPL   | 0.231365 | 0.494679              | 0.33489  | 2.166432               | 0.457596 | 0.696146              | 0.37100  | 0.4836                | 0.541051 | 1.142127              |
| GOODCOND | 0.631260 | 0.565951              | 0.351284 | 2.191303               | 0.686353 | 0.648323              | 0.678132 | 0.467767              | 0.597331 | 1.124073              |
| GDRMSIZE | 0.333477 | 0.553038              | 0.212170 | 1.876741               | 0.432367 | 0.692241              | 0.395577 | 0.489576              | 0.35424  | 1.096222              |
| BEDRMS   | 2.944236 | 0.785358              | 2.983902 | 2.923407               | 2.635898 | 1.085835              | 2.776412 | 0.605096              | 2.896977 | 1.256284              |
| BATHS    | 1.734258 | 0.562070              | 1.911669 | 1.715654               | 1.580752 | 0.89595               | 1.51597  | 0.501589              | 1.722162 | 1.162338              |
| ROOMS    | 5.697358 | 1.368832              | 5.804659 | 5.165608               | 5.524048 | 1.704161              | 5.624078 | 1.066142              | 5.751812 | 2.329965              |
| AGEHSE   | 14.25251 | 20.18344              | 9.594012 | 59.21045               | 19.01273 | 30.77477              | 20.299   | 20.85224              | 17.16697 | 43.41629              |
| LOTSIZE  | 8737.524 | 9591.956              | 6332.841 | 34606.82               | 6383.893 | 22983.84              | 8286.364 | 4971.219              | 7690.766 | 12071.42              |
| LOTSZMIS | 0.11109  | 0.368631              | 0.234065 | 1.943616               | 0.28871  | 0.633220              | 0.019656 | 0.138986              | 0.068455 | 0.578785              |
| WASHDRY  | 0.044284 | 0.241327              | 0.085543 | 1.28387                | 0.134574 | 0.476862              | 0.063882 | 0.244843              | 0.07619  | 0.608090              |
| RANGE    | 0.84726  | 0.42198               | 0.935446 | 1.128018               | 0.772964 | 0.585361              | 0.648648 | 0.477980              | 0.762518 | 0.975333              |
| REFRIG   | 0.053794 | 0.26465               | 0.053608 | 1.033943               | 0.350098 | 0.666525              | 0.095823 | 0.294710              | 0.10548  | 0.704044              |
| DISHW    | 0.561240 | 0.582106              | 0.804693 | 1.819781               | 0.461482 | 0.696586              | 0.525798 | 0.499948              | 0.660288 | 1.085512              |
|          |          |                       |          |                        |          |                       |          |                       |          |                       |

TABLE 10
Extended List of Variable Means and Standard Deviations (Continued)

|          |          | РНО                   | PHOENIX  |                       | DEL      | DENVER                |          | SAN ANTONIO           | TONIO     |                       |
|----------|----------|-----------------------|----------|-----------------------|----------|-----------------------|----------|-----------------------|-----------|-----------------------|
|          | 1        | 1982                  | 198      | 1985/86               | 1        | 1982                  | 1        | 1982                  | 198       | 1985/86               |
| Variable | Mean     | Standard<br>Deviation | Mean     | Standard<br>Deviation | Mean     | Standard<br>Deviation | Mean     | Standard<br>Deviation | Mean      | Standard<br>Deviation |
| GARBDISP | 0.621712 | 0.568879              | 0.8257   | 1.741400              | 0.722051 | 0.625984              | 0.511056 | 0.50049               | 0.65552   | 1.089147              |
| FENCE    | 0.550287 | 0.58354               | 0.716438 | 2.068993              | 0.044888 | 0.289330              | 0.361179 | 0.480933              | 0.358420  | 1.09909               |
| ALARM    | 0.007108 | 0.098551              | 0        | 0                     | 0.010146 | 0.140035              | 0.014742 | 0.120666              | 0.106971  | 0.708401              |
| SECSYS   | 0        | 0                     | 0        | 0                     | 0        | 0                     | 0.002457 | 0.049568              | 0.068223  | 0.577879              |
| PATIO    | 0.406197 | 0.576108              | 0.447247 | 2.282366              | 0.143945 | 0.490509              | 0.280098 | 0.449599              | 0.385644  | 1.115620              |
| POOL     | 0.075214 | 0.309376              | 0.145042 | 1.616462              | 0.003639 | 0.084147              | 0.007371 | 0.085642              | 0.006674  | 0.186627              |
| CARPORT1 | 0.300334 | 0.537727              | 0.192858 | 1.811090              | 0.035399 | 0.258209              | 0.066339 | 0.249180              | 0.056239  | 0.528257              |
| GARAGE1  | 0.084630 | 0.326495              | 0.076072 | 1.216963              | 0.373099 | 0.675786              | 0.321867 | 0.467767              | 0.273856  | 1.022081              |
| CARPORT2 | 0.255955 | 0.511913              | 0.17039  | 1.72587               | 0.002866 | 0.074709              | 0.034398 | 0.182473              | 0.015601  | 0.284043              |
| GARAGE2  | 0.287897 | 0.531135              | 0.525285 | 2.29223               | 0.432579 | 0.692282              | 0.434889 | 0.496352              | 0.5387'73 | 1.142545              |
| MICROWV  | 0.013448 | 0.135118              | 0.024701 | 0.712486              | 0.013013 | 0.158359              | 0.02702  | 0.162361              | 0.056484  | 0.529118              |
| HRDWDFLR | 0        | 0                     | 0.002046 | 0.207449              | 0.289690 | 0.633853              | 0.191646 | 0.394080              | 0.085561  | 0.641105              |
| CONC     | 0.012679 | 0.131249              | 0.007801 | 0.403861              | 0.850838 | 0.497793              | 0.007371 | 0.085642              | 0         | 0                     |
| SLAB     | 0.985350 | 0.140933              | 0.587769 | 2.259538              | 0.081424 | 0.382149              | 0.710073 | 0.454286              | 0.827671  | 0.865607              |
| BRICK    | 0.030498 | 0.201710              | 0.02348  | 0.695174              | 0.317346 | 0.650376              | 0.191646 | 0.394080              | 0.248607  | 0.990611              |
| MEDINT   | 15.33573 | 0.916916              | 11.46063 | 4.820032              | 14.88995 | 1.658305              | 15.25798 | 0.692876              | 11.4614   | 2.461474              |
| 0LNI     | 13.73682 | 1.810494              | 10.80514 | 5.618838              | 13.70661 | 1.886108              | 13.97113 | 1.497924              | 10.64856  | 3.29180               |
| NEW      | 0.143769 | 0.411569              | 0.436167 | 2.276395              | 0.266973 | 0.618146              | 0.304668 | 0.460833              | 0.232461  | 0.968141              |
| URBAN    | 0.593465 | 0.576184              | 0.289817 | 2.082540              | 0.335713 | 0.659872              | 0.48402  | 0.500359              | 0.466181  | 1.14337               |
| RURAL    | 0.015849 | 0.146505              | 0.008186 | 0.413621              | 0.016451 | 0.177745              | 0.009828 | 0.098769              | 0.007753  | 0.201029              |
| MISNEIGH | 0.007108 | 0.098551              | 0.405871 | 2.254138              | 0.012087 | 0.152695              | 0.014742 | 0.120666              | 0.005821  | 0.174368              |
| UNKCNTY  | 0        | 0                     | 0.007436 | 0.394384              | 0.002866 | 0.074709              | 0.009828 | 0.098769              | 0.00075.7 | 0.063058              |
| ADAMS    | 0        | 0                     | 0        | 0                     | 0.106180 | 0.430472              | 0        | 0                     | 0         | 0                     |
| ARVANDA1 | 0        | 0                     | 0        | 0                     | 0.004808 | 0.096659              | 0        | 0                     | 0         | 0                     |
| AURORA1  | 0        | 0                     | 0        | 0                     | 0.019427 | 0.192860              | 0        | 0                     | 0         | 0                     |
| ARAPAHOE | 0        | 0                     | 0        | 0                     | 0.153391 | 0.503546              | 0        | 0                     | 0         | 0                     |
| AURORA2  | 0        | 0                     | 0        | 0                     | 0.021234 | 0.201445              | 0        | 0                     | 0         | 0                     |
| ENGLEWD  | 0        | 0                     | 0        | 0                     | 0.015148 | 0.170676              | 0        | 0                     | 0         | 0                     |
| LTTLETON | 0        | 0                     | 0        | 0                     | 0.01532  | 0.171649              | 0        | 0                     | 0         | 0                     |
|          |          |                       |          |                       |          |                       |          |                       |           |                       |

TABLE 10
Extended List of Variable Means and Standard Deviations (Continued)

|          |          | РНО                   | PHOENIX  |                       | DEN      | DENVER                |          | SAN ANTONIO           | TONIO    |                       |
|----------|----------|-----------------------|----------|-----------------------|----------|-----------------------|----------|-----------------------|----------|-----------------------|
|          | 1        | 1982                  | 198      | 98/88                 | , i      | 1982                  | 16       | 1982                  | 198      | 1985/86               |
| Variable | Mean     | Standard<br>Deviation |
| LTTLTNSE | 0        | 0                     | 0        | 0                     | 0.012087 | 0.152695              | 0        | 0                     | 0        | 0                     |
| DENVERCO | 0        | 0                     | 0        | 0                     | 0.178137 | 0.534656              | 0        | 0                     | 0        | 0                     |
| DENVER   | 0        | 0                     | 0        | 0                     | 0.164541 | 0.518080              | 0        | 0                     | 0        | 0                     |
| DOUGLAS  | 0        | 0                     | 0        | 0                     | 0.087730 | 0.395307              | 0        | 0                     | 0        | 0                     |
| JEFFERSN | 0        | 0                     | 0        | 0                     | 0.198298 | 0.557138              | 0        | 0                     | 0        | 0                     |
| ARVANDA2 | 0        | 0                     | 0        | 0                     | 0.001698 | 0.05753               | 0        | 0                     | 0        | 0                     |
| LAKEWOOD | 0        | 0                     | 0        | 0                     | 0.019124 | 0.191379              | 0        | 0                     | 0        | 0                     |
| BEXAR    | 0        | 0                     | 0        | 0                     | 0        | 0                     | 0.746928 | 0.435306              | 0.904779 | 0.672743              |
| SANANTON | 0        | 0                     | 0        | 0                     | 0        | 0                     | 0.203931 | 0.403414              | 0.054086 | 0.518423              |
| COMAL    | 0        | 0                     | 0        | 0                     | 0        | 0                     | 0.017199 | 0.130172              | 0.02179  | 0.334639              |
| GUADALUP | 0        | 0                     | 0        | 0                     | 0        | 0                     | 0.022113 | 0.147232              | 0.018584 | 0.309534              |
| GLENDALE | 0.083092 | 0.083092              | 0.164504 | 1.701792              | 0        | 0                     | 0        | 0                     | 0        | 0                     |
| MESA     | 0.156244 | 0.156244              | 0.150059 | 1.63935               | 0        | 0                     | 0        | 0                     | 0        | 0                     |
| PHOENIX  | 0.522526 | 0.522526              | 0.416353 | 2.262830              | 0        | 0                     | 0        | 0                     | 0        | 0                     |
| SCOLLSDI | 0.038807 | 0.038807              | 0.053529 | 1.033231              | 0        | 0                     | 0        | 0                     | 0        | 0                     |
| TEMPE    | 0.064504 | 0.064504              | 0.050069 | 1.001098              | 0        | 0                     | 0        | 0                     | 0        | 0                     |
| AVONDALE | 0.005139 | 0.005139              | 0.000604 | 0.112796              | 0        | 0                     | 0        | 0                     | 0        | 0                     |
| CHANDLER | 0.069550 | 0.069550              | 0.071875 | 1.185601              | 0        | 0                     | 0        | 0                     | 0        | 0                     |
| GILBERT  | 0.021326 | 0.021326              | 0.01485  | 0.555278              | 0        | 0                     | 0        | 0                     | 0        | 0                     |
| GOODYEAR | 0        | 0                     | 0.004093 | 0.293077              | 0        | 0                     | 0        | 0                     | 0        | 0                     |
| KYRENE   | 0.006339 | 0.006339              | 0        | 0                     | 0        | 0                     | 0        | 0                     | 0        | 0                     |
| LTCHFLD  | 0        | 0                     | 0.00166  | 0.186968              | 0        | 0                     | 0        | 0                     | 0        | 0                     |
| PRDISCTY | 0        | 0                     | 0.00166  | 0.186968              | 0        | 0                     | 0        | 0                     | 0        | 0                     |
| PEORIA   | 0.013448 | 0.013448              | 0.05156  | 1.015174              | 0        | 0                     | 0        | 0                     | 0        | 0                     |
| TOLLESON | 0        | 0                     | 0.002650 | 0.236022              | 0        | 0                     | 0        | 0                     | 0        | 0                     |
| YNGSTWN  | 0.003169 | 0.003169              | 0        | 0                     | 0        | 0                     | 0        | 0                     | 0        | 0                     |
| OTHRMAR  | 0.015849 | 0.015849              | 0.009078 | 0.435381              | 0        | 0                     | 0        | 0                     | 0        | 0                     |
| PRICE    | 60180.09 | 60180.09              | 73794.49 | 77817.99              | 72354.80 | 21225.5               | 47415.14 | 19240.75              | 60973.70 | 43299.7               |
| BRATIO   | 0.005008 | 0.005008              | 0.009220 | 0.091455              | 0.009578 | 0.024627              | 0.005729 | 0.014885              | 0.011693 | 0.046300              |
|          |          |                       |          |                       |          |                       |          |                       |          |                       |

TABLE 10
Extended List of Variable Means and Standard Deviations (Continued)

|          |           | PHOENIX               | SNIX      |                       | DENVER    | VER                   |           | SAN ANTONIO           | TONIO     |                       |
|----------|-----------|-----------------------|-----------|-----------------------|-----------|-----------------------|-----------|-----------------------|-----------|-----------------------|
|          | 15        | 1982                  | 198       | 1981/80               | 19        | 1982                  | 19        | 1982                  | 198       | 1985/86               |
| Variable | Mean      | Standard<br>Deviation |
| DSRATIO  | 0.054045  | 0.056405              | 0.028393  | 0.14803               | 0.043259  | 0.051479              | 0.057073  | 0.042574              | 0.03315   | 0.088962              |
| LSQFT    | 7.165861  | 0.328687              | 7.201427  | 1.768347              | 7.047431  | 0.547235              | 6.956574  | 0.959081              | 7.118646  | 1.190729              |
| LLOTSIZE | 8.051653  | 3.372329              | 6.829494  | 17.394                | 6.358552  | 5.681079              | 8.789682  | 1.293408              | 8.314850  | 5.234961              |
| LNPRICE  | 10.95896  | 0.366178              | 11.18126  | 1.104574              | 11.16618  | 0.306906              | 10.67941  | 0.428944              | 10.96531  | 0.768316              |
| APPRVALU | 61889.356 | 21103.356             | 76103.709 | 82548.723             | 71767.009 | 21365.832             | 47836.285 | 19134.330             | 62267.883 | 44029.078             |
| PRICEHAT | 60226.628 | 19087.275             | 73701.093 | 70824.282             | 72354.800 | 17853.451             | 47415.144 | 18286.118             | 60973.702 | 38728.918             |

TABLE 11a
Weighted Least Squares Regression Estimates with Extended Variable List
Dependent Variable: Sales Price of Home

### PHOENIX 1982

| INTERCEPT   27160.000   16238.990   1.672   VBO   2.028   0.434   4.667   LAG1BUYP   6215.000   12128.613   0.512   DISCSELL   0.215   0.150   1.432   SQFT   20.373   2.844   7.161   BLD4   6-645.873   8697.722   -0.743   BLD8   -1220.570   3540.400   -0.345   BLD9   4111.538   8861.326   0.464   FACTFAB   -7067.709   8648.226   -0.817   CENTLAIR   3833.240   1293.176   2.964   FIREPL   2871.001   1077.180   2.665   GOODCOND   2421.116   936.933   2.584   GDRMSIZE   2272.443   1007.191   2.256   BEDRMS   -1019.554   1044.146   -0.976   BATHS   1734.639   1288.832   1.346   ROOMS   864.681   856.362   1.010   AGEHSE   -33.237   35.283   -0.942   LOTSIZE   0.223   0.087   2.549   LOTSZMIS   164.184   1548.777   0.106   WASHDRY   508.347   2903.196   0.175   RANGE   1014.835   1292.218   0.785   REFRIG   -367.209   2497.825   -0.147   DISHW   2069.445   1360.625   1.521   GARBDISP   3073.629   1488.033   2.066   FENCE   -538.354   836.287   -0.644   ALARM   -5369.368   5563.699   -0.965   PATIO   1748.223   864.868   2.021   POOL   6590.636   1638.893   4.021   CARPORT2   3289.786   1844.813   1.783   GARAGE2   6622.026   1908.826   3.469   MICROWV   5872.443   3888.634   1.510   CONC   -11455.000   11029.940   -1.039   SLAB   -7233.226   10425.932   -0.694   BRICK   4091.640   2356.005   1.737 | Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------|-------------------|--------------|
| LAG1BUYP         6215.000         12128.613         0.512           DISCSELL         0.215         0.150         1.432           SQFT         20.373         2.844         7.161           BLD4         -6465.873         8697.722         -0.743           BLD8         -1220.570         3540.400         -0.345           BLD9         4111.538         8861.326         0.464           FACTFAB         -7067.709         8648.226         -0.817           CENTLAIR         3833.240         1293.176         2.964           FIREPL         2871.001         1077.180         2.665           GOODCOND         2421.116         936.933         2.584           GDRMSIZE         2272.443         1007.191         2.256           BEDRMS         -1019.554         1044.146         -0.976           BATHS         1734.639         1288.832         1.346           ROOMS         864.681         856.362         1.010           AGEHSE         -33.237         35.283         -0.942           LOTSIZE         0.223         0.087         2.549           LOTSZMIS         164.184         1548.777         0.106           WASHDRY         50                                                                                                                                                                                                        | INTERCEPT | 27160.000               | 16238.990         | 1.672        |
| DISCSELL         0.215         0.150         1.432           SQFT         20.373         2.844         7.161           BLD4         -6465.873         8697.722         -0.743           BLD8         -1220.570         3540.400         -0.345           BLD9         4111.538         8861.326         0.464           FACTFAB         -7067.709         8648.226         -0.817           CENTLAIR         3833.240         1293.176         2.964           FIREPL         2871.001         1077.180         2.665           GOODCOND         2421.116         936.933         2.584           GDRMSIZE         2272.443         1007.191         2.256           BEDRMS         -1019.554         1044.146         -0.976           BATHS         1734.639         1288.832         1.346           ROOMS         864.681         856.362         1.010           AGEHSE         -33.237         35.283         -0.942           LOTSIZE         0.223         0.087         2.549           LOTSZMIS         164.184         1548.777         0.106           WASHDRY         508.347         2903.196         0.175           RANGE         1014.83                                                                                                                                                                                                        | VBO       | 2.028                   | 0.434             | 4.667        |
| SQFT       20.373       2.844       7.161         BLD4       -6465.873       8697.722       -0.743         BLD8       -1220.570       3540.400       -0.345         BLD9       4111.538       8861.326       0.464         FACTFAB       -7067.709       8648.226       -0.817         CENTLAIR       3833.240       1293.176       2.964         FIREPL       2871.001       1077.180       2.665         GOODCOND       2421.116       936.933       2.584         GDRMSIZE       2272.443       1007.191       2.256         BEDRMS       -1019.554       1044.146       -0.976         BATHS       1734.639       1288.832       1.346         ROOMS       864.681       856.362       1.010         AGEHSE       -33.237       35.283       -0.942         LOTSIZE       0.223       0.087       2.549         LOTSZMIS       164.184       1548.777       0.106         WASHDRY       508.347       2903.196       0.175         RANGE       1014.835       1292.218       0.785         REFRIG       -367.209       2497.825       -0.147         DISHW       2069.445 <td< td=""><td>LAG1BUYP</td><td>6215.000</td><td>12128.613</td><td>0.512</td></td<>                                                                                                                                                                                                | LAG1BUYP  | 6215.000                | 12128.613         | 0.512        |
| BLD4       -6465.873       8697.722       -0.743         BLD8       -1220.570       3540.400       -0.345         BLD9       4111.538       8861.326       0.464         FACTFAB       -7067.709       8648.226       -0.817         CENTLAIR       3833.240       1293.176       2.964         FIREPL       2871.001       1077.180       2.665         GOODCOND       2421.116       936.933       2.584         GDRMSIZE       2272.443       1007.191       2.256         BEDRMS       -1019.554       1044.146       -0.976         BATHS       1734.639       1288.832       1.346         ROOMS       864.681       856.362       1.010         AGEHSE       -33.237       35.283       -0.942         LOTSIZE       0.223       0.087       2.549         LOTSZMIS       164.184       1548.777       0.106         WASHDRY       508.347       2903.196       0.175         RANGE       1014.835       1292.218       0.785         REFRIG       -367.209       2497.825       -0.147         DISHW       2069.445       1360.625       1.521         GARBDISP       3073.629                                                                                                                                                                                                                                                                           | DISCSELL  | 0.215                   | 0.150             | 1.432        |
| BLD8         -1220.570         3540.400         -0.345           BLD9         4111.538         8861.326         0.464           FACTFAB         -7067.709         8648.226         -0.817           CENTLAIR         3833.240         1293.176         2.964           FIREPL         2871.001         1077.180         2.665           GOODCOND         2421.116         936.933         2.584           GDRMSIZE         2272.443         1007.191         2.256           BEDRMS         -1019.554         1044.146         -0.976           BEDRMS         -1019.554         1044.146         -0.976           BATHS         1734.639         1288.832         1.346           ROOMS         864.681         856.362         1.010           AGEHSE         -33.237         35.283         -0.942           LOTSIZE         0.223         0.087         2.549           LOTSZMIS         164.184         1548.777         0.106           WASHDRY         508.347         2903.196         0.175           RANGE         1014.835         1292.218         0.785           REFRIG         -367.209         2497.825         -0.147           DISHW                                                                                                                                                                                                           | SQFT      | 20.373                  | 2.844             | 7.161        |
| BLD9 4111.538 8861.326 0.464 FACTFAB -7067.709 8648.226 -0.817 CENTLAIR 3833.240 1293.176 2.964 FIREPL 2871.001 1077.180 2.665 GOODCOND 2421.116 936.933 2.584 GDRMSIZE 2272.443 1007.191 2.256 BEDRMS -1019.554 1044.146 -0.976 BATHS 1734.639 1288.832 1.346 ROOMS 864.681 856.362 1.010 AGEHSE -33.237 35.283 -0.942 LOTSIZE 0.223 0.087 2.549 LOTSIZE 0.223 0.087 2.549 LOTSZMIS 164.184 1548.777 0.106 WASHDRY 508.347 2903.196 0.175 RANGE 1014.835 1292.218 0.785 REFRIG -367.209 2497.825 -0.147 DISHW 2069.445 1360.625 1.521 GARBDISP 3073.629 1488.033 2.066 FENCE -538.354 836.287 -0.644 ALARM -5369.368 5563.699 -0.965 PATIO 1748.223 864.868 2.021 POOL 6590.636 1638.893 4.021 CARPORT1 2166.346 1583.392 1.368 GARAGE1 4099.001 1877.441 2.183 CARPORT2 3289.786 1844.813 1.783 GARAGE2 6622.026 1908.826 3.469 MICROWV 5872.443 3888.634 1.510 CONC -11455.000 11029.940 -1.039 SLAB -7233.226 10425.932 -0.694                                                                                                                                                                                                                                                                                                                                                                                                                               | BLD4      | -6465.873               | 8697.722          | -0.743       |
| FACTFAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BLD8      | -1220.570               | 3540.400          | -0.345       |
| CENTLAIR         3833.240         1293.176         2.964           FIREPL         2871.001         1077.180         2.665           GOODCOND         2421.116         936.933         2.584           GDRMSIZE         2272.443         1007.191         2.256           BEDRMS         -1019.554         1044.146         -0.976           BATHS         1734.639         1288.832         1.346           ROOMS         864.681         856.362         1.010           AGEHSE         -33.237         35.283         -0.942           LOTSIZE         0.223         0.087         2.549           LOTSZMIS         164.184         1548.777         0.106           WASHDRY         508.347         2903.196         0.175           RANGE         1014.835         1292.218         0.785           REFRIG         -367.209         2497.825         -0.147           DISHW         2069.445         1360.625         1.521           GARBDISP         3073.629         1488.033         2.066           FENCE         -538.354         836.287         -0.644           ALARM         -5369.368         5563.699         -0.965           PATIO                                                                                                                                                                                                             | BLD9      | 4111.538                | 8861.326          | 0.464        |
| FIREPL         2871.001         1077.180         2.665           GOODCOND         2421.116         936.933         2.584           GDRMSIZE         2272.443         1007.191         2.256           BEDRMS         -1019.554         1044.146         -0.976           BATHS         1734.639         1288.832         1.346           ROOMS         864.681         856.362         1.010           AGEHSE         -33.237         35.283         -0.942           LOTSIZE         0.223         0.087         2.549           LOTSZMIS         164.184         1548.777         0.106           WASHDRY         508.347         2903.196         0.175           RANGE         1014.835         1292.218         0.785           REFRIG         -367.209         2497.825         -0.147           DISHW         2069.445         1360.625         1.521           GARBDISP         3073.629         1488.033         2.066           FENCE         -538.354         836.287         -0.644           ALARM         -5369.368         5563.699         -0.965           PATIO         1748.223         864.868         2.021           POOL         6                                                                                                                                                                                                        | FACTFAB   | -7067.709               | 8648.226          | -0.817       |
| GOODCOND         2421.116         936.933         2.584           GDRMSIZE         2272.443         1007.191         2.256           BEDRMS         -1019.554         1044.146         -0.976           BATHS         1734.639         1288.832         1.346           ROOMS         864.681         856.362         1.010           AGEHSE         -33.237         35.283         -0.942           LOTSIZE         0.223         0.087         2.549           LOTSZMIS         164.184         1548.777         0.106           WASHDRY         508.347         2903.196         0.175           RANGE         1014.835         1292.218         0.785           REFRIG         -367.209         2497.825         -0.147           DISHW         2069.445         1360.625         1.521           GARBDISP         3073.629         1488.033         2.066           FENCE         -538.354         836.287         -0.644           ALARM         -5369.368         5563.699         -0.965           PATIO         1748.223         864.868         2.021           POOL         6590.636         1638.893         4.021           CARPORT1 <td< td=""><td>CENTLAIR</td><td>3833.240</td><td>1293.176</td><td>2.964</td></td<>                                                                                                                             | CENTLAIR  | 3833.240                | 1293.176          | 2.964        |
| GDRMSIZE         2272.443         1007.191         2.256           BEDRMS         -1019.554         1044.146         -0.976           BATHS         1734.639         1288.832         1.346           ROOMS         864.681         856.362         1.010           AGEHSE         -33.237         35.283         -0.942           LOTSIZE         0.223         0.087         2.549           LOTSZMIS         164.184         1548.777         0.106           WASHDRY         508.347         2903.196         0.175           RANGE         1014.835         1292.218         0.785           REFRIG         -367.209         2497.825         -0.147           DISHW         2069.445         1360.625         1.521           GARBDISP         3073.629         1488.033         2.066           FENCE         -538.354         836.287         -0.644           ALARM         -5369.368         5563.699         -0.965           PATIO         1748.223         864.868         2.021           POOL         6590.636         1638.893         4.021           CARPORT1         2166.346         1583.392         1.368           GARAGE1 <td< td=""><td>FIREPL</td><td>2871.001</td><td>1077.180</td><td>2.665</td></td<>                                                                                                                               | FIREPL    | 2871.001                | 1077.180          | 2.665        |
| BEDRMS         -1019.554         1044.146         -0.976           BATHS         1734.639         1288.832         1.346           ROOMS         864.681         856.362         1.010           AGEHSE         -33.237         35.283         -0.942           LOTSIZE         0.223         0.087         2.549           LOTSZMIS         164.184         1548.777         0.106           WASHDRY         508.347         2903.196         0.175           RANGE         1014.835         1292.218         0.785           REFRIG         -367.209         2497.825         -0.147           DISHW         2069.445         1360.625         1.521           GARBDISP         3073.629         1488.033         2.066           FENCE         -538.354         836.287         -0.644           ALARM         -5369.368         5563.699         -0.965           PATIO         1748.223         864.868         2.021           POOL         6590.636         1638.893         4.021           CARPORT1         2166.346         1583.392         1.368           GARAGE1         4099.001         1877.441         2.183           CARPORT2 <td< td=""><td>GOODCOND</td><td>2421.116</td><td>936.933</td><td>2.584</td></td<>                                                                                                                              | GOODCOND  | 2421.116                | 936.933           | 2.584        |
| BATHS       1734.639       1288.832       1.346         ROOMS       864.681       856.362       1.010         AGEHSE       -33.237       35.283       -0.942         LOTSIZE       0.223       0.087       2.549         LOTSZMIS       164.184       1548.777       0.106         WASHDRY       508.347       2903.196       0.175         RANGE       1014.835       1292.218       0.785         REFRIG       -367.209       2497.825       -0.147         DISHW       2069.445       1360.625       1.521         GARBDISP       3073.629       1488.033       2.066         FENCE       -538.354       836.287       -0.644         ALARM       -5369.368       5563.699       -0.965         PATIO       1748.223       864.868       2.021         POOL       6590.636       1638.893       4.021         CARPORT1       2166.346       1583.392       1.368         GARAGE1       4099.001       1877.441       2.183         CARPORT2       3289.786       1844.813       1.783         GARAGE2       6622.026       1908.826       3.469         MICROWV       5872.443                                                                                                                                                                                                                                                                                | GDRMSIZE  | 2272.443                | 1007.191          | 2.256        |
| ROOMS       864.681       856.362       1.010         AGEHSE       -33.237       35.283       -0.942         LOTSIZE       0.223       0.087       2.549         LOTSZMIS       164.184       1548.777       0.106         WASHDRY       508.347       2903.196       0.175         RANGE       1014.835       1292.218       0.785         REFRIG       -367.209       2497.825       -0.147         DISHW       2069.445       1360.625       1.521         GARBDISP       3073.629       1488.033       2.066         FENCE       -538.354       836.287       -0.644         ALARM       -5369.368       5563.699       -0.965         PATIO       1748.223       864.868       2.021         POOL       6590.636       1638.893       4.021         CARPORT1       2166.346       1583.392       1.368         GARAGE1       4099.001       1877.441       2.183         CARPORT2       3289.786       1844.813       1.783         GARAGE2       6622.026       1908.826       3.469         MICROWV       5872.443       3888.634       1.510         CONC       -11455.000                                                                                                                                                                                                                                                                               | BEDRMS    | -1019.554               | 1044.146          | -0.976       |
| AGEHSE       -33.237       35.283       -0.942         LOTSIZE       0.223       0.087       2.549         LOTSZMIS       164.184       1548.777       0.106         WASHDRY       508.347       2903.196       0.175         RANGE       1014.835       1292.218       0.785         REFRIG       -367.209       2497.825       -0.147         DISHW       2069.445       1360.625       1.521         GARBDISP       3073.629       1488.033       2.066         FENCE       -538.354       836.287       -0.644         ALARM       -5369.368       5563.699       -0.965         PATIO       1748.223       864.868       2.021         POOL       6590.636       1638.893       4.021         CARPORT1       2166.346       1583.392       1.368         GARAGE1       4099.001       1877.441       2.183         CARPORT2       3289.786       1844.813       1.783         GARAGE2       6622.026       1908.826       3.469         MICROWV       5872.443       3888.634       1.510         CONC       -11455.000       11029.940       -1.039         SLAB       -7233.226                                                                                                                                                                                                                                                                           | BATHS     | 1734.639                | 1288.832          | 1.346        |
| LOTSIZE       0.223       0.087       2.549         LOTSZMIS       164.184       1548.777       0.106         WASHDRY       508.347       2903.196       0.175         RANGE       1014.835       1292.218       0.785         REFRIG       -367.209       2497.825       -0.147         DISHW       2069.445       1360.625       1.521         GARBDISP       3073.629       1488.033       2.066         FENCE       -538.354       836.287       -0.644         ALARM       -5369.368       5563.699       -0.965         PATIO       1748.223       864.868       2.021         POOL       6590.636       1638.893       4.021         CARPORT1       2166.346       1583.392       1.368         GARAGE1       4099.001       1877.441       2.183         CARPORT2       3289.786       1844.813       1.783         GARAGE2       6622.026       1908.826       3.469         MICROWV       5872.443       3888.634       1.510         CONC       -11455.000       11029.940       -1.039         SLAB       -7233.226       10425.932       -0.694                                                                                                                                                                                                                                                                                                     | ROOMS     | 864.681                 | 856.362           | 1.010        |
| LOTSZMIS       164.184       1548.777       0.106         WASHDRY       508.347       2903.196       0.175         RANGE       1014.835       1292.218       0.785         REFRIG       -367.209       2497.825       -0.147         DISHW       2069.445       1360.625       1.521         GARBDISP       3073.629       1488.033       2.066         FENCE       -538.354       836.287       -0.644         ALARM       -5369.368       5563.699       -0.965         PATIO       1748.223       864.868       2.021         POOL       6590.636       1638.893       4.021         CARPORT1       2166.346       1583.392       1.368         GARAGE1       4099.001       1877.441       2.183         CARPORT2       3289.786       1844.813       1.783         GARAGE2       6622.026       1908.826       3.469         MICROWV       5872.443       3888.634       1.510         CONC       -11455.000       11029.940       -1.039         SLAB       -7233.226       10425.932       -0.694                                                                                                                                                                                                                                                                                                                                                         | AGEHSE    | -33.237                 | 35.283            | -0.942       |
| WASHDRY       508.347       2903.196       0.175         RANGE       1014.835       1292.218       0.785         REFRIG       -367.209       2497.825       -0.147         DISHW       2069.445       1360.625       1.521         GARBDISP       3073.629       1488.033       2.066         FENCE       -538.354       836.287       -0.644         ALARM       -5369.368       5563.699       -0.965         PATIO       1748.223       864.868       2.021         POOL       6590.636       1638.893       4.021         CARPORT1       2166.346       1583.392       1.368         GARAGE1       4099.001       1877.441       2.183         CARPORT2       3289.786       1844.813       1.783         GARAGE2       6622.026       1908.826       3.469         MICROWV       5872.443       3888.634       1.510         CONC       -11455.000       11029.940       -1.039         SLAB       -7233.226       10425.932       -0.694                                                                                                                                                                                                                                                                                                                                                                                                                   | LOTSIZE   | 0.223                   | 0.087             | 2.549        |
| RANGE       1014.835       1292.218       0.785         REFRIG       -367.209       2497.825       -0.147         DISHW       2069.445       1360.625       1.521         GARBDISP       3073.629       1488.033       2.066         FENCE       -538.354       836.287       -0.644         ALARM       -5369.368       5563.699       -0.965         PATIO       1748.223       864.868       2.021         POOL       6590.636       1638.893       4.021         CARPORT1       2166.346       1583.392       1.368         GARAGE1       4099.001       1877.441       2.183         CARPORT2       3289.786       1844.813       1.783         GARAGE2       6622.026       1908.826       3.469         MICROWV       5872.443       3888.634       1.510         CONC       -11455.000       11029.940       -1.039         SLAB       -7233.226       10425.932       -0.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOTSZMIS  | 164.184                 | 1548.777          | 0.106        |
| REFRIG       -367.209       2497.825       -0.147         DISHW       2069.445       1360.625       1.521         GARBDISP       3073.629       1488.033       2.066         FENCE       -538.354       836.287       -0.644         ALARM       -5369.368       5563.699       -0.965         PATIO       1748.223       864.868       2.021         POOL       6590.636       1638.893       4.021         CARPORT1       2166.346       1583.392       1.368         GARAGE1       4099.001       1877.441       2.183         CARPORT2       3289.786       1844.813       1.783         GARAGE2       6622.026       1908.826       3.469         MICROWV       5872.443       3888.634       1.510         CONC       -11455.000       11029.940       -1.039         SLAB       -7233.226       10425.932       -0.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WASHDRY   | 508.347                 | 2903.196          | 0.175        |
| DISHW       2069.445       1360.625       1.521         GARBDISP       3073.629       1488.033       2.066         FENCE       -538.354       836.287       -0.644         ALARM       -5369.368       5563.699       -0.965         PATIO       1748.223       864.868       2.021         POOL       6590.636       1638.893       4.021         CARPORT1       2166.346       1583.392       1.368         GARAGE1       4099.001       1877.441       2.183         CARPORT2       3289.786       1844.813       1.783         GARAGE2       6622.026       1908.826       3.469         MICROWV       5872.443       3888.634       1.510         CONC       -11455.000       11029.940       -1.039         SLAB       -7233.226       10425.932       -0.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RANGE     | 1014.835                | 1292.218          | 0.785        |
| GARBDISP       3073.629       1488.033       2.066         FENCE       -538.354       836.287       -0.644         ALARM       -5369.368       5563.699       -0.965         PATIO       1748.223       864.868       2.021         POOL       6590.636       1638.893       4.021         CARPORT1       2166.346       1583.392       1.368         GARAGE1       4099.001       1877.441       2.183         CARPORT2       3289.786       1844.813       1.783         GARAGE2       6622.026       1908.826       3.469         MICROWV       5872.443       3888.634       1.510         CONC       -11455.000       11029.940       -1.039         SLAB       -7233.226       10425.932       -0.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | REFRIG    | -367.209                | 2497.825          | -0.147       |
| FENCE       -538.354       836.287       -0.644         ALARM       -5369.368       5563.699       -0.965         PATIO       1748.223       864.868       2.021         POOL       6590.636       1638.893       4.021         CARPORT1       2166.346       1583.392       1.368         GARAGE1       4099.001       1877.441       2.183         CARPORT2       3289.786       1844.813       1.783         GARAGE2       6622.026       1908.826       3.469         MICROWV       5872.443       3888.634       1.510         CONC       -11455.000       11029.940       -1.039         SLAB       -7233.226       10425.932       -0.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DISHW     | 2069.445                | 1360.625          | 1.521        |
| ALARM       -5369.368       5563.699       -0.965         PATIO       1748.223       864.868       2.021         POOL       6590.636       1638.893       4.021         CARPORT1       2166.346       1583.392       1.368         GARAGE1       4099.001       1877.441       2.183         CARPORT2       3289.786       1844.813       1.783         GARAGE2       6622.026       1908.826       3.469         MICROWV       5872.443       3888.634       1.510         CONC       -11455.000       11029.940       -1.039         SLAB       -7233.226       10425.932       -0.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GARBDISP  | 3073.629                | 1488.033          | 2.066        |
| PATIO       1748.223       864.868       2.021         POOL       6590.636       1638.893       4.021         CARPORT1       2166.346       1583.392       1.368         GARAGE1       4099.001       1877.441       2.183         CARPORT2       3289.786       1844.813       1.783         GARAGE2       6622.026       1908.826       3.469         MICROWV       5872.443       3888.634       1.510         CONC       -11455.000       11029.940       -1.039         SLAB       -7233.226       10425.932       -0.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FENCE     | -538.354                | 836.287           | -0.644       |
| POOL       6590.636       1638.893       4.021         CARPORT1       2166.346       1583.392       1.368         GARAGE1       4099.001       1877.441       2.183         CARPORT2       3289.786       1844.813       1.783         GARAGE2       6622.026       1908.826       3.469         MICROWV       5872.443       3888.634       1.510         CONC       -11455.000       11029.940       -1.039         SLAB       -7233.226       10425.932       -0.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ALARM     | -5369.368               | 5563.699          | -0.965       |
| CARPORT1       2166.346       1583.392       1.368         GARAGE1       4099.001       1877.441       2.183         CARPORT2       3289.786       1844.813       1.783         GARAGE2       6622.026       1908.826       3.469         MICROWV       5872.443       3888.634       1.510         CONC       -11455.000       11029.940       -1.039         SLAB       -7233.226       10425.932       -0.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PATIO     | 1748.223                | 864.868           | 2.021        |
| GARAGE1       4099.001       1877.441       2.183         CARPORT2       3289.786       1844.813       1.783         GARAGE2       6622.026       1908.826       3.469         MICROWV       5872.443       3888.634       1.510         CONC       -11455.000       11029.940       -1.039         SLAB       -7233.226       10425.932       -0.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | POOL      | 6590.636                | 1638.893          | 4.021        |
| CARPORT2       3289.786       1844.813       1.783         GARAGE2       6622.026       1908.826       3.469         MICROWV       5872.443       3888.634       1.510         CONC       -11455.000       11029.940       -1.039         SLAB       -7233.226       10425.932       -0.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CARPORT1  | 2166.346                | 1583.392          | 1.368        |
| GARAGE2       6622.026       1908.826       3.469         MICROWV       5872.443       3888.634       1.510         CONC       -11455.000       11029.940       -1.039         SLAB       -7233.226       10425.932       -0.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GARAGE1   | 4099.001                | 1877.441          | 2.183        |
| MICROWV 5872.443 3888.634 1.510<br>CONC -11455.000 11029.940 -1.039<br>SLAB -7233.226 10425.932 -0.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CARPORT2  | 3289.786                | 1844.813          | 1.783        |
| CONC -11455.000 11029.940 -1.039<br>SLAB -7233.226 10425.932 -0.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GARAGE2   | 6622.026                | 1908.826          | 3.469        |
| CONC -11455.000 11029.940 -1.039<br>SLAB -7233.226 10425.932 -0.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MICROWV   | 5872.443                |                   |              |
| SLAB -7233.226 10425.932 -0.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CONC      | -11455.000              |                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SLAB      | -7233.226               |                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BRICK     | 4091.640                | 2356.005          |              |

TABLE 11a (Continued)

| Variable | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|----------|-------------------------|-------------------|--------------|
| MEDINT   | 336.324                 | 720.657           | 0.467        |
| INTO     | -1013.976               | 363.585           | -2.789       |
| NEW      | 2748.015                | 1537.001          | 1.788        |
| URBAN    | -724.359                | 1051.788          | -0.689       |
| RURAL    | 1008.374                | 4105.252          | 0.246        |
| MISNEIGH | -2389.546               | 4752.496          | -0.503       |
| GLENDALE | -3601.803               | 4133.957          | -0.871       |
| MESA     | -1576.657               | 3929.156          | -0.401       |
| PHOENIX  | -1144.363               | 3963.773          | -0.289       |
| SCOTTSDL | 4374.895                | 4403.722          | 0.993        |
| TEMPE    | 529.160                 | 4287.569          | 0.123        |
| AVONDALE | -5470.641               | 6647.954          | -0.823       |
| CHANDLER | -2646.742               | 4259.678          | -0.621       |
| GILBERT  | -6275.765               | 4220.123          | -1.487       |
| KYRENE   | -4861.802               | 6323.765          | -0.769       |
| PEORIA   | -186.501                | 4868.136          | -0.038       |
| YNGSTWN  | -2884.840               | 7903.915          | -0.365       |

 $R^2$ : 0.8587

Root MSE: 8360.59051

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 11b
Weighted Least Squares Regression Estimates with Extended Variable List
Dependent Variable: Sales Price of Home

PHOENIX 1985/86

| Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|-----------|-------------------------|-------------------|--------------|
| INTERCEPT | 37739.000               | 8352.043          | 4.519        |
| VBO       | 0.434                   | 0.236             | 1.839        |
| LAG1BUYP  | -21450.000              | 8848.810          | -2.424       |
| DISCSELL  | 0.359                   | 0.140             | 2.556        |
| SQFT      | 29.688                  | 1.727             | 17.189       |
| SQFTMISS  | 59185.000               | 8240.615          | 7.182        |
| BLD1      | 3667.365                | 1654.440          | 2.217        |
| BLD4      | -2728.039               | 2566.644          | -1.063       |
| BLD6      | -2286.157               | 2995.437          | -0.763       |
| BLD7      | -2498.634               | 1878.923          | -1.330       |
| BLD8      | 4851.158                | 2852.372          | 1.701        |
| BLD9      | 5554.808                | 3135.188          | 1.772        |
| FACTFAB   | -13124.000              | 5585.595          | -2.350       |
| CENTLAIR  | 4288.236                | 1317.216          | 3.256        |
| FIREPL    | 4123.980                | 707.219           | 5.831        |
| GOODCOND  | 2697.481                | 952.860           | 2.831        |
| GDRMSIZE  | -258.679                | 974.411           | -0.265       |
| BEDRMS    | -1213.841               | 792.469           | -1.532       |
| BATHS     | 3184.011                | 1068.898          | 2.979        |
| ROOMS     | -383.180                | 534.783           | -0.717       |
| AGEHSE    | -26.568                 | 39.594            | -0.671       |
| LOTSIZE   | 0.122                   | 0.071             | 1.707        |
| LOTSZMIS  | -504.449                | 991.282           | -0.509       |
| WASHDRY   | -29.626                 | 1319.804          | -0.022       |
| RANGE     | -1375.734               | 1437.343          | -0.957       |
| REFRIG    | 1217.081                | 1546.008          | 0.787        |
| DISHW     | 3080.825                | 1117.272          | 2.757        |
| GARBDISP  | -2796.401               | 1216.788          | -2.298       |
| FENCE     | -1580.786               | 729.598           | -2.167       |
| PATIO     | 676.256                 | 761.736           | 0.888        |
| POOL      | 3988.088                | 965.232           | 4.132        |
| CARPORT1  | 2282.987                | 1319.630          | 1.730        |
| GARAGE1   | 2795.209                | 1363.451          | 2.050        |
| CARPORT2  | 4698.729                | 1391.969          | 3.376        |
| GARAGE2   | 8250.083                | 1357.680          | 6.077        |
| MICROWV   | -1822.968               | 1968.812          | -0.926       |

TABLE 11b (Continued)

| Variable | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|----------|-------------------------|-------------------|--------------|
| HRDWDFLR | 30883.000               | 6809.365          | 4.535        |
| CONC     | 1762.616                | 7080.200          | 0.249        |
| SLAB     | -5120.032               | 6093.912          | -0.840       |
| BRICK    | 111.327                 | 2115.554          | 0.053        |
| MEDINT   | -376.830                | 526.457           | -0.716       |
| INT0     | -591.692                | 475.312           | -1.245       |
| NEW      | 13765.000               | 3334.472          | 4.128        |
| URBAN    | -1590.616               | 878.576           | -1.810       |
| RURAL    | -7406.021               | 5967.206          | -1.241       |
| MISNEIGH | -1864.099               | 5876.830          | -0.317       |
| UNKCNTY  | -9933.000               | 4765.054          | -2.085       |
| GLENDALE | -6600.201               | 3372.652          | -1.957       |
| MESA     | -3658.340               | 3391.990          | -1.079       |
| PHOENIX  | -6254.359               | 3363.072          | -1.860       |
| SCOTTSDL | -208.021                | 3568.753          | -0.058       |
| TEMPE    | -3929.183               | 3606.731          | -1.089       |
| AVONDALE | -4492.747               | 12367.757         | -0.363       |
| CHANDLER | -2877.315               | 3502.543          | -0.821       |
| GILBERT  | -10053.000              | 4210.013          | -2.388       |
| GOODYEAR | -5284.926               | 6033.540          | -0.876       |
| LTCHFLD  | -24694.000              | 8362.210          | -2.953       |
| PRDISCTY | 3453.879                | 7940.178          | 0.435        |
| PEORIA   | -10135.000              | 3569.358          | -2.839       |
| TOLLESON | -4511.209               | 7502.683          | -0.601       |

 $R^2$ : 0.8235

Root MSE: 34264.20804

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 11c
Weighted Least Squares Regression Estimates with Extended Variable List
Dependent Variable: Sales Price of Home

## DENVER 1982

| Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|-----------|-------------------------|-------------------|--------------|
| INTERCEPT | 48016.000               | 7633.852          | 6.290        |
| VBO       | 0.260                   | 0.429             | 0.606        |
| LAG1BUYP  | -1135.767               | 4524.767          | -0.251       |
| DISCSELL  | -0.143                  | 0.204             | -0.705       |
| SQFT      | 16.364                  | 2.160             | 7.573        |
| SQFTMISS  | 17728.000               | 12587.999         | 1.408        |
| BLD5      | 5297.479                | 2470.153          | 2.145        |
| BLD8      | -6126.574               | 3212.417          | -1.907       |
| FACTFAB   | -4170.759               | 12798.065         | -0.326       |
| CENTLAIR  | 3285.775                | 1773.987          | 1.852        |
| FIREPL    | 4381.879                | 1166.392          | 3.757        |
| GOODCOND  | 4284.009                | 1095.951          | 3.909        |
| GDRMSIZE  | 967.228                 | 1109.896          | 0.871        |
| BEDRMS    | -2730.676               | 947.113           | -2.883       |
| BATHS     | 2024.361                | 1026.625          | 1.972        |
| ROOMS     | 974.307                 | 798.300           | 1.220        |
| AGEHSE    | -124.120                | 32.368            | -3.835       |
| LOTSIZE   | -0.019                  | 0.026             | -0.724       |
| LOTSZMIS  | 1201.311                | 1586.337          | 0.757        |
| WASHDRY   | 3336.238                | 1374.286          | 2.428        |
| RANGE     | -3246.789               | 1647.669          | -1.971       |
| REFRIG    | -2724.100               | 1103.151          | -2.469       |
| DISHW     | 459.763                 | 1197.371          | 0.384        |
| GARBDISP  | 1573.852                | 1101.890          | 1.428        |
| FENCE     | -3484.610               | 2279.612          | -1.529       |
| ALARM     | 5230.972                | 4418.394          | 1.184        |
| PATIO     | 1527.785                | 1340.964          | 1.139        |
| POOL      | -5752.912               | 7734.956          | -0.744       |
| CARPORT1  | 4687.119                | 2554.208          | 1.835        |
| GARAGE1   | 4912.581                | 1335.028          | 3.680        |
| CARPORT2  | -12912.000              | 8052.978          | -1.603       |
| GARAGE2   | 9166.518                | 1356.469          | 6.758        |
| MICROWV   | 9468.959                | 3899.622          | 2.428        |
| HRDWDFLR  | 4150.655                | 1168.857          | 3.551        |
| CONC      | -1053.253               | 1816.512          | -0.580       |
| SLAB      | -4904.132               | 2377.889          | -2.062       |

TABLE 11c (Continued)

| Variable | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|----------|-------------------------|-------------------|--------------|
| BRICK    | 2307.720                | 1040.028          | 2.219        |
| MEDINT   | 540.382                 | 421.752           | 1.281        |
| INT0     | -902.622                | 410.853           | -2.197       |
| NEW      | 1619.426                | 2146.906          | 0.754        |
| URBAN    | -979.916                | 1273.940          | -0.769       |
| RURAL    | 4418.174                | 3848.090          | 1.148        |
| MISNEIGH | 937.108                 | 4081.767          | 0.230        |
| UNKCNTY  | -750.615                | 8373.151          | -0.090       |
| ADAMS    | -6190.578               | 3461.294          | -1.789       |
| ARVANDA1 | -8821.277               | 6721.484          | -1.312       |
| AURORA1  | -1664.927               | 4422.267          | -0.376       |
| ARAPAHOE | -1133.451               | 3361.594          | -0.337       |
| AURORA2  | 250.166                 | 4419.174          | 0.057        |
| ENGLEWD  | -4749.030               | 4910.836          | -0.967       |
| LTTLETON | 3284.872                | 4951.654          | 0.663        |
| LTTLTNSE | -2147.360               | 5046.714          | -0.425       |
| DENVERCO | -1661.761               | 3483.590          | -0.477       |
| DENVER   | -392.444                | 3506.362          | -0.112       |
| DOUGLAS  | 1712.998                | 3697.821          | 0.463        |
| JEFFERSN | -2053.806               | 3218.938          | -0.638       |
| ARVANDA2 | -13428.000              | 10608.484         | -1.266       |

 $R^2$ : 0.7075

Root MSE: 12240.17841

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 11d
Weighted Least Squares Regression Estimates with Extended Variable List
Dependent Variable: Sales Price of Home

# SAN ANTONIO 1982

| Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|-----------|-------------------------|-------------------|--------------|
| INTERCEPT | 17198.000               | 8789.255          | 1.957        |
| VBO       | -0.007                  | 0.474             | -0.017       |
| LAG1BUYP  | 2248.054                | 2931.350          | 0.767        |
| DISCSELL  | 0.541                   | 0.182             | 2.960        |
| SQFT      | 26.593                  | 2.096             | 12.683       |
| SQFTMISS  | 35690.000               | 3833.685          | 9.310        |
| BLD2      | -5066.816               | 1744.137          | -2.905       |
| FACTFAB   | -15002.000              | 6736.545          | -2.227       |
| CENTLAIR  | 4193.469                | 1163.801          | 3.603        |
| FIREPL    | 2417.263                | 992.910           | 2.435        |
| GOODCOND  | 1973.151                | 899.476           | 2.194        |
| GDRMSIZE  | 695.593                 | 802.039           | 0.867        |
| BEDRMS    | 293.433                 | 823.660           | 0.356        |
| BATHS     | -222.367                | 1149.807          | -0.193       |
| ROOMS     | -1036.947               | 544.475           | -1.904       |
| AGEHSE    | 3.947                   | 23.041            | 0.171        |
| LOTSIZE   | -0.014                  | 0.071             | -0.201       |
| LOTSZMIS  | 134.860                 | 2580.817          | 0.052        |
| WASHDRY   | 296.271                 | 1569.176          | 0.189        |
| RANGE     | 2585.871                | 1039.889          | 2.487        |
| REFRIG    | 1316.804                | 1288.360          | 1.022        |
| DISHW     | 1875.566                | 1291.816          | 1.452        |
| GARBDISP  | 1697.892                | 1351.265          | 1.257        |
| FENCE     | 344.536                 | 852.391           | 0.404        |
| ALARM     | -2286.251               | 3016.712          | -0.758       |
| SECSYS    | 10094.000               | 7279.863          | 1.387        |
| PATIO     | -54.113                 | 921.113           | -0.059       |
| POOL      | 3927.651                | 4207.050          | 0.934        |
| CARPORT1  | 1341.441                | 1599.384          | 0.839        |
| GARAGE1   | 3116.248                | 1063.108          | 2.931        |
| CARPORT2  | 3014.761                | 2115.649          | 1.425        |
| GARAGE2   | 6414.838                | 1231.422          | 5.209        |
| MICROWV   | -33.464                 | 2117.164          | -0.016       |
| HRDWDFLR  | 2226.900                | 993.314           | 2.242        |
| CONC      | -2175.595               | 3879.351          | -0.561       |
| SLAB      | 3902.902                | 1072.428          | 3.639        |

TABLE 11d (Continued)

| Variable | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|----------|-------------------------|-------------------|--------------|
| BRICK    | 4938.446                | 994.992           | 4.963        |
| MEDINT   | -51.030                 | 578.525           | -0.088       |
| INT0     | -1111.785               | 287.036           | -3.873       |
| NEW      | 5859.270                | 1545.406          | 3.791        |
| URBAN    | -37.568                 | 713.517           | -0.053       |
| RURAL    | 4230.278                | 3474.218          | 1.218        |
| MISNEIGH | -2215.206               | 2859.969          | -0.775       |
| UNKCNTY  | 1124.054                | 3947.318          | 0.285        |
| BEXAR    | -415.944                | 2271.799          | -0.183       |
| SANANTON | 318.213                 | 2390.776          | 0.133        |
| COMAL    | 9183.680                | 3436.452          | 2.672        |

 $R^2$ : 0.9032

Root MSE: 6356.25582

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 11e
Weighted Least Squares Regression Estimates with Extended Variable List
Dependent Variable: Sales Price of Home

SAN ANTONIO 1985/86

| Variable              | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|-----------------------|-------------------------|-------------------|--------------|
| INTERCEPT             | 8203.150                | 5463.130          | 1.502        |
| VBO                   | 0.446                   | 0.295             | 1.508        |
| LAG1BUYP              | 3880.519                | 4334.290          | 0.895        |
| DISCSELL              | 0.342                   | 0.199             | 1.715        |
| $\operatorname{SQFT}$ | 7.769                   | 1.100             | 7.061        |
| SQFTMISS              | 17170.000               | 5467.634          | 3.140        |
| $\mathrm{BLD2}$       | -358.512                | 1902.779          | -0.188       |
| BLD3                  | -1996.546               | 2962.377          | -0.674       |
| BLD6                  | -994.197                | 2104.229          | -0.472       |
| BLD9                  | 882.747                 | 3751.294          | 0.235        |
| FACTFAB               | -8413.228               | 6373.291          | -1.320       |
| CENTLAIR              | 3502.722                | 1248.548          | 2.805        |
| FIREPL                | 9275.225                | 1001.462          | 9.262        |
| GOODCOND              | 1392.025                | 781.809           | 1.781        |
| GDRMSIZE              | 428.930                 | 857.968           | 0.500        |
| BEDRMS                | -1376.261               | 886.516           | -1.552       |
| BATHS                 | 4041.557                | 1061.726          | 3.807        |
| ROOMS                 | 2450.632                | 490.251           | 4.999        |
| AGEHSE                | 1.710                   | 28.642            | 0.060        |
| LOTSIZE               | 0.367                   | 0.084             | 4.364        |
| LOTSZMIS              | 3519.327                | 1498.928          | 2.348        |
| WASHDRY               | 2454.338                | 1725.910          | 1.422        |
| RANGE                 | 3607.980                | 1135.365          | 3.178        |
| REFRIG                | -2102.585               | 1514.597          | -1.388       |
| DISHW                 | 5968.728                | 1367.453          | 4.365        |
| GARBDISP              | -370.724                | 1285.479          | -0.288       |
| FENCE                 | -1394.361               | 798.966           | -1.745       |
| ALARM                 | -5264.367               | 1805.656          | -2.915       |
| SECSYS                | 658.666                 | 1563.281          | 0.421        |
| PATIO                 | -191.363                | 791.704           | -0.242       |
| POOL                  | 9295.763                | 4048.683          | 2.296        |
| CARPORT1              | 3034.608                | 1703.536          | 1.781        |
| GARAGE1               | 2415.871                | 1173.729          | 2.058        |
| CARPORT2              | 2308.817                | 2817.311          | 0.820        |
| GARAGE2               | 9767.000                | 1327.112          | 7.359        |
| MICROWV               | -20.872                 | 1540.154          | -0.014       |
|                       |                         |                   |              |

TABLE 11e (Continued)

| Variable | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|----------|-------------------------|-------------------|--------------|
| HRDWDFLR | 5092.922                | 1297.223          | 3.926        |
| SLAB     | 878.910                 | 1260.813          | 0.697        |
| BRICK    | 3185.606                | 890.534           | 3.577        |
| MEDINT   | -86.452                 | 591.966           | -0.146       |
| INT0     | -27.171                 | 521.711           | -0.052       |
| NEW      | 606.704                 | 2152.242          | 0.282        |
| URBAN    | -697.427                | 722.616           | -0.965       |
| RURAL    | 2437.102                | 3934.337          | 0.619        |
| MISNEIGH | -4067.033               | 4401.803          | -0.924       |
| UNKCNTY  | -4401.151               | 12291.667         | -0.358       |
| BEXAR    | 197.689                 | 2569.640          | 0.077        |
| SANANTON | 3772.464                | 2973.724          | 1.269        |
| COMAL    | -6567.867               | 3659.292          | -1.795       |

 $R^2$ : 0.8000

Root MSE: 20026.54721

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 11f
Weighted Least Squares Regression Estimates with Extended Variable List
Dependent Variable: Sales Price of Home

## **PHOENIX**

| Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|-----------|-------------------------|-------------------|--------------|
| INTERCEPT | 40787.000               | 6406.864          | 6.366        |
| VBO       | 0.465                   | 0.187             | 2.483        |
| LAG1BUYP  | -10300.000              | 5635.785          | -1.828       |
| DISCSELL  | 0.327                   | 0.108             | 3.004        |
| SQFT      | 29.437                  | 1.375             | 21.408       |
| SQFTMISS  | 60572.000               | 6593.976          | 9.186        |
| BLD1      | 3452.325                | 1330.750          | 2.594        |
| BLD4      | -2939.076               | 2059.785          | -1.427       |
| BLD6      | -2177.077               | 2418.295          | -0.900       |
| BLD7      | -2573.142               | 1513.432          | -1.700       |
| BLD8      | 4212.214                | 2242.597          | 1.878        |
| BLD9      | 5322.668                | 2519.004          | 2.113        |
| FACTFAB   | -12221.000              | 4423.572          | -2.763       |
| CENTLAIR  | 4180.172                | 1023.659          | 4.084        |
| FIREPL    | 4095.040                | 562.336           | 7.282        |
| GOODCOND  | 2776.345                | 739.197           | 3.756        |
| GDRMSIZE  | -195.375                | 756.682           | -0.258       |
| BEDRMS    | -1148.290               | 626.471           | -1.833       |
| BATHS     | 3113.066                | 840.484           | 3.704        |
| ROOMS     | -365.673                | 425.635           | -0.859       |
| AGEHSE    | -24.966                 | 30.649            | -0.815       |
| LOTSIZE   | 0.117                   | 0.055             | 2.105        |
| LOTSZMIS  | -327.214                | 784.227           | -0.417       |
| WASHDRY   | 36.042                  | 1055.825          | 0.034        |
| RANGE     | -1272.389               | 1110.301          | -1.146       |
| REFRIG    | 1081.098                | 1228.009          | 0.880        |
| DISHW     | 3178.346                | 878.342           | 3.619        |
| GARBDISP  | -2619.277               | 954.743           | -2.743       |
| FENCE     | -1594.557               | 572.808           | -2.784       |
| ALARM     | -3152.023               | 14726.264         | -0.214       |
| PATIO     | 685.756                 | 599.061           | 1.145        |
| POOL      | 3954.831                | 768.275           | 5.148        |
| CARPORT1  | 2267.728                | 1038.908          | 2.183        |
| GARAGE1   | 2901.413                | 1079.279          | 2.688        |
| CARPORT2  | 4613.695                | 1097.074          | 4.205        |
| GARAGE2   | 8303.238                | 1070.218          | 7.758        |

TABLE 11f (Continued)

| Variable | Coefficient<br>Estimate | Standard<br>Error | T-statistic * |
|----------|-------------------------|-------------------|---------------|
| MICROWV  | -1902.295               | 1573.234          | -1.209        |
| HRDWDFLR | 30885.000               | 5483.396          | 5.632         |
| CONC     | 599.384                 | 5452.416          | 0.110         |
| SLAB     | -5801.305               | 4664.075          | -1.244        |
| BRICK    | 366.528                 | 1661.741          | 0.221         |
| MEDINT   | -455.727                | 405.776           | -1.123        |
| INT0     | -763.364                | 355.997           | -2.144        |
| NEW      | 9185.166                | 2025.180          | 4.535         |
| TIME82   | -2469.044               | 1661.697          | -1.486        |
| URBAN    | -1494.527               | 691.270           | -2.162        |
| RURAL    | -6589.732               | 4491.263          | -1.467        |
| MISNEIGH | -1513.615               | 4466.464          | -0.339        |
| UNKCNTY  | -9935.000               | 3797.659          | -2.616        |
| GLENDALE | -6562.067               | 2650.508          | -2.476        |
| MESA     | -3725.512               | 2663.594          | -1.399        |
| PHOENIX  | -6137.250               | 2641.530          | -2.323        |
| SCOTTSDL | -11.263                 | 2808.803          | -0.004        |
| TEMPE    | -3964.993               | 2830.894          | -1.401        |
| AVONDALE | -6205.608               | 8792.248          | -0.706        |
| CHANDLER | -2946.528               | 2751.927          | -1.071        |
| GILBERT  | -10198.000              | 3283.272          | -3.106        |
| GOODYEAR | -5243.573               | 4791.945          | -1.094        |
| KYRENE   | -7546.714               | 15885.459         | -0.475        |
| LTCHFLD  | -23450.000              | 6696.516          | -3.502        |
| PRDISCTY | 3090.191                | 6383.150          | 0.484         |
| PEORIA   | -9761.000               | 2807.615          | -3.477        |
| TOLLESON | -4477.885               | 5936.221          | -0.754        |
| YNGSTWN  | -8144.111               | 22080.326         | -0.369        |

 $R^2$ : 0.8252

Root MSE: 27694.28215

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 11g
Weighted Least Squares Regression Estimates with Extended Variable List
Dependent Variable: Sales Price of Home

## SAN ANTONIO

|           |                         | , th              |              |
|-----------|-------------------------|-------------------|--------------|
| Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
| INTERCEPT | 7500.811                | 4345.269          | 1.726        |
| VBO       | 0.404                   | 0.239             | 1.692        |
| LAG1BUYP  | 2689.042                | 3117.002          | 0.863        |
| DISCSELL  | 0.344                   | 0.147             | 2.327        |
| SQFT      | 8.482                   | 0.898             | 9.436        |
| SQFTMISS  | 15027.000               | 3805.457          | 3.949        |
| BLD2      | -707.542                | 1367.756          | -0.517       |
| BLD3      | -2657.468               | 2414.661          | -1.101       |
| BLD6      | -695.572                | 1711.600          | -0.406       |
| BLD9      | 1152.498                | 3090.748          | 0.373        |
| FACTFAB   | -8733.790               | 5006.212          | -1.745       |
| CENTLAIR  | 3774.953                | 974.616           | 3.873        |
| FIREPL    | 8743.459                | 781.541           | 11.187       |
| GOODCOND  | 1500.711                | 622.109           | 2.412        |
| GDRMSIZE  | 605.672                 | 663.294           | 0.913        |
| BEDRMS    | -1008.699               | 686.588           | -1.469       |
| BATHS     | 3811.307                | 838.695           | 4.544        |
| ROOMS     | 2234.824                | 385.090           | 5.803        |
| AGEHSE    | 9.872                   | 21.824            | 0.452        |
| LOTSIZE   | 0.296                   | 0.064             | 4.592        |
| LOTSZMIS  | 2810.354                | 1207.495          | 2.327        |
| WASHDRY   | 2208.333                | 1331.110          | 1.659        |
| RANGE     | 3503.603                | 885.027           | 3.959        |
| REFRIG    | -1879.004               | 1156.564          | -1.625       |
| DISHW     | 5764.783                | 1061.170          | 5.432        |
| GARBDISP  | -323.890                | 1009.636          | -0.321       |
| FENCE     | -1078.874               | 627.498           | -1.719       |
| ALARM     | -5257.596               | 1374.035          | -3.826       |
| SECSYS    | 469.270                 | 1293.631          | 0.363        |
| PATIO     | -167.828                | 627.809           | -0.267       |
| POOL      | 7026.794                | 3184.770          | 2.206        |
| CARPORT1  | 2754.538                | 1334.863          | 2.064        |
| GARAGE1   | 2549.811                | 911.199           | 2.798        |
| CARPORT2  | 2774.529                | 2113.646          | 1.313        |
| GARAGE2   | 9530.610                | 1027.165          | 9.279        |
| MICROWV   | 262.322                 | 1242.084          | 0.211        |

TABLE 11g (Continued)

| Variable | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|----------|-------------------------|-------------------|--------------|
| HRDWDFLR | 4564.877                | 985.249           | 4.633        |
| CONC     | -4705.877               | 9737.075          | -0.483       |
| SLAB     | 1237.503                | 968.407           | 1.278        |
| BRICK    | 3748.103                | 701.978           | 5.339        |
| MEDINT   | 164.837                 | 425.869           | 0.387        |
| INT0     | -268.951                | 353.612           | -0.761       |
| NEW      | 1227.320                | 1523.328          | 0.806        |
| TIME82   | -8763.032               | 1365.784          | -6.416       |
| URBAN    | -491.210                | 566.034           | -0.868       |
| RURAL    | 3244.163                | 3052.499          | 1.063        |
| MISNEIGH | -3747.181               | 3242.196          | -1.156       |
| UNKCNTY  | -1481.714               | 6709.312          | -0.221       |
| BEXAR    | 434.362                 | 1997.445          | 0.217        |
| SANANTON | 2895.441                | 2248.586          | 1.288        |
| COMAL    | -3922.615               | 2844.066          | -1.379       |
|          |                         |                   |              |

 $R^2$ : 0.8095

Root MSE: 16690.11874

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 12a
Weighted Least Squares Regression Estimates with Extended Variable List
Dependent Variable: Log of Sales Price of Home
PHOENIX 1982

| Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|-----------|-------------------------|-------------------|--------------|
| INTERCEPT | 6.8983                  | 0.4858            | 14.199       |
| BRATIO    | 1.9420                  | 0.5310            | 3.657        |
| LAG1BUYP  | -0.0439                 | 0.2179            | -0.202       |
| DSRATIO   | -0.1498                 | 0.1853            | -0.809       |
| LSQFT     | 0.5541                  | 0.0675            | 8.203        |
| BLD4      | -0.0561                 | 0.1548            | -0.363       |
| BLD8      | 0.0154                  | 0.0626            | 0.246        |
| BLD9      | 0.0484                  | 0.1564            | 0.310        |
| FACTFAB   | -0.2461                 | 0.1531            | -1.607       |
| CENTLAIR  | 0.1017                  | 0.0229            | 4.430        |
| FIREPL    | 0.0501                  | 0.0188            | 2.657        |
| GOODCOND  | 0.0475                  | 0.0165            | 2.871        |
| GDRMSIZE  | 0.0383                  | 0.0177            | 2.163        |
| BEDRMS    | -0.0213                 | 0.0184            | -1.161       |
| BATHS     | 0.0344                  | 0.0237            | 1.451        |
| ROOMS     | -0.0010                 | 0.0151            | -0.071       |
| AGEHSE    | -0.0007                 | 0.0006            | -1.143       |
| LLOTSIZE  | 0.0462                  | 0.0247            | 1.870        |
| LOTSZMIS  | 0.3938                  | 0.2219            | 1.775        |
| WASHDRY   | 0.0167                  | 0.0512            | 0.328        |
| RANGE     | 0.0254                  | 0.0228            | 1.113        |
| REFRIG    | -0.0188                 | 0.0438            | -0.429       |
| DISHW     | 0.0206                  | 0.0240            | 0.861        |
| GARBDISP  | 0.0633                  | 0.0260            | 2.433        |
| FENCE     | -0.0040                 | 0.0147            | -0.274       |
| ALARM     | -0.0970                 | 0.0985            | -0.984       |
| PATIO     | 0.0245                  | 0.0152            | 1.604        |
| POOL      | 0.1010                  | 0.0290            | 3.475        |
| CARPORT1  | 0.0487                  | 0.0280            | 1.741        |
| GARAGE1   | 0.0858                  | 0.0332            | 2.581        |
| CARPORT2  | 0.0671                  | 0.0326            | 2.055        |
| GARAGE2   | 0.1051                  | 0.0336            | 3.120        |
| MICROWV   | 0.0539                  | 0.0682            | 0.791        |
| CONC      | -0.2757                 | 0.1954            | -1.411       |
| SLAB      | -0.1852                 | 0.1847            | -1.003       |
| BRICK     | 0.0954                  | 0.0417            | 2.290        |

TABLE 12a (Continued)

| Variable | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|----------|-------------------------|-------------------|--------------|
| MEDINT   | -0.0010                 | 0.0127            | -0.081       |
| INTO     | -0.0225                 | 0.0063            | -3.542       |
| NEW      | 0.0365                  | 0.0272            | 1.342        |
| URBAN    | -0.0201                 | 0.0186            | -1.084       |
| RURAL    | 0.0017                  | 0.0683            | 0.026        |
| MISNEIGH | -0.0767                 | 0.0840            | -0.913       |
| GLENDALE | -0.1154                 | 0.0709            | -1.628       |
| MESA     | -0.0900                 | 0.0666            | -1.350       |
| PHOENIX  | -0.0827                 | 0.0675            | -1.226       |
| SCOTTSDL | 0.0037                  | 0.0758            | 0.050        |
| TEMPE    | -0.0312                 | 0.0733            | -0.426       |
| AVONDALE | -0.1595                 | 0.1161            | -1.373       |
| CHANDLER | -0.0964                 | 0.0734            | -1.313       |
| GILBERT  | -0.1326                 | 0.0739            | -1.793       |
| KYRENE   | -0.0974                 | 0.1095            | -0.890       |
| PEORIA   | -0.0443                 | 0.0858            | -0.516       |
| YNGSTWN  | -0.1371                 | 0.1386            | -0.990       |

 $R^2$ : 0.8599

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 12b
Weighted Least Squares Regression Estimates with Extended Variable List
Dependent Variable: Log of Sales Price of Home
PHOENIX 1985/86

| Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|-----------|-------------------------|-------------------|--------------|
| INTERCEPT | 6.6459                  | 0.2591            | 25.642       |
| BRATIO    | 0.3732                  | 0.2473            | 1.509        |
| LAG1BUYP  | -0.2644                 | 0.1203            | -2.198       |
| DSRATIO   | 0.2054                  | 0.1505            | 1.364        |
| LSQFT     | 0.5668                  | 0.0344            | 16.438       |
| SQFTMISS  | 4.3339                  | 0.2660            | 16.292       |
| BLD1      | 0.0430                  | 0.0223            | 1.923        |
| BLD4      | -0.0279                 | 0.0349            | -0.801       |
| BLD6      | -0.0252                 | 0.0405            | -0.623       |
| BLD7      | -0.0348                 | 0.0254            | -1.367       |
| BLD8      | 0.0509                  | 0.0386            | 1.320        |
| BLD9      | 0.0905                  | 0.0425            | 2.130        |
| FACTFAB   | -0.1676                 | 0.0758            | -2.210       |
| CENTLAIR  | 0.1017                  | 0.0177            | 5.744        |
| FIREPL    | 0.0577                  | 0.0095            | 6.041        |
| GOODCOND  | 0.0445                  | 0.0129            | 3.446        |
| GDRMSIZE  | -0.0099                 | 0.0131            | -0.759       |
| BEDRMS    | -0.0234                 | 0.0107            | -2.176       |
| BATHS     | 0.0516                  | 0.0150            | 3.424        |
| ROOMS     | -0.0073                 | 0.0072            | -1.010       |
| AGEHSE    | -0.0004                 | 0.0005            | -0.824       |
| LLOTSIZE  | 0.0473                  | 0.0170            | 2.771        |
| LOTSZMIS  | 0.3939                  | 0.1505            | 2.617        |
| WASHDRY   | 0.0030                  | 0.0178            | 0.170        |
| RANGE     | -0.0083                 | 0.0195            | -0.428       |
| REFRIG    | 0.0170                  | 0.0209            | 0.813        |
| DISHW     | 0.0552                  | 0.0151            | 3.648        |
| GARBDISP  | -0.0353                 | 0.0164            | -2.140       |
| FENCE     | -0.0218                 | 0.0098            | -2.210       |
| PATIO     | 0.0119                  | 0.0103            | 1.160        |
| POOL      | 0.0604                  | 0.0130            | 4.648        |
| CARPORT1  | 0.0349                  | 0.0178            | 1.950        |
| GARAGE1   | 0.0447                  | 0.0184            | 2.422        |
| CARPORT2  | 0.0612                  | 0.0188            | 3.251        |
| GARAGE2   | 0.1117                  | 0.0183            | 6.088        |
| MICROWV   | -0.0153                 | 0.0267            | -0.574       |
|           |                         |                   |              |

TABLE 12b (Continued)

| Variable          | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|-------------------|-------------------------|-------------------|--------------|
|                   |                         |                   |              |
| HRDWDFLR          | 0.3625                  | 0.0923            | 3.926        |
| CONC              | 0.0312                  | 0.0959            | 0.326        |
| SLAB              | -0.0342                 | 0.0825            | -0.415       |
| BRICK             | 0.0036                  | 0.0286            | 0.127        |
| $\mathbf{MEDINT}$ | -0.0003                 | 0.0071            | -0.050       |
| INT0              | -0.0104                 | 0.0064            | -1.636       |
| NEW               | 0.1634                  | 0.0452            | 3.612        |
| URBAN             | -0.0231                 | 0.0118            | -1.949       |
| RURAL             | -0.0480                 | 0.0662            | -0.726       |
| MISNEIGH          | 0.0374                  | 0.0796            | 0.470        |
| UNKCNTY           | -0.1273                 | 0.0651            | -1.955       |
| GLENDALE          | -0.0867                 | 0.0464            | -1.870       |
| MESA              | -0.0511                 | 0.0464            | -1.103       |
| PHOENIX           | -0.0835                 | 0.0462            | -1.807       |
| SCOTTSDL          | 0.0050                  | 0.0491            | 0.103        |
| TEMPE             | -0.0559                 | 0.0495            | -1.129       |
| AVONDALE          | -0.0418                 | 0.1678            | -0.249       |
| CHANDLER          | -0.0426                 | 0.0479            | -0.890       |
| GILBERT           | -0.1323                 | 0.0575            | -2.301       |
| GOODYEAR          | -0.0879                 | 0.0804            | -1.093       |
| LTCHFLD           | -0.3830                 | 0.1136            | -3.372       |
| PRDISCTY          | 0.0385                  | 0.1078            | 0.357        |
| PEORIA            | -0.1290                 | 0.0483            | -2.668       |
| TOLLESON          | -0.0726                 | 0.0970            | -0.749       |

 $R^2$ : 0.8391

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 12c
Weighted Least Squares Regression Estimates with Extended Variable List
Dependent Variable: Log of Sales Price of Home

### DENVER 1982

|           | Coefficient | Standard |              |
|-----------|-------------|----------|--------------|
| Variable  | Estimate    | Error    | T-statistic* |
| INTERCEPT | 9.3427      | 0.3209   | 29.110       |
| BRATIO    | -0.1712     | 0.4494   | -0.381       |
| LAG1BUYP  | -0.0478     | 0.0648   | -0.737       |
| DSRATIO   | -0.7796     | 0.2061   | -3.781       |
| LSQFT     | 0.2670      | 0.0415   | 6.421        |
| SQFTMISS  | 1.8334      | 0.3360   | 5.456        |
| BLD5      | 0.0607      | 0.0353   | 1.722        |
| BLD8      | -0.0673     | 0.0462   | -1.455       |
| FACTFAB   | -0.0727     | 0.1849   | -0.393       |
| CENTLAIR  | 0.0476      | 0.0253   | 1.875        |
| FIREPL    | 0.0667      | 0.0167   | 3.982        |
| GOODCOND  | 0.0671      | 0.0157   | 4.275        |
| GDRMSIZE  | 0.0034      | 0.0159   | 0.219        |
| BEDRMS    | -0.0282     | 0.0137   | -2.055       |
| BATHS     | 0.0299      | 0.0146   | 2.043        |
| ROOMS     | 0.0117      | 0.0112   | 1.045        |
| AGEHSE    | -0.0019     | 0.0004   | -4.197       |
| LLOTSIZE  | -0.0204     | 0.0220   | -0.924       |
| LOTSZMIS  | -0.1780     | 0.1996   | -0.892       |
| WASHDRY   | 0.0592      | 0.0197   | 2.992        |
| RANGE     | -0.0420     | 0.0236   | -1.780       |
| REFRIG    | -0.0495     | 0.0157   | -3.149       |
| DISHW     | -0.0000     | 0.0172   | -0.003       |
| GARBDISP  | 0.0362      | 0.0158   | 2.288        |
| FENCE     | -0.0364     | 0.0327   | -1.111       |
| ALARM     | 0.0557      | 0.0636   | 0.876        |
| PATIO     | 0.0260      | 0.0192   | 1.351        |
| POOL      | -0.0736     | 0.1111   | -0.662       |
| CARPORT1  | 0.0850      | 0.0366   | 2.319        |
| GARAGE1   | 0.0929      | 0.0192   | 4.831        |
| CARPORT2  | -0.1573     | 0.1157   | -1.360       |
| GARAGE2   | 0.1435      | 0.0194   | 7.382        |
| MICROWV   | 0.1460      | 0.0560   | 2.605        |
| HRDWDFLR  | 0.0683      | 0.0167   | 4.084        |
| CONC      | 0.0058      | 0.0261   | 0.223        |
| SLAB      | -0.0445     | 0.0342   | -1.301       |

TABLE 12c (Continued)

| Variable | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|----------|-------------------------|-------------------|--------------|
| BRICK    | 0.0334                  | 0.0149            | 2.237        |
| MEDINT   | 0.0120                  | 0.0060            | 1.988        |
| INTO     | -0.0163                 | 0.0059            | -2.764       |
| NEW      | 0.0334                  | 0.0304            | 1.100        |
| URBAN    | -0.0168                 | 0.0183            | -0.919       |
| RURAL    | 0.0795                  | 0.0572            | 1.389        |
| MISNEIGH | -0.0556                 | 0.0589            | -0.945       |
| UNKCNTY  | 0.0157                  | 0.1202            | 0.131        |
| ADAMS    | -0.0630                 | 0.0497            | -1.267       |
| ARVANDA1 | -0.1373                 | 0.0965            | -1.422       |
| AURORA1  | -0.0034                 | 0.0635            | -0.055       |
| ARAPAHOE | 0.0045                  | 0.0482            | 0.095        |
| AURORA2  | 0.0069                  | 0.0634            | 0.110        |
| ENGLEWD  | -0.0780                 | 0.0706            | -1.105       |
| LTTLETON | 0.0624                  | 0.0709            | 0.881        |
| LTTLTNSE | -0.0085                 | 0.0721            | -0.118       |
| DENVERCO | -0.0203                 | 0.0502            | -0.406       |
| DENVER   | 0.0113                  | 0.0503            | 0.225        |
| DOUGLAS  | 0.0395                  | 0.0529            | 0.746        |
| JEFFERSN | 0.0019                  | 0.0462            | 0.042        |
| ARVANDA2 | -0.1644                 | 0.1523            | -1.080       |

 $R^2$ : 0.7114

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 12d
Weighted Least Squares Regression Estimates with Extended Variable List
Dependent Variable: Log of Sales Price of Home

## SAN ANTONIO 1982

| Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|-----------|-------------------------|-------------------|--------------|
| INTERCEPT | 6.2551                  | 0.4511            | 13.864       |
| BRATIO    | 0.3073                  | 0.6298            | 0.488        |
| LAG1BUYP  | 0.0371                  | 0.0696            | 0.533        |
| DSRATIO   | -0.2912                 | 0.2921            | -0.997       |
| LSQFT     | 0.6036                  | 0.0633            | 9.522        |
| SQFTMISS  | 4.3515                  | 0.4571            | 9.519        |
| BLD2      | -0.0203                 | 0.0420            | -0.484       |
| FACTFAB   | -0.2836                 | 0.1600            | -1.773       |
| CENTLAIR  | 0.0887                  | 0.0275            | 3.222        |
| FIREPL    | 0.0631                  | 0.0233            | 2.700        |
| GOODCOND  | 0.0784                  | 0.0213            | 3.667        |
| GDRMSIZE  | 0.0085                  | 0.0189            | 0.450        |
| BEDRMS    | -0.0029                 | 0.0194            | -0.149       |
| BATHS     | -0.0012                 | 0.0272            | -0.046       |
| ROOMS     | 0.0002                  | 0.0128            | 0.021        |
| AGEHSE    | 0.0000                  | 0.0005            | 0.110        |
| LLOTSIZE  | 0.0270                  | 0.0248            | 1.088        |
| LOTSZMIS  | 0.2554                  | 0.2311            | 1.106        |
| WASHDRY   | -0.0428                 | 0.0371            | -1.154       |
| RANGE     | 0.0879                  | 0.0246            | 3.562        |
| REFRIG    | 0.0467                  | 0.0304            | 1.535        |
| DISHW     | 0.0463                  | 0.0307            | 1.509        |
| GARBDISP  | 0.0584                  | 0.0320            | 1.822        |
| FENCE     | 0.0036                  | 0.0201            | 0.184        |
| ALARM     | -0.0085                 | 0.0714            | -0.119       |
| SECSYS    | 0.1305                  | 0.1720            | 0.759        |
| PATIO     | 0.0108                  | 0.0216            | 0.500        |
| POOL      | 0.0512                  | 0.0996            | 0.515        |
| CARPORT1  | 0.0289                  | 0.0379            | 0.762        |
| GARAGE1   | 0.0790                  | 0.0252            | 3.136        |
| CARPORT2  | 0.0902                  | 0.0509            | 1.772        |
| GARAGE2   | 0.1440                  | 0.0291            | 4.943        |
| MICROWV   | 0.0130                  | 0.0498            | 0.262        |
| HRDWDFLR  | 0.0830                  | 0.0235            | 3.527        |
| CONC      | -0.2679                 | 0.0922            | -2.906       |
| SLAB      | 0.1424                  | 0.0254            | 5.601        |

TABLE 12d (Continued)

| Variable | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|----------|-------------------------|-------------------|--------------|
| BRICK    | 0.0761                  | 0.0231            | 3.288        |
| MEDINT   | -0.0050                 | 0.0136            | -0.370       |
| INT0     | -0.0299                 | 0.0067            | -4.451       |
| NEW      | 0.1000                  | 0.0363            | 2.748        |
| URBAN    | -0.0084                 | 0.0169            | -0.500       |
| RURAL    | 0.0171                  | 0.0820            | 0.208        |
| MISNEIGH | -0.0577                 | 0.0678            | -0.851       |
| UNKCNTY  | -0.0092                 | 0.0936            | -0.099       |
| BEXAR    | -0.0778                 | 0.0541            | -1.438       |
| SANANTON | -0.0714                 | 0.0567            | -1.259       |
| COMAL    | 0.1586                  | 0.0813            | 1.950        |

 $R^2$ : 0.8908

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 12e
Weighted Least Squares Regression Estimates with Extended Variable List
Dependent Variable: Log of Sales Price of Home
SAN ANTONIO 1985/86

|                 | -                       |                   |              |
|-----------------|-------------------------|-------------------|--------------|
| Variable        | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
| INTERCEPT       | 7.5430                  | 0.2551            | 29.558       |
| BRATIO          | 0.2257                  | 0.3418            | 0.660        |
| LAG1BUYP        | 0.0655                  | 0.0696            | 0.942        |
| DSRATIO         | -0.1297                 | 0.2240            | -0.579       |
| LSQFT           | 0.3065                  | 0.0338            | 9.061        |
| SQFTMISS        | 2.2938                  | 0.2526            | 9.079        |
| $\mathrm{BLD2}$ | -0.0150                 | 0.0306            | -0.493       |
| BLD3            | -0.0284                 | 0.0476            | -0.596       |
| BLD6            | -0.0086                 | 0.0339            | -0.256       |
| BLD9            | 0.0187                  | 0.0603            | 0.310        |
| FACTFAB         | -0.0754                 | 0.1025            | -0.736       |
| CENTLAIR        | 0.0969                  | 0.0200            | 4.834        |
| FIREPL          | 0.1374                  | 0.0164            | 8.336        |
| GOODCOND        | 0.0218                  | 0.0125            | 1.739        |
| GDRMSIZE        | 0.0063                  | 0.0137            | 0.462        |
| BEDRMS          | -0.0290                 | 0.0142            | -2.037       |
| BATHS           | 0.0565                  | 0.0174            | 3.250        |
| ROOMS           | 0.0251                  | 0.0082            | 3.057        |
| AGEHSE          | -0.0000                 | 0.0004            | -0.054       |
| LLOTSIZE        | 0.0723                  | 0.0178            | 4.048        |
| LOTSZMIS        | 0.6462                  | 0.1600            | 4.037        |
| WASHDRY         | 0.0397                  | 0.0277            | 1.432        |
| RANGE           | 0.0638                  | 0.0182            | 3.491        |
| REFRIG          | -0.0265                 | 0.0243            | -1.089       |
| DISHW           | 0.1083                  | 0.0220            | 4.926        |
| GARBDISP        | -0.0027                 | 0.0206            | -0.135       |
| FENCE           | -0.0221                 | 0.0128            | -1.727       |
| ALARM           | -0.0610                 | 0.0290            | -2.102       |
| SECSYS          | 0.0013                  | 0.0251            | 0.054        |
| PATIO           | 0.0097                  | 0.0127            | 0.766        |
| POOL            | 0.1463                  | 0.0651            | 2.247        |
| CARPORT1        | 0.0613                  | 0.0273            | 2.241        |
| GARAGE1         | 0.0781                  | 0.0189            | 4.135        |
| CARPORT2        | 0.0825                  | 0.0453            | 1.819        |
| GARAGE2         | 0.1832                  | 0.0213            | 8.565        |
| MICROWV         | -0.0068                 | 0.0248            | -0.276       |
|                 |                         |                   |              |

TABLE 12e (Continued)

| Variable | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|----------|-------------------------|-------------------|--------------|
| HRDWDFLR | 0.1007                  | 0.0208            | 4.833        |
| SLAB     | 0.0350                  | 0.0202            | 1.731        |
| BRICK    | 0.0410                  | 0.0143            | 2.859        |
| MEDINT   | 0.0121                  | 0.0095            | 1.275        |
| INT0     | -0.0147                 | 0.0083            | -1.761       |
| NEW      | 0.0249                  | 0.0345            | 0.720        |
| URBAN    | -0.0076                 | 0.0116            | -0.657       |
| RURAL    | 0.0596                  | 0.0626            | 0.952        |
| MISNEIGH | -0.0420                 | 0.0709            | -0.592       |
| UNKCNTY  | -0.0115                 | 0.1981            | -0.058       |
| BEXAR    | -0.0043                 | 0.0414            | -0.104       |
| SANANTON | 0.0337                  | 0.0478            | 0.705        |
| COMAL    | -0.0944                 | 0.0567            | -1.664       |

 $R^2$ : 0.8358

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 12f
Weighted Least Squares Regression Estimates with Extended Variable List
Dependent Variable: Log of Sales Price of Home

## PHOENIX

| Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|-----------|-------------------------|-------------------|--------------|
| INTERCEPT | 6.7100                  | 0.2061            | 32.545       |
| BRATIO    | 0.4440                  | 0.1980            | 2.242        |
| LAG1BUYP  | -0.1358                 | 0.0773            | -1.756       |
| DSRATIO   | 0.1576                  | 0.1164            | 1.353        |
| LSQFT     | 0.5653                  | 0.0276            | 20.410       |
| SQFTMISS  | 4.3414                  | 0.2139            | 20.293       |
| BLD1      | 0.0385                  | 0.0182            | 2.117        |
| BLD4      | -0.0302                 | 0.0283            | -1.065       |
| BLD6      | -0.0239                 | 0.0331            | -0.722       |
| BLD7      | -0.0358                 | 0.0207            | -1.728       |
| BLD8      | 0.0437                  | 0.0307            | 1.423        |
| BLD9      | 0.0892                  | 0.0345            | 2.581        |
| FACTFAB   | -0.1640                 | 0.0607            | -2.698       |
| CENTLAIR  | 0.1009                  | 0.0139            | 7.236        |
| FIREPL    | 0.0571                  | 0.0076            | 7.431        |
| GOODCOND  | 0.0446                  | 0.0101            | 4.398        |
| GDRMSIZE  | -0.0069                 | 0.0103            | -0.671       |
| BEDRMS    | -0.0227                 | 0.0086            | -2.646       |
| BATHS     | 0.0517                  | 0.0120            | 4.315        |
| ROOMS     | -0.0068                 | 0.0058            | -1.173       |
| AGEHSE    | -0.0004                 | 0.0004            | -1.043       |
| LLOTSIZE  | 0.0464                  | 0.0135            | 3.431        |
| LOTSZMIS  | 0.3892                  | 0.1193            | 3.260        |
| WASHDRY   | 0.0041                  | 0.0144            | 0.287        |
| RANGE     | -0.0053                 | 0.0152            | -0.348       |
| REFRIG    | 0.0150                  | 0.0168            | 0.892        |
| DISHW     | 0.0553                  | 0.0120            | 4.597        |
| GARBDISP  | -0.0299                 | 0.0130            | -2.287       |
| FENCE     | -0.0219                 | 0.0078            | -2.796       |
| ALARM     | -0.0570                 | 0.2019            | -0.282       |
| PATIO     | 0.0122                  | 0.0082            | 1.495        |
| POOL      | 0.0591                  | 0.0104            | 5.647        |
| CARPORT1  | 0.0339                  | 0.0142            | 2.386        |
| GARAGE1   | 0.0466                  | 0.0148            | 3.151        |
| CARPORT2  | 0.0617                  | 0.0150            | 4.109        |
| GARAGE2   | 0.1121                  | 0.0146            | 7.661        |

TABLE 12f (Continued)

| Variable | Coefficient<br>Estimate | Standard<br>Error | T-statistic * |
|----------|-------------------------|-------------------|---------------|
| MICROWV  | -0.0166                 | 0.0216            | -0.770        |
| HRDWDFLR | 0.3685                  | 0.0752            | 4.899         |
| CONC     | -0.0002                 | 0.0747            | -0.003        |
| SLAB     | -0.0586                 | 0.0639            | -0.918        |
| BRICK    | 0.0090                  | 0.0227            | 0.398         |
| MEDINT   | 0.0000                  | 0.0055            | 0.008         |
| INT0     | -0.0142                 | 0.0048            | -2.928        |
| NEW      | 0.1127                  | 0.0277            | 4.059         |
| TIME82   | -0.0653                 | 0.0228            | -2.863        |
| URBAN    | -0.0224                 | 0.0094            | -2.372        |
| RURAL    | -0.0423                 | 0.0511            | -0.828        |
| MISNEIGH | 0.0215                  | 0.0612            | 0.351         |
| UNKCNTY  | -0.1283                 | 0.0525            | -2.442        |
| GLENDALE | -0.0871                 | 0.0369            | -2.361        |
| MESA     | -0.0531                 | 0.0368            | -1.441        |
| PHOENIX  | -0.0824                 | 0.0367            | -2.243        |
| SCOTTSDL | 0.0067                  | 0.0391            | 0.172         |
| TEMPE    | -0.0551                 | 0.0393            | -1.401        |
| AVONDALE | -0.0878                 | 0.1208            | -0.728        |
| CHANDLER | -0.0432                 | 0.0381            | -1.135        |
| GILBERT  | -0.1356                 | 0.0453            | -2.988        |
| GOODYEAR | -0.0815                 | 0.0648            | -1.259        |
| KYRENE   | -0.0874                 | 0.2168            | -0.403        |
| LTCHFLD  | -0.3688                 | 0.0920            | -4.007        |
| PRDISCTY | 0.0328                  | 0.0877            | 0.374         |
| PEORIA   | -0.1254                 | 0.0385            | -3.254        |
| TOLLESON | -0.0689                 | 0.0780            | -0.883        |
| YNGSTWN  | -0.1374                 | 0.3028            | -0.454        |

 $R^2$ : 0.8413

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

TABLE 12g
Weighted Least Squares Regression Estimates with Extended Variable List
Dependent Variable: Log of Sales Price of Home

SAN ANTONIO

| Variable        | Coefficient<br>Estimate | Standard<br>Error | T-statistic * |
|-----------------|-------------------------|-------------------|---------------|
| INTERCEPT       | 7.4183                  | 0.2094            | 35.414        |
| BRATIO          | 0.1647                  | 0.2831            | 0.582         |
| LAG1BUYP        | 0.0161                  | 0.0520            | 0.310         |
| DSRATIO         | -0.1576                 | 0.1705            | -0.924        |
| LSQFT           | 0.3367                  | 0.0280            | 11.989        |
| SQFTMISS        | 2.4678                  | 0.2075            | 11.893        |
| $\mathrm{BLD2}$ | 0.0015                  | 0.0228            | 0.069         |
| BLD3            | -0.0562                 | 0.0402            | -1.396        |
| BLD6            | -0.0160                 | 0.0286            | -0.560        |
| BLD9            | 0.0070                  | 0.0516            | 0.136         |
| FACTFAB         | -0.0932                 | 0.0835            | -1.115        |
| CENTLAIR        | 0.0989                  | 0.0162            | 6.087         |
| FIREPL          | 0.1302                  | 0.0133            | 9.770         |
| GOODCOND        | 0.0284                  | 0.0103            | 2.741         |
| GDRMSIZE        | 0.0080                  | 0.0110            | 0.724         |
| BEDRMS          | -0.0236                 | 0.0114            | -2.061        |
| BATHS           | 0.0509                  | 0.0142            | 3.569         |
| ROOMS           | 0.0220                  | 0.0067            | 3.295         |
| AGEHSE          | 0.0002                  | 0.0003            | 0.567         |
| LLOTSIZE        | 0.0619                  | 0.0144            | 4.290         |
| LOTSZMIS        | 0.5540                  | 0.1294            | 4.281         |
| WASHDRY         | 0.0290                  | 0.0222            | 1.308         |
| RANGE           | 0.0657                  | 0.0147            | 4.447         |
| REFRIG          | -0.0188                 | 0.0193            | -0.975        |
| DISHW           | 0.1032                  | 0.0177            | 5.825         |
| GARBDISP        | 0.0026                  | 0.0168            | 0.158         |
| FENCE           | -0.0134                 | 0.0104            | -1.286        |
| ALARM           | -0.0800                 | 0.0229            | -3.491        |
| SECSYS          | -0.0030                 | 0.0215            | -0.142        |
| PATIO           | 0.0077                  | 0.0104            | 0.745         |
| POOL            | 0.1203                  | 0.0531            | 2.264         |
| CARPORT1        | 0.0559                  | 0.0222            | 2.510         |
| GARAGE1         | 0.0805                  | 0.0152            | 5.290         |
| CARPORT2        | 0.0960                  | 0.0353            | 2.721         |
| GARAGE2         | 0.1806                  | 0.0171            | 10.514        |
| MICROWV         | -0.0034                 | 0.0207            | -0.164        |
|                 |                         |                   |               |

TABLE 12g (Continued)

| Variable | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|----------|-------------------------|-------------------|--------------|
| HRDWDFLR | 0.0939                  | 0.0164            | 5.716        |
| CONC     | -0.4155                 | 0.1625            | -2.556       |
| SLAB     | 0.0507                  | 0.0161            | 3.140        |
| BRICK    | 0.0485                  | 0.0117            | 4.133        |
| MEDINT   | 0.0144                  | 0.0070            | 2.040        |
| INT0     | -0.0180                 | 0.0058            | -3.093       |
| NEW      | 0.0602                  | 0.0253            | 2.373        |
| TIME82   | -0.1921                 | 0.0228            | -8.401       |
| URBAN    | -0.0059                 | 0.0094            | -0.630       |
| RURAL    | 0.0561                  | 0.0505            | 1.111        |
| MISNEIGH | -0.0419                 | 0.0542            | -0.773       |
| UNKCNTY  | -0.0004                 | 0.1120            | -0.004       |
| BEXAR    | -0.0035                 | 0.0334            | -0.107       |
| SANANTON | 0.0253                  | 0.0375            | 0.674        |
| COMAL    | -0.0568                 | 0.0460            | -1.234       |

 $R^2$ : 0.8427

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

coefficient on ROOMS measures the effect on house price of adding a room other than a bedroom or bathroom. Note also that these effects are conditioned on house size (SQFT), thus assuming that square footage remains fixed.

The presence of additional controls in Tables 11 and 12 also changes the reference group against which some effects are measured. For example, in moving from Tables 7 and 8 to Tables 11 and 12, variables for one- and two-car garages (GARAGE1 and GARAGE2) are supplemented with variables that distinguish one- and two-car carports (CARPORT1 and CARPORT2), and thus the reference group now excludes carports but includes uncovered parking, on-street parking, or unspecified parking facilities.

The regression results in Tables 11 and 12 are in some respects less satisfactory than those in Tables 7 and 8. Many of the estimates seem more highly variable across samples and more sensitive to the level of aggregation. In addition, many of the newly measured coefficients are often implausible, especially those that measure features that are not intrinsic to the structure of the home, such as the presence of clothes washers/dryers, dishwashers, garbage disposals, etc. One possibility is that these features are spuriously correlated with other unobserved house characteristics that are of substantial importance, perhaps in part because particular builders that are not separately identified in our regressions consistently offer packages that either include or exclude some of these features.

Although it is difficult to interpret some of these estimated parameters as true structural effects, similar hedonic regressions offer a potentially useful basis for estimating house values or for checking house price appraisals. The results here suggest that additional controls may be necessary, or larger samples may be required to improve estimates of house characteristics that have already been singled out. It may also be useful to estimate regressions over smaller geographic areas, thus possibly providing added homogeneity of unmeasured features of homes. It is encouraging that even the relatively brief list of variables contained in the earlier tables (Tables 7 and 8) explained a fairly substantial fraction of variation in house prices—on the order of three-quarters of the variation around the mean—and most of the

estimates in these regressions appeared to be plausible.

One potentially useful way in which to exploit regression estimates like these is to form predictions of house prices against which appraised values may be judged. Appraised values that are found to be too distant from the regression prediction of sales price would then be subjected to additional scrutiny—perhaps reappraisal. This procedure would aid in identifying suspect appraisals, thus helping to preclude inadvisable loans.

This application presumes, of course, that the regression predictions of house prices are reasonably close to appraised values. Although it would be shocking if this were not true, it is worth establishing this property. Figure 4 uses scatterplots to illustrate graphically the similarity between regression house price predictions and the corresponding appraised values for the samples of homes used here.<sup>24</sup> The regression predictions are computed from the parameter estimates presented in Tables 11a-11e.

Table 13 supplements the graphical evidence by using weighted regressions to summarize the relationship between appraised values and regression predictions of sales prices, where the latter are denoted by the variable PRICEHAT. The values of the R-squared statistics indicate that in the samples used here the regression sales price predictions explain between 64 and 91 percent of the variation in appraised values. As with the scatter diagrams, these regressions show a reasonable degree of concordance between the two measures of home value.

It is worth emphasizing that the samples used to conduct these exercises consist exclusively of sales transactions that are actually consummated. In contrast, the use of regression predictions as a check on appraised values is likely to occur at a much earlier point in the lending process, and as a result, the sample of prospective sales transactions at issue in practice may include many that are never completed. The differences between the samples used here and those likely to arise in practice may be both systematic and important. In

<sup>&</sup>lt;sup>24</sup>The estimates utilized to predict house prices are from weighted regressions, but the scatterplots themselves are unweighted in the sense that each observation is represented by a single point.

Figure 4
Appraised Values versus
Regression Predictions of Sales Prices

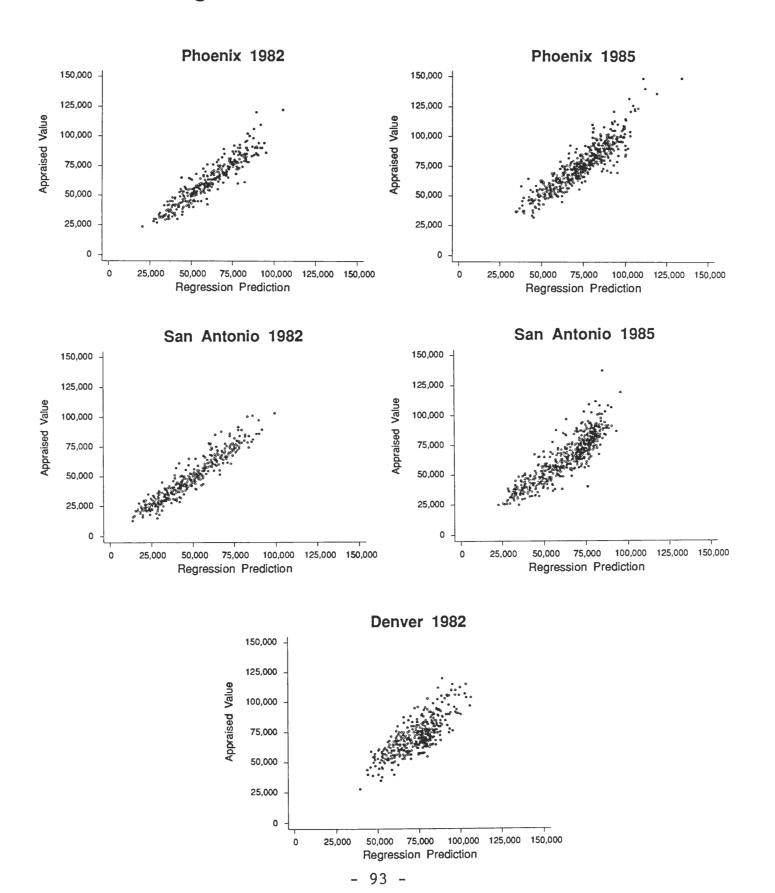



TABLE 13
Weighted Least Squares Regression Estimates
Dependent Variable: Appraised Value of Home

| Variable                                                                                        | Coefficient<br>Estimate | Standard<br>Error | T-statistic*      |
|-------------------------------------------------------------------------------------------------|-------------------------|-------------------|-------------------|
|                                                                                                 | PHOENI                  | X 1982            |                   |
| INTERCEPT PRICEHAT Number of Observation R <sup>2</sup> : 0.8789 Root MSE: 7353.997             |                         | 1252.944<br>0.020 | - 0.428<br>51.608 |
|                                                                                                 | PHOENIX                 | 1985/86           |                   |
| INTERCEPT PRICEHAT Number of Observation R <sup>2</sup> : 0.8266 Root MSE: 34400.37             |                         | 1432.290<br>0.019 | - 1.394<br>55.708 |
|                                                                                                 | DENVE                   | R 1982            |                   |
| INTERCEPT PRICEHAT Number of Observation R <sup>2</sup> : 0.6418 Root MSE: 12801.94             |                         | 2443.218<br>0.033 | 0.982<br>28.831   |
|                                                                                                 | SAN ANTO                | NIO 1932          |                   |
| INTERCEPT<br>PRICEHAT<br>Number of Observation<br>R <sup>2</sup> : 0.9079<br>Root MSE: 5813.913 |                         | 801.754<br>0.015  | 0.700<br>63.187   |
| 100t MSE. 3613.913                                                                              |                         |                   |                   |
|                                                                                                 | SAN ANTON               |                   |                   |
| INTERCEPT PRICEHAT Number of Observatio R <sup>2</sup> : 0.8009 Root MSE: 19661.52              |                         | 1183.199<br>0.018 | 0.198<br>54.404   |

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

particular, because appraised values that fall short of buyers' offer prices may induce some buyers to back out of sales transactions, such appraisals are likely to be rarer in the samples used here than in the broader set of appraisals that would arise in practice. If, in fact, the samples used here are censored versions of the broader samples, the quantitative relationships explored here may not hold up in actual application. In particular, the relationship between regression predictions of sales prices and appraised values, as well as various characteristics of the distributions of appraised values and regression price predictions, may be very different from those found here. For this reason, the explorations in this section should be taken as only illustrative of what could be done. At a minimum, some attention should be given to the possible consequences of broadening the samples to a larger set of potential transactions.

The latter caveat aside, it is of interest to note that the differences between appraised values and regression predictions do not appear to be strongly related to the observed home characteristics that form the basis of the regression predictions. To demonstrate this point, we used weighted regressions to explain the difference between the appraised value and the regression prediction of house price in terms of the house features measured by the regressors in Tables 11a-11e. Table 14 presents the results from the regression on one sample, but is typical of the findings for all of the samples. In particular, only occasionally is a coefficient statistically significantly different from zero. One interpretation of these findings is that appraisers attach values to home features in a way that does not generally differ systematically from the way in which values are assigned statistically by the regression procedure.

Having established that regression predictions of house prices are reasonably good estimates of appraised values, we now ask more precisely how the former may be used to check on the latter. One possibility is to use the strength of the general relationship between appraised values and regression predictions to isolate appraisals that appear to be wide

<sup>&</sup>lt;sup>25</sup>For the results in Table 14 we do find, however, that the appraised value responds more strongly to square footage than does the regression prediction of price.

TABLE 14
Weighted Least Squares Regression Estimates with Extended Variable List
Dependent Variable: Appraised Value Minus Predicted Price
PHOENIX 1982

| Variable  | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|-----------|-------------------------|-------------------|--------------|
| INTERCEPT | -5550.442               | 14684.193         | -0.378       |
| VBO       | -0.558                  | 0.393             | -1.419       |
| LAG1BUYP  | 6276.039                | 10973.797         | 0.572        |
| DISCSELL  | -0.127                  | 0.136             | -0.931       |
| SQFT      | 5.424                   | 2.573             | 2.108        |
| BLD4      | 3633.424                | 7864.467          | 0.462        |
| BLD8      | 2835.854                | 3201.413          | 0.886        |
| BLD9      | 524.930                 | 8012.909          | 0.066        |
| FACTFAB   | 2714.187                | 7825.065          | 0.347        |
| CENTLAIR  | -5.261                  | 1170.801          | -0.004       |
| FIREPL    | 558.881                 | 973.977           | 0.574        |
| GOODCOND  | 545.881                 | 847.783           | 0.644        |
| GDRMSIZE  | -1177.615               | 910.695           | -1.293       |
| BEDRMS    | 256.936                 | 944.582           | 0.272        |
| BATHS     | -706.033                | 1165.854          | -0.606       |
| ROOMS     | -933.392                | 774.314           | -1.205       |
| AGEHSE    | -3.088                  | 31.910            | -0.097       |
| LOTSIZE   | 0.103                   | 0.079             | 1.305        |
| LOTSZMIS  | 1369.618                | 1400.489          | 0.978        |
| WASHDRY   | -1944.186               | 2625.061          | -0.741       |
| RANGE     | 456.378                 | 1174.476          | 0.389        |
| REFRIG    | 397.364                 | 2258.519          | 0.176        |
| DISHW     | -900.836                | 1230.687          | -0.732       |
| GARBDISP  | 811.505                 | 1345.491          | 0.603        |
| FENCE     | -129.432                | 756.728           | -0.171       |
| ALARM     | -3036.574               | 5032.199          | -0.603       |
| PATIO     | -146.820                | 782.006           | -0.188       |
| POOL      | -698.886                | 1481.950          | -0.472       |
| CARPORT1  | 609.406                 | 1434.163          | 0.425        |
| GARAGE1   | 27.119                  | 1697.624          | 0.016        |
| CARPORT2  | -106.381                | 1668.640          | -0.064       |
| GARAGE2   | 154.991                 | 1726.582          | 0.090        |
| MICROWV   | 732.857                 | 3516.173          | 0.208        |
| CONC      | -2503.969               | 9973.617          | -0.251       |
| SLAB      | -3602.839               | 9427.083          | -0.382       |
| BRICK     | -303.087                | 2130.722          | -0.142       |

TABLE 14 (Continued)

| Variable | Coefficient<br>Estimate | Standard<br>Error | T-statistic* |
|----------|-------------------------|-------------------|--------------|
| MEDINT   | 247.632                 | 651.612           | 0.380        |
| INT0     | 81.874                  | 329.274           | 0.249        |
| NEW      | -2571.152               | 1389.765          | -1.850       |
| URBAN    | 242.065                 | 951.060           | 0.255        |
| RURAL    | -3138.632               | 3711.999          | -0.846       |
| MISNEIGH | 59.352                  | 4298.876          | 0.014        |
| GLENDALE | 3436.429                | 3738.170          | 0.919        |
| MESA     | 4704.389                | 3553.194          | 1.324        |
| PHOENIX  | 2571.481                | 3584.025          | 0.717        |
| SCOTTSDL | 3876.355                | 3981.827          | 0.974        |
| TEMPE    | 3767.465                | 3876.907          | 0.972        |
| AVONDALE | -248.391                | 6011.578          | -0.041       |
| CHANDLER | 5488.934                | 3851.667          | 1.425        |
| GILBERT  | 7592.553                | 3816.235          | 1.990        |
| KYRENE   | -3724.456               | 5717.959          | -0.651       |
| PEORIA   | 983.163                 | 4402.155          | 0.223        |
| YNGSTWN  | 342.861                 | 7146.637          | 0.048        |

 $R^2$ : 0.0983

Root MSE: 7559.55714

<sup>\*</sup> For reference, the critical absolute value of the t-statistic for a two-tailed test at the five percent significance level is 1.960, and at the one percent significance level the critical value is 2.576.

of the mark. For example, the regression relationships in Table 13 could be used to form confidence intervals for appraised values conditional on a particular value of the regression prediction of house price. Appraised values falling outside the confidence interval would be singled out as suspect. The disadvantage of this procedure is that it fails to recognize that the regression predictions of house prices are themselves subject to varying degrees of error. When the regression prediction of house price is very imprecise, there is little statistical surprise in finding a large deviation between the latter prediction and the appraised value. On the other hand, when the data indicate that the regression prediction of house price is very precise, even a fairly small difference between the latter and the appraised value may be surprising and thus worthy of attention.

To correct for this apparent defect, we consider an alternative procedure that recognizes that both the appraised value and the regression price prediction are subject to error. Under this method we view both the appraisal and the regression prediction as error-ridden predictors of an unknown "true" value that is represented by the sales price of the home.<sup>26</sup> When the two predictors of value differ substantially, after due allowance for the precision with which they are measured, we reject the notion that they are measuring the same true value.

More specifically, we assume, as in the text, that observed sales prices P obey the hedonic regression relationship  $P = X\beta + \epsilon$ , where X is a matrix of observed house characteristics,  $\beta$  is a vector of unknown parameters, and  $\epsilon$  is a vector of random disturbances. The out-of-sample regression prediction  $\hat{P}$  for a home with characteristics  $X_o$  may be written as  $X_o\hat{\beta}$ , where  $\hat{\beta}$  is the (weighted) regression estimate of the parameter vector. Under standard assumptions, this prediction is unbiased in the sense that its expectation is the same as that of the unknown true value, conditional on the observed house characteristics:  $E(\hat{P}) = E(P)$ . The prediction error may be expressed as

$$\hat{P} - P = X_o(\hat{\beta} - \beta) - \epsilon_o.$$

<sup>&</sup>lt;sup>26</sup>That is, we use the sales price as the "true" value, rather than as another indicator of some unmeasured abstract "true" value that could differ from sales price.

The first term on the right-hand side represents error arising from misestimating the parameter vector  $\beta$ . The second term reflects randomness that would be present even if the full parameter vector  $\beta$  were known with certainty. That is, unobservable factors would generally cause the predicted sales price to differ from the realized value even if the influence of all observable house characteristics were known. Again under standard assumptions, the mean square prediction error may be written as

$$E(\hat{P} - P)^2 = X_o V(\hat{\beta}) X_o' + \sigma_o^2$$

where  $\sigma_o^2$  is the variance of  $\epsilon_o$ .

The appraised value  $\tilde{P}$  may be taken as a second predictor of the true value P. Although less is known about its structure, we treat the relationship as one in which  $P = \tilde{P} + \epsilon_1$ , where the random error  $\epsilon_1$  has zero mean, has constant variance  $\sigma_1^2$ , and is uncorrelated across homes. (The assumption that  $\epsilon_1$  has zero mean can easily be relaxed to allow for appraised values that are biased on average.) The appraised value is thus an unbiased predictor of true value in the sense that  $E(\tilde{P}) = E(P)$ , and its mean square prediction error is

$$E(\tilde{P} - P)^2 = \sigma_1^2.$$

Next consider the difference D between the appraised value and the regression prediction of price:  $D = \tilde{P} - \hat{P}$ . Under the assumptions made thus far, this difference should have an expected value of zero and a variance of

$$E(\tilde{P} - \hat{P})^2 = X_o V(\hat{\beta}) X_o' + \sigma_o^2 + \sigma_1^2 - 2\sigma_{o1}$$

where  $\sigma_{o1}$  is the covariance between errors in appraised values and the disturbances in the hedonic regression. Notice that this expression for the variance in D recognizes that both the regression prediction of price and the appraised value are subject to error, and that the forecast errors may be correlated. Notice, moreover, that all terms on the right hand side can be estimated. Estimates of the first two terms on the right-hand side of the above

equation can be obtained from the hedonic regression. Estimates of the final two terms can be obtained as well:  $\sigma_1^2$  can be obtained as the variance of the prediction errors  $\tilde{P} - P$ , while  $\sigma_{o1}$  can be obtained from a regression of  $\tilde{P} - P$  on  $\hat{P} - P$ .<sup>27</sup>

Utilizing the observed difference D between appraised value and the regression prediction of price, together with the estimated variance of D, should form a useful basis upon which to identify suspect appraisals. Although there are several ways to implement the search for suspect appraisals, all methods rely on the idea that the extent of statistical surprise can be measured by the size of D relative to its estimated standard error (the square root of the estimated variance of D). For example, one could examine all cases in which D is larger than some predetermined number of standard errors. Alternatively, one could array all cases in terms of standardized differences (*i.e.*, D divided by its standard error) and examine some fixed percentage of the highest standardized differences. Under either of these methods, it may also be desirable to key on the raw difference as well: even a statistically surprising difference between appraised value and the regression prediction of price may not be worth investigating if the raw dollar difference is not large enough to justify the expense of reappraisal. Similarly, a large raw difference may justify a reappraisal even if it is imprecisely measured because the potential losses from lending on the basis of such an incorrect appraisal are correspondingly large.

In implementing such procedures, it would be useful to know more about the distribution of the standardized differences. In particular, the usual assumption of normality may not be appropriate. To give some indication of how the distribution of standardized differences in our samples would compare to the normal distribution, we computed the values of the standardized differences at various percentiles of the distribution.<sup>28</sup> These values are

<sup>&</sup>lt;sup>27</sup>Values of  $\sigma_1^2$  and  $\sigma_{o1}$  are estimated, respectively, as 25914258 and 15810712 for Phoenix 1982; 359284693 and 18156856 for Phoenix 1985/86; 71977069 and 19898613 for Denver 1982; 7211173 and 4657175 for San Antonio 1982; 56185759 and 22496510 for San Antonio 1985/86.

<sup>&</sup>lt;sup>28</sup>These standardized differences contain a mean correction as well. We found that, on average, appraised values differed from sales prices in the samples used here. The standardized differences first normalize appraisals by deducting the mean difference between appraised values and sales prices. These mean differences are as follows: 1663 for Phoenix 1982; 2403 for Phoenix 1985/86; -588 for Denver 1982; 421 for San Antonio 1982; and 1294 for San Antonio 1985/86.

presented in Table 15. Values that would occur under normality are presented in the final column.

TABLE 15
Standardized Values of D at Various Percentiles of the Distribution

| Percentile | Phoenix<br>1982 | Phoenix<br>1985/86 | Denver<br>1982 | San Antonio<br>1982 | San Antonio<br>1985/86 | Normal Dist. |
|------------|-----------------|--------------------|----------------|---------------------|------------------------|--------------|
| 99         | 2.23            | 1.76               | 2.52           | 2.59                | 3.03                   | 2.33         |
| 95         | 1.77            | 0.96               | 1.57           | 1.73                | 1.80                   | 1.65         |
| 90         | 1.22            | 0.71               | 1.27           | 1.06                | 1.25                   | 1.28         |
| 75         | 0.47            | 0.29               | 0.62           | 0.45                | 0.48                   | 0.67         |
| 50         | -0.12           | -0.05              | -0.07          | -0.10               | -0.06                  | 0.00         |
| 25         | -0.50           | -0.34              | -0.58          | - 0.51              | -0.52                  | -0.67        |
| 10         | -0.97           | -0.63              | -1.02          | - 1.01              | -1.17                  | -1.28        |
| 5          | -1.22           | -0.79              | -1.21          | -1.43               | - 1.49                 | -1.65        |
| 1          | -2.08           | -1.33              | - 1.54         | - 2.03              | - 2.24                 | -2.33        |

Although it is difficult to generalize about the shapes of these empirical distributions relative to the normal, a few salient features are worth mentioning. First, the left-hand tails (corresponding to negative values of D) of the empirical distributions seem generally to be less thick than for the normal, perhaps a reflection of a tendency for sales transactions not to occur when appraised values fall far short of prospective sales prices. The shapes of the distributions above the median are less consistent. For example, the distribution for San Antonio 1985/86 seems to have a somewhat longer right-hand tail than the normal, while the opposite seems to hold for the distribution for Phoenix 1985/86.

It is worth reemphasizing the point that even these qualitative findings may well be inapplicable if the set of appraisals to be examined is broadened by conducting the investigation at an earlier stage of the loan qualification process. Actual experience in applying the methods outlined above, however, will permit the empirical determination of the distribution of standardized differences.